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MC4R and HNF4a promot
er methylation at birth
contribute to triglyceride levels in childhood
A prospective cohort study
Eun Jin Kwon, PhDa, Hye Ah Lee, PhDb, Young-Ah You, PhDa, Jae Young Yoo, PhDa,
Hyesook Park, MD, PhDc, Eun Ae Park, MD, PhDd, Eun Hee Ha, MD, PhDe, Young Ju Kim, MD, PhDf,∗

Abstract
Although the changes in DNA methylation are assumed to be due to the association between adverse intrauterine conditions and
adult metabolic health, evidence from human studies is rare. Little is known about the changes in DNA methylation present at birth
that affect metabolic profiles in childhood. Previous studies have shown that the melanocortin 4 receptor (MC4R) and hepatocyte
nuclear factor 4 alpha (HNF4a) genes are associated with obesity and metabolic disorders. Thus, we investigated the associations of
the DNA methylation statuses of MC4R and HNF4a in cord blood with metabolic profiles in childhood.
We collected data from 90 children 7 to 9 years of age included in the Ewha Birth & Growth Cohort Study in Korea. DNA

methylation was analyzed by pyrosequencing. The children were split into 2 groups according to the cutoff triglyceride (TG) levels
(<110 and ≥110mg/dL).
The methylation statuses of MC4R and HNF4a at birth were significantly associated with the TG level in childhood (P< .05). It was

interesting to note that the methylation statuses of MC4R and HNF4a in cord blood were significantly decreased, whereas childhood
body mass index was significantly increased, in children with high TG levels compared with children with low TG levels (P < .05).
Our findings show that the methylation statuses of MC4R and HNF4a at birth are associated with metabolic profiles in childhood.

These epigenetic modifications occurring in early life may contribute to subsequent metabolic-related disorders. Thus, we suggest
that DNA methylation status in cord blood may be predictive of the risk of developing metabolic syndrome.

Abbreviations: BMI = body mass index, GA = gestational age, HNF4a = hepatocyte nuclear factor 4 alpha, LDL-c = low-density
lipoprotein cholesterol, MC4R = melanocortin 4 receptor, MetS = metabolic syndrome, TG = triglyceride.
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1. Introduction

Metabolic syndrome (MetS) is a complex disorder caused by a
cluster of interrelated risk factors for the development of type 2
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diabetes and cardiovascular disease.[1,2] Globally, MetS is
becoming increasingly prevalent and a major public health
concern. In Korea, the rate of MetS in children and adolescents is
lower (3%) compared with that in adults aged 30 years
(28.8%),[3] but MetS-related traits continue into adulthood,
increasing the risk of adult MetS.[4,5] Although the molecular
mechanisms underlying the etiology of MetS remain largely
unknown, both genetic and environmental factors play impor-
tant roles in the pathogenesis of MetS.
The melanocortin 4 receptor gene (MC4R), which is involved

in the regulation of energy homeostasis, and hepatocyte nuclear
factor 4 alpha gene (HNF4a), a transcription factor involved in
gluconeogenesis and lipid homeostasis, are associated with
obesity andMetS.[6–12] Humans with anMC4R deficiency have a
higher risk of early onset obesity and hyperphagia due to
haploinsufficiency.[6,7] Similarly, MC4R-null mice showed
elevated triglyceride (TG) levels and abnormal expression of
genes related to fatty acid synthesis.[8,9] In humans, mutations in
the 2 promoters of HNF4a, P1 and P2, led to impaired insulin
secretion and, consequently, maturity-onset diabetes in
young.[10–12] In addition, HNF4a-deficient mice showed altered
TG, total cholesterol, and high-density lipoprotein cholesterol
levels and abnormal expression of genes associated with lipid
transport and metabolism.[13]

Epigenetic modifications induced in early life influence
individual susceptibility to MetS in adults, although the
underlying mechanism in humans remains unclear.[14–16] Indeed,
maternal diet can affect the epigenome of offspring, resulting in
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obesity and MetS.[17,18] In our previous study, there were
significant associations between the pro-opiomelanocortin
methylation status at birth and increased TG and insulin levels
in childhood.[19] In addition, MC4R and HNF4a methylation
contributed to elevated TG levels in the cord blood of preterm
babies.[20] However, DNAmethylation of some genes is relatively
stable following birth and may persistently affect long-term
health outcomes, but that of other genes is temporally
reversible.[21,22] To date, little is known about the epigenetic
modifications of metabolism-related genes that affect metabolic
profiles in childhood.
In this study, we measured methylation of MC4R and HNF4a

in DNA extracted from cord blood and the blood of children
included in a prospective cohort. Next, we investigated the
associations between the methylation statuses of MC4R and
HNF4a at birth and metabolic profiles in childhood.
2. Methods

2.1. Study design

This study was conducted as part of the Ewha Birth and Growth
Cohort Study, which is a birth cohort established at the Ewha
Womans University Hospital, Seoul, Korea, between 2001 and
2006. This cohort study had a single hospital-based cohort design
and involved longitudinal observations of child growth and
health from early life. Methodologic details of the cohort are
described elsewhere.[19,23] Briefly, pregnant women who received
prenatal care between 24 and 28 weeks’ gestation at the hospital
were recruited (baseline n = 940). The children were followed up
at 3, 5, and annually after 7 years of age. In 2011, we contacted
344 consentingmothers whose childrenwere 7 to 9 years old, and
260 subjects participated in the follow-up examination. During
follow-up, anthropometric data and blood samples were
collected from the participants. We excluded subjects who had
a congenital defect (n= 2), who had not given a blood sample (n=
1), or whose mother had a history of preeclampsia, gestational
diabetes mellitus, or chronic disease at baseline (n = 24). Of the
260 participants, 90 had stored cord blood and were included in
the final analysis. All participants gave their written informed
consent before enrollment in this study. This study was approved
by the Institutional Review Board of the Ewha Womans
University Hospital (ECT 13-01A-13).
2.2. Anthropometric measurements

Trained researchers collected data on maternal and offspring
characteristics, including gestational age (GA), birth length, birth
weight, and maternal features at delivery using medical charts,
and mother’s education and family’s income using question-
naires. GA was calculated based on the last menstrual period.[20]

The Ponderal indexwas calculated as weight in kilograms divided
by the cube of height in meters (kg/m3). Children’s height and
weight were measured to the nearest 0.1cm and 0.1kg using an
automatic electronic scale (Dong Sahn Jenix Co Ltd, Seoul,
Korea). Body mass index (BMI) was calculated as weight divided
by height squared (kg/m2). Mother’s education level was divided
into 2 groups: graduated from high school (<12 years) and
graduated from university or higher (≥12 years). Family income
was categorized into 3 groups by monthly income: <3 million
KRW, 3.0 to 4.9 million KRW, and >5 million KRW (KRW,
South Korean Won).[24]
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2.3. Biochemical assessments

Cord blood samples were collected at birth and stored at –80°C
until analysis. Fasting blood samples at follow-up examinations
were drawn from the antecubital veins of the children into
Vacutainer tubes containing EDTA or serum tubes (BD
Biosciences, San Jose, CA). The blood samples were centrifuged
at 3000rpm for 10minutes, and the plasma was stored at –80°C.
Levels of glucose, TG, total cholesterol, and high-density
lipoprotein cholesterol were analyzed using a model 7180
automatic analyzer (Hitachi, Tokyo, Japan). Insulin was
analyzed using an immunoradiometric assay kit (MyBiosource,
San Diego, CA) according to the manufacturer’s protocol. Insulin
resistance was determined by the widely used homeostasis model
assessment of insulin resistance (HOMA-IR) method, which was
calculated as (plasma glucose [mmol/L]� insulin [mIU/mL])/
22.5.[25]
2.4. Analysis of DNA methylation at CpG site by
pyrosequencing

Genomic DNA samples were isolated from the cord blood and
blood samples of children using the DNeasy Blood and Tissue kit
(Qiagen, Hilden, Germany), according to the manufacturer’s
methods. DNA concentration and purity were measured using a
spectrophotometer (Nanodrop Technologies, Wilmington, DE).
Analysis of DNA methylation at CpG sites within the MC4R

andHNF4a genes was performed by pyrosequencing. To identify
the CpG islands in promoter regions, the areas within 2000bp
upstream from the transcriptional start sites (TSSs) ofMC4R and
the P1 promoter of HNF4a were analyzed using PSQ Assay
Design software (Biotage AB, Uppsala, Sweden). The P2
promoter of HNF4a was designed based on previous studies
and using UCSCGenome Browser.[26–28] Three CpG sites located
within the promoter regions (–800, –788, and –783bp upstream
of the TSS) of MC4R and 8 CpG sites located within the P1
promoter regions (–119, –103, –100, and –92bp upstream of the
TSS) and P2 promoter regions (–44,924, –44,921, –44,919, and –
44,907bp upstream of the TSS) of HNF4a were amplified by a
primer set designed (Supplemental Digital Content: Figure S1 and
Table S1, http://links.lww.com/MD/D107). Among them, the
CpG2 site in the P2 promoter of HNF4a was mostly methylated
(>99%). Therefore, it was excluded from the final analysis.
Methodologic details of the DNAmethylation analysis have been
provided in our previous study.[19]
2.5. Statistical analysis

Continuous variables are expressed as mean± standard deviation
or medians (interquartile range), and categorical variables are
expressed as numbers (percentages). The TG level, insulin level
and HOMA-IR values were log-transformed to satisfy normality.
To explore the persistence of methylation status from birth to 7 to
9 years of age, Spearman correlation was used to assess the
relationships between DNA methylation of cord blood and of
children’s blood. In addition, a partial correlation analysis was
performed to estimate the relationships between the methylation
status of MC4R or HNF4a at birth and metabolic profiles in
children after adjustment for sex, child’s age, and BMI.
Multiple regression analyses were used to assess the influence

of MC4R and HNF4a methylation in cord blood on the
metabolic profiles in children. Each CpG site in MC4R and
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HNF4a showed a nonsignificant correlation with the metabolic
profiles in children. Therefore, all were included as independent
variables in the multiple regression analyses. An adjusted P-value
for multiple testing involving 10CpG sites was estimated using the
Benjamini–Hochberg procedure to control the false discovery rate.
Further, to identify the influences of site-specific CpG

methylation in MC4R and HNF4a in cord blood and BMI in
childhood on abnormal metabolic levels, an abnormal TG cutoff
level in children was defined (110mg/dL) according to the
National Cholesterol Education Program Adult Treatment Panel
III criteria, and the subjects were divided into 2 groups (<110 and
≥110mg/dL).[29] Accordingly, we compared the methylation
statuses of MC4R and HNF4a at birth with BMI in childhood
according to the childhood TG level by analysis of covariance, to
examine whether the DNA methylation status is an early
predictive marker of metabolic abnormalities.
Confounding factors that could influence the relationship

between DNA methylation and metabolic profiles, including
maternal age, prepregnancy BMI, mother’s education, GA, sex,
birth weight, child’s age, child’s BMI, and methylation levels in
children, have been reported in previous studies.[19,30–33] There
was no multicollinearity problem. All statistical analyses were
conducted using SAS software (ver. 9.3; SAS Institute Inc, Cary,
NC). All analyses were 2-tailed, and P < .05 was considered to
indicate statistical significance.
Table 1

Basic characteristics of the study subjects.

Characteristics Overall (N=90)

Maternal features
Age at delivery, yrs 31.19 (3.67)
Prepregnancy BMI, kg/m2 20.71 (3.37)
Weight gain during pregnancy, kg 13.21 (4.24)

Education, yrs
�12 20 (27.0)
>12 54 (73.0)

Family’s income, KRW/month24

<3 million 11 (14.9)
3–5 million 33 (44.6)
≥5 million 30 (40.5)

Birth outcome
Gestational age, wks 39.4 (1.30)

Parity
0 35 (46.1)
1 31 (40.8)
≥2 10 (13.2)
Birth weight, g 3.29 (0.42)
Birth height, cm 49.56 (2.01)
Ponderal index, kg/m3 26.94 (1.95)
Preterm, n (%) 2 (2.2)

Offspring features included with adiposity or metabolic profiles
Age, yrs 7.80 (0.77)
BMI, kg/m2 16.62 (2.45)
PBF, % 22.83 (6.59)
Waist circumference, cm 57.39 (6.36)
Fasting glucose, mmol/L 4.36 (0.37)
Triglyceride, mg/dL 72.50 (50.50–97.50)
Total cholesterol, mg/dL 164.23 (22.94)
HDL-c, mg/dL 59.42 (10.89)
Insulin, mIU/mL 7.67 (6.23–9.12)
HOMA-IR 1.60 (0.62)

Continuous variables are expressed as mean (standard variation) or median (interquartile range) and ca
BMI=body mass index, PBF=percent body fat mass, HDL-c=high-density lipoprotein cholesterol, HO
Family’s income was quoted from reference[24] (Lee et al., 2015).
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3. Results

3.1. General characteristics of the study subjects

Ninety subjects were included in this study, of whom 56.7%were
girls. At birth, the mean GA and birth weight were 39.4 weeks
and 3290g, respectively. The incidence of preterm birth (GA<37
weeks) was 2.2%. At 7 to 9 (mean 7.8) years of age, the mean
BMI and percent body fat mass of the children were 16.62kg/m2

and 22.83%, respectively (Table 1). The average methylation
levels of MC4R and HNF4a in cord blood and blood from the
children are shown in Table 2. The DNA methylation levels of
CpG sites inMC4R and HNF4amostly increased from birth to 7
to 9 years of age, with the exception of HNF4a-CpG1. The
methylation status of the CpG1 site in the P1 promoter of HNF4a
at birth was significantly correlated with that in childhood (r =
0.21, P = .05). By contrast, no correlation was observed in the
methylation statuses of the CpG sites at birth and the children.
3.2. Associations between DNA methylation statuses in
cord blood and TG levels in children

To access the correlation between methylation at birth and
metabolic indices in children aged 7 to 9 years, we analyzed the
linear relationships between the MC4R and HNF4amethylation
statuses in cord blood and metabolic parameters in childhood.
Boys (N=39) Girls (N=51)

31.00 (3.82) 31.33 (3.59)
21.31 (3.50) 20.25 (3.23)
13.14 (3.86) 13.27 (4.55)

12 (40.0) 8 (18.2)
18 (60.0) 36 (81.8)

6 (20.0) 5 (11.4)
10 (33.3) 23 (52.3)
14 (46.7) 16 (36.4)

39.6 (1.1) 39.3 (1.5)

12 (36.4) 23 (53.5)
15 (45.5) 16 (37.2)
6 (18.2) 4 (9.3)

3.49 (0.32) 3.14 (0.42)
50.38 (1.66) 48.92 (2.03)
27.29 (0.33) 26.67 (0.25)

0 2 (3.9)

7.74 (0.79) 7.84 (0.76)
16.68 (2.62) 16.57 (2.34)
21.14 (5.54) 24.13 (7.07)
59.04 (6.49) 56.12 (6.01)
4.43 (0.44) 4.30 (0.31)
72.00 (41.00–97.00) 74.00 (53.00–106.00)
162.97 (24.47) 165.20 (21.89)
61.87 (11.00) 57.55 (10.52)
7.44 (5.97–8.29) 7.97 (6.45–9.88)
1.48 (0.44) 1.69 (0.72)

tegorical variables are expressed as number (percentage).
MA-IR=homeostasis model assessment of insulin resistance.
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Table 2

DNA methylation levels in cord blood and blood in childhood.

DNA methylation in cord blood DNA methylation in childhood Correlation

CpG sites Mean (SD) Median (IQR) Mean (SD) Median (IQR) r (P)

MC4R
CpG1 95.01 (1.29) 96.20 (2.28) 0.05 (.67)
CpG2 83.02 (82.27–83.76) 91.03 (1.16) 0.19 (.08)
CpG3 83.23 (0.88) 86.01 (1.38) 0.05 (.62)

HNF4a-P1
CpG1 93.97 (92.17–95.24) 93.03 (3.14) 0.21 (.05)
CpG2 68.40 (65.64–70.63) 81.27 (3.17) 0.11 (.31)
CpG3 83.87 (82.07–85.94) 85.41 (2.00) �0.01 (.90)
CpG4 82.60 (79.73–84.32) 84.10 (2.78) �0.11 (.31)

HNF4a-P2
CpG1 97.66 (0.49) 97.10 (96.69–97.38) 0.02 (.85)
CpG3 94.69 (0.91) 94.91 (0.95) �0.02 (.82)
CpG4 90.61 (1.55) 91.76 (90.82–92.50) �0.08 (.45)

Normal distribution data are expressed as mean (SD) and non-normally distributed data as median (IQR). Data are mean (standard variation) or median (interquartile range). Spearman’s correlation was used to
assess the relationship of cord blood DNA methylation and DNA methylation in childhood.
SD= standard variation, IQR= interquartile range, MC4R=melanocortin 4 receptor, HNF4a=hepatocyte nuclear 4 alpha, P=promoter.
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Especially, TG levels were significantly correlated with the
methylation statuses of MC4R-CpG1 and -CpG2 and HNF4a-
CpG2, -CpG3, and -CpG4 in the P1 promoter after adjusting for
sex, age, and BMI (P < .05, Fig. 1).
Additionally, the MC4R and HNF4a methylation statuses in

cord blood were related to the metabolic profiles of children after
controlling for multiple comparisons of 10 CpG sites (adjusted P-
value) and potential risk factors to evaluate the influence of
methylation status at birth on metabolic profiles in childhood
(Table 3). The methylation statuses of MC4R-CpG1, HNF4a-
CpG2, andHNF4a-CpG3 in the P1 promoter in cord blood were
significantly and negatively associated with a higher TG level in
childhood, after adjusting for maternal age, prepregnancy BMI,
mother’s education, GA, sex, birth weight, child’s age, child’s
BMI, and methylation levels in childhood (b = –0.12, adjusted P
= .03; b = –0.05, adjusted P = .03; b = –0.07, adjusted P = .03,
respectively). Additionally, the methylation status of HNF4a-
CpG4 in the P1 promoter in cord blood was marginally
but significantly associated with a higher TG level in childhood
(b= –0.03, adjusted P= .08). No significant associations between
the methylation status and other metabolic profiles were
observed.
3.3. Associations between DNA methylation statuses in
cord blood and BMI in childhood according to TG level

To evaluate whether methylation status is an early marker of
metabolic abnormalities, we compared the methylation statuses
of MC4R and HNF4a in cord blood with BMI in childhood
according to the TG level in childhood (Fig. 2). Four CpG sites
were significantly associated with the methylation status and TG
level (Table 3). The DNA methylation statuses of MC4R-CpG1
and HNF4a-CpG2, -CpG3, and -CpG4 in the P1 promoter were
significantly lower in children with a high TG level after adjusting
for maternal age, prepregnancy BMI, mother’s education, GA,
sex, birth weight, child’s age, child’s BMI, and methylation levels
in children (LS means: 95.43 vs 94.60%, P = .04; 69.77 vs
66.61%, P= .003; 84.72 vs 82.28%, P= .001; 83.42 vs 80.86%,
P = .03, respectively), whereas BMI was significantly higher in
children with high TG levels than in those with low TG levels,
4

after adjusting for maternal age, prepregnancy BMI, mother’s
education, GA, sex, birth weight, child’s age, and methylation
levels in cord blood (LS means: 17.49 vs 19.10kg/m2, P = .04;
17.36 vs 19.14kg/m2, P = .02; 17.39 vs 19.26kg/m2, P = .02;
17.41 vs 19.15kg/m2, P = .02, respectively).

4. Discussion

In this study, we conducted follow-up evaluations on the growth
of children from birth to 7 to 9 years of age via a prospective
cohort study. Interestingly, we identified associations of the
MC4R and HNF4a methylation statuses in cord blood with
metabolic profiles in children, especially with the TG level. These
observations suggest that an altered DNA methylation status
early in life can continue to influence metabolic profiles in
childhood.
We found that reduced methylation of MC4R at birth was

significantly associated with an increased TG level in childhood
(Table 3). In particular, the methylation status of MC4R-CpG1
was significantly lower, whereas BMI was significantly higher,
in children with high TG levels than in those with low TG
levels (Fig. 2). Reduced methylation of MC4R was associated
with obesity in mice fed a high-fat diet; however, to our
knowledge, no previous studies have examined the associations
between MC4R methylation and metabolic profiles in
humans.[34] We recently showed that reduced methylation of
MC4R was significantly associated with higher TG levels in the
cord blood of preterm infants.[20] Based on this finding, we
speculate that a lower level of MC4R methylation at birth is
involved in obesity and MetS in childhood. Kooijman et al
found that inhibition of the MC3/4R synthetic antagonist
reduces very-low-density lipoprotein and TG production,
resulting in an increased TG level in white adipose tissue.[35]

However, another study found that blocking the MC4R
antagonist did not increase TG levels in pair-fed rats.[36] MC4R
activation leads to increases in arterial pressure and heart rate
despite a decrease in food intake.[37] Thus, we suggest that
altered DNA methylation levels of MC4R established in utero
might contribute to TG dysregulation in childhood and thus
influence the likelihood of developing obesity and MetS later in



Figure 1. Analysis of the associations between triglyceride (TG) levels and the methylation statuses of the melanocortin 4 receptor (MC4R) and hepatocyte nuclear
factor 4 alpha (HNF4a) promoters in the blood of children, after adjustment for sex, child’s age, and child’s body mass index.

Kwon et al. Medicine (2019) 98:28 www.md-journal.com
life. This underscores the need for a long-term follow-up study
of our cohort.
We also found that the methylation statuses of HNF4a-CpG2

and -CpG3 in the P1 promoter at birth were significantly and
negatively associated with the TG level in childhood (Table 3). In
humans, differences in DNA methylation, particularly in
5

HNF4a, due to intrauterine growth restriction have been
identified in cord blood.[38] Additionally, HNF4a methylation
in adipose tissue is elevated in patients with type 2 diabetes.[39]

Recently, we reported that an altered methylation status of
HNF4a results in increased TG levels in the cord blood of
preterm infants.[20] Overexpression of HNF4a caused increases
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Table 3

Association between DNA methylation of MC4R and HNF4a in cord blood and metabolic indices in children.

TG
∗

TC HDL-c HOMA-IR
∗

Glucose Insulin
∗

CpG sites b (SE) P FDR† b (SE) P FDR† b (SE) P FDR† b (SE) P FDR† b (SE) P FDR† b (SE) P FDR†

MC4R
CpG1 �0.12 (0.05) .01 0.03 4.58 (2.05) .03 0.29 2.18 (0.93) .02 0.22 �0.01 (0.03) .86 0.86 0.03 (0.03) .43 0.82 �0.01 (0.03) .66 0.77
CpG2 �0.02 (0.04) .64 0.64 0.93 (1.60) .56 0.84 �1.02 (0.70) .15 0.75 �0.004 (0.02) .86 0.86 0.02 (0.03) .49 0.82 �0.01 (0.02) .69 0.77
CpG3 �0.05 (0.07) .47 0.59 �4.76 (3.30) .15 0.51 �1.19 (1.53) .44 0.75 0.04 (0.05) .43 0.62 0.05 (0.05) .36 0.82 0.03 (0.04) .53 0.75

HNF4a-P1
CpG1 �0.03 (0.03) .38 0.54 �0.25 (1.23) .84 0.84 0.48 (0.55) .38 0.75 0.02 (0.02) .39 0.62 0.01 (0.02) .61 0.82 0.01 (0.02) .41 0.68
CpG2 �0.05 (0.02) .01 0.03 �0.87 (0.73) .24 0.60 0.41 (0.33) .23 0.75 �0.02 (0.01) .08 0.27 0.01 (0.01) .64 0.82 �0.02 (0.01) .03 0.24
CpG3 �0.07 (0.02) <.01 0.03 �0.33 (1.01) .74 0.84 0.17 (0.46) .71 0.75 �0.02 (0.01) .27 0.55 0.000 (0.02) .98 0.98 �0.02 (0.01) .22 0.45
CpG4 �0.03 (0.02) .03 0.08 �0.35 (0.74) .64 0.84 0.13 (0.34) .70 0.75 �0.02 (0.01) .06 0.27 �0.01 (0.01) .58 0.82 �0.02 (0.01) <.05 0.24

HNF4a-P2
CpG1 �0.11 (0.12) .37 0.54 1.25 (5.34) .82 0.84 �1.51 (2.45) .54 0.75 �0.12 (0.07) .12 0.30 �0.04 (0.09) .65 0.82 �0.11 (0.07) .10 0.35
CpG3 �0.07 (0.06) .22 0.43 4.01 (2.55) .12 0.51 0.40 (1.22) .75 0.75 �0.07 (0.04) .08 0.27 �0.07 (0.04) .09 0.82 �0.05 (0.03) .16 0.40
CpG4 �0.03 (0.04) .53 0.59 0.47 (1.80) .80 0.84 �0.59 (0.83) .48 0.75 �0.01 (0.03) .84 0.86 0.003 (0.03) .91 0.98 �0.01 (0.02) .80 0.80

Results present as coefficient (b) with standard error (SE) adjusting for maternal age, prepregnancy body mass index (BMI), mother’s education, gestational age, sex, birth weight, children’s age, child’s BMI, and
DNA methylation levels in children.
FDR= false discovery rate, MC4R=melanocortin 4 receptor, HNF4a=hepatocyte nuclear factor 4 alpha, P=promoter region, TG= triglyceride, TC= total cholesterol, HDL-c=high-density lipoprotein
cholesterol, HOMA-IR=homeostasis model assessment of insulin resistance.
∗
To satisfy the normal distribution assumption, TG, insulin levels, and HOMA-IR index were log-transformed.

†Adjusted P-value for multiple comparisons of 10 CpG sites were estimated using the FDR method of Benjamini–Hochberg.
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in TG-rich lipoproteins.[40] Of the 2 promoters of HNF4a (P1
and P2),[12] genetic variation in the P1 promoter is associated
with a risk of MetS in children and adolescents.[41] Genetic
variation in the P2 promoter is related to insulin levels and BMI in
Figure 2. DNAmethylation statuses of melanocortin 4 receptor (MC4R) and hepato
mass index (BMI) according to triglyceride (TG) levels in children. (A) P-values we
prepregnancy BMI, mother’s education, gestational age (GA), sex, birth weight, ch
calculated by ANCOVA, adjusting for maternal age, prepregnancy BMI, mother’s e
blood. Dotted lines (——) represent differences in the methylation status betwee
childhood between low and high TG levels.
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adults.[42] The mechanisms underlying these associations are
unknown, but in this study, the P1 promoter of HNF4amay have
had a greater contribution than that of the P2 promoter to TG
levels in childhood. Collectively, these findings suggest that the
cyte nuclear factor 4 alpha (HNF4a) at CpG sites in cord blood and child’s body
re calculated by analysis of covariance (ANCOVA), adjusting for maternal age,
ild’s age, child’s BMI, and DNA methylation levels in children. (B) P-values were
ducation, GA, sex, birth weight, child’s age, and DNA methylation levels in cord
n low TG and high TG levels. Solid lines (—) represent differences in BMI in
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altered methylation status of HNF4a in the P1 promoter in cord
blood is closely related to the TG level in children. Although the
biologic effects of small changes in methylation levels are
unknown, there is concern that the epigenetic patterns induced in
early life continue to influence physical health throughout life.
Thus, we suggest that the methylation status at birth is predictive
of obesity and MetS in later life. Longitudinal and follow-up
studies are needed to confirm these associations.
Regarding the persistence of DNA methylation patterns from

birth to 7 to 9 years of age, we found that themethylation statuses
of MC4R and HNF4a at birth were not significantly correlated
with those in childhood, except for the HNF4a-CpG1 methyl-
ation status in the P1 promoter (Table 2). Cord blood and blood
from 7- to 9-year-old children differed in terms of lymphocyte
composition.[43,44] In addition, DNA methylation status may
differ according to blood cell count and type.[45,46] This study
measured DNA methylation levels in whole blood, which
contains heterogeneous cell types. Previous studies have reported
that the DNAmethylation status of some CpG loci in buccal cells,
which are associated with neurologic disorders, differ markedly
in twins from age 5 to 10 years.[47] Furthermore, DNA
methylation levels increase from infancy to puberty.[48] These
epigenetic changes during infancy and childhood may be due to
environmental influences rather than heritable factors. Therefore,
we analyzed the association between DNA methylation in cord
blood and metabolic profiles in childhood after adjusting for
DNA methylation levels in children aged 7 to 9 years.
To the best of our knowledge, this is the 1st study to explore the

associations of the MC4R and HNF4a methylation statuses in
cord blood with metabolic profiles in the context of health
outcomes in healthy children with a normal BMI. We did not
assess paternal factors such as diet, nor did we analyze mRNA
levels of the genes because of insufficient samples. However, we
did verify the associations of gene methylation statuses with
metabolic profiles in normal weight and obese children aged 7 to
9 years in a nested case–control study[49] and in term and preterm
infants at birth in a case–control study.[20] Although this study
did not measure gene expression levels, our previous study
identified that MC4R and HNF4a methylation statuses were
significantly lower, but that expression levels were significantly
higher, in preterm than in term infants.[20] Thus, epigenetic
changes established early in life may affect gene function and
eventually contribute to the development of MetS later in life.
Further studies with long-term follow-up are needed to determine
whether changes in the methylation status at birth contribute to
the development of MetS in adults.
Our findings indicate that TG levels in childhood may be

altered by the methylation status of MC4R or HNF4a in cord
blood. Hence, epigenetic modifications at birth may influence
metabolic profiles in childhood, thereby contributing to
the development of MetS in adulthood. Thus, we suggest that
DNA methylation in cord blood is predictive of MetS later
in life.
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