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Abstract

Several public health departments throughout North America have responded to the obesity

epidemic by mandating that restaurants publish calories at the point of purchase—with the

intention of encouraging healthier food decisions. To help determine whether accompanying

calorie information successfully changes a food’s appetitive value, this study investigated

the influence of calorie information on brain responses to food images. During functional

magnetic resonance imaging (fMRI) scanning, dieting (N = 22) and non-dieting (N = 20) par-

ticipants viewed pictures of food with and without calorie information and rated their desire

to eat the food. When food images were paired with calorie information, not only did self-

reported desire to eat the food decrease, but reward system activation (Neurosynth-defined

from the term “food”) decreased and control system activation (the fronto-parietal [FP] con-

trol system) increased. Additionally, a parametric modulation of reward activation by food

preferences was attenuated in the context of calorie information. Finally, whole brain multi-

variate pattern analysis (MVPA) revealed patterns of activation in a region of the reward sys-

tem—the orbitofrontal cortex (OFC)—that were more similar for food images presented with

and without calorie information in dieting than non-dieting participants, suggesting that diet-

ers may spontaneously consider calorie information when viewing food. Taken together,

these results suggest that calorie information may alter brain responses to food cues by

simultaneously reducing reward system activation and increasing control system activation.

Moreover, individuals with greater experience or stronger motivations to consider calorie

information (i.e., dieters) may more naturally do so, as evidenced by a greater degree of rep-

resentational similarity between food images with and without calorie information. Combin-

ing an awareness of calories with the motivation to control them may more effectively elicit

diet-related behavior change.
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Introduction

Obesity is a worldwide public health problem, with 39% of adults categorized as overweight or

obese [1]. It is associated with shortened life expectancy and higher medical care costs; the

annual US medical expenditure attributable to obesity is estimated to be US $147 billion [2].

One contributing factor is that, with the abundance of available food options, consumers are

not particularly good at estimating the number of calories consumed in their meals; and their

estimates get worse as the size of the meal grows [3,4]. This makes it challenging to identify

healthy food options and may contribute to overeating. Moreover, individual dieting histories

appear to influence attention to and knowledge of various aspects of food nutrition. Dieters

attend more carefully to aspects of foods that might be perceived as indicating unhealthiness,

and they are more accurate at estimating the calories of healthy foods [5].

To combat a general disregard for nutrition information and disparities among consumers

in using this information to inform food decisions, policy changes have been proposed to

increase public awareness of the nutritional value of food alternatives for pre-packaged foods

[6] and at restaurants [7,8]. Likewise, consumers around the world have voiced their prefer-

ence to see these foods labeled with simple, visible nutrition information [9,10]. In one of the

latest instantiations of these health policies, several U.S. public health departments have man-

dated that restaurants publish calories at the point of purchase to encourage healthier food

decisions by consumers [11,12].

Influence of calorie information on food choices

Regardless of its increasing presence, point-of-purchase calorie labeling has had mixed success

in nudging food selection and consumption toward lower calorie options [13–17]. In fact, sys-

tematic reviews and meta-analyses targeting the influence of calorie labeling have largely

yielded null or insignificantly-sized effects [18–21]. Even when it is available, only about one

third of consumers report using calorie information to make food decisions [15]. Moreover,

consumers over-report their use of nutrition labels; although they express an intention to use

nutrition labeling, they fail to incorporate this information when making actual food decisions

[9,22].

Still, a few factors appear to facilitate the influence of calorie labeling on food selection. For

example, calorie labels are more effective when paired with additional interpretive labeling—

like exercise equivalents [16], symbolic health icons [15,18], or recommended daily allowances

[14]—which provide additional context and implications, enabling consumers to make

informed decisions about their diet. Additionally, consumer characteristics appear to moder-

ate the influence of calories on food decisions. Specifically, females [15,18] and dieters [16]

tend to weigh calorie information more when making food decisions than do males and non-

dieters. These person-level motivations might shape attitudes toward food and moderate the

efficacy of nutrition-related interventions. To better understand the influence of calories on

food valuation and choices, the present study examines their influence on brain responses dur-

ing the evaluation of food cues.

Neuroimaging studies of food reward

Food cues typically elicit robust activation in putative reward regions—including the nucleus

accumbens (NAcc) and orbitofrontal cortex (OFC) (e.g., [23,24–27]), which motivate eating

behavior. Individual differences in food cue reactivity relate to eating and health outcomes—

including weight status [28,29], weight gain [23], post-surgery weight loss [30], body fat [25],

moment to moment food cravings [24], and giving in to food cravings [31]. Although palatable

foods reliably activate the brain’s reward system and motivate consumption (e.g., [23,24]),
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changes in valuation or enhanced regulation by cognitive control regions [32] might attenuate

this response in the presence of calorie information.

Influence of calorie information and dieting status on brain activation

Responses in reward-related brain regions, specifically the OFC, scale with idiosyncratic food

preferences, such that more preferred foods elicit more reward activation [33,34]. These

reward responses are also sensitive to broader contextual features, like the presence of alterna-

tive rewards [35], hunger/satiety [36], and value changes [36,37]. As most research in food

reward has focused on sensitivity of the reward system to appetitive aspects of food, it is not

well understood how other aspects of food, like its healthiness, may alter reward responses.

One study found that the presence of health cues nudged healthier food decisions by altering

value-related brain activation in the ventromedial prefrontal cortex (VMPFC) [38]. Calorie

information, in particular, may signal a food’s healthiness and provide another dimension on

which to evaluate food options. That is, in the absence of calorie information, people may

make food decisions based on the perceived tastiness and appetitive features of a food. Con-

versely, when foods are presented in conjunction with calorie information, they may instead

rely on their ability to self-regulate and make decisions based on health and their broader diet-

ing goals. This shift may rely on brain-based valuation processes.

Calorie information may additionally trigger increases in cognitive control activation (e.g.

the fronto-parietal [FP] system), particularly for dieters regulating food desire [32]. Prefrontal

cortical activation often increases in response to food cues for populations concerned with

weight management, namely those who are obese [39,40] or dieting [41]. Indeed, one study

measured activation of the FP control system and the reward system in chronic dieters viewing

food images [31]. Over the subsequent week, these dieters completed daily assessments of their

real-world eating behaviors, including how often they gave in to a food desire. In that study,

the relative balance of FP control activation to reward activation among dieters viewing food

images predicted the percentage of enacted food desires over the subsequent week—highlight-

ing the importance of these brain systems for the self-control of food desire.

Dieters may be particularly sensitive to the presence of calorie information because of their

concern for restraining caloric intake. In lab studies, dieters eat fewer high-fat and unhealthy

foods when their self-regulatory goals are primed by the surrounding context—e.g., by pres-

ence of a mirror [42] or thin human-like sculptures [43]. In fact, calorie labels more strongly

influence dieters’ food choices [7] and how much they eat [44], even if the calorie information

they receive is incorrect. Through their experience attending to food calories, dieters may

learn to represent foods differently than non-dieters—possibly integrating the perceived

healthiness of foods with other appetitive characteristics, even in the absence of explicit health

information. By using representational similarity analysis (RSA)—which permits a more direct

comparison of the shared information across different conditions [45]—we can compare diet-

ers’ and non-dieters’ representations of food inside and outside the context of calorie informa-

tion. If brain activation patterns across the two groups differentially change with exposure to

calorie information, it may suggest a baseline difference in dieters’ and non-dieters’ represen-

tation of food.

Given that prior research has shown that calorie information has a strong influence on diet-

ers’ food choices and consumption, we sought to investigate how the presence or absence of

calorie information altered neural responses to food items in brain regions associated with

reward and self-control. Specifically, we tested whether the presence of calorie information

would simultaneously decrease reward-related activation while increasing activation in regions

associated with cognitive control during the evaluation of food images. Next, we tested

Calorie information and dieting status modulate activation to food images

PLOS ONE | https://doi.org/10.1371/journal.pone.0204744 November 2, 2018 3 / 22

https://doi.org/10.1371/journal.pone.0204744


whether the presence of calorie information would alter the association between reward-

related activation and idiosyncratic food preferences using a parametric modulation approach.

Another aim of the current study was to evaluate the sensitivity of dieters’ and non-dieters’

brain responses to calorie-labeled foods. We approached this goal in three complementary

ways: first, we compared activation magnitudes of as a function of dieting status; second, we

compared the association between reward-related activation and food preferences by dieting

status; and third, we compared differences in neural representations of calorie-labeled and cal-

orie-unlabeled foods between these groups using representational similarity analysis.

Materials & methods

This study was approved by the Committee for the Protection of Human Subjects at Dart-

mouth College (CPHS #20325).

Participants

Fifty dieting and non-dieting participants (M age = 19.7, range 18–22) were recruited to partic-

ipate in the present study. Participants provided their written informed consent to participate

in this study. Afterward, they received monetary compensation or class credit for participating

in the study. All participants reported a normal neurological history and had normal or cor-

rected-to-normal visual acuity, and only one participant was left-handed. FMRI data were

excluded for participants (n = 8) whose movement during any run of the scan exceeded 3-mm

in translation or 2 degrees in rotation. Participants completed the Revised Restraint scale [46]

to estimate their chronic dieting tendencies. Following convention, participants scoring

greater than 14 (across both the “Weight Fluctuation” and “Concern for Dieting” subscales)

were classified as dieters and those scoring 14 or lower were classified as non-dieters [47].

Dieters and non-dieters were explicitly from a participant pool based on their early Restraint

scale scores, so they were treated categorically in this study. Of the 42 participants (M
age = 19.6, 9 male) included in analyses, 22 were dieters and 20 were non-dieters. Each partici-

pant’s weight, BMI, and percent body fat (Table 1) were obtained from a Tanita body composi-

tion scale (TBF-300A Arlington Heights), which estimates body composition using

Table 1. Participant characteristics by dieting status.

Dieters (N = 22) Non-dieters (N = 20)

Gender 16 females, 6 males 17 females, 3 males

Age (yrs) 19.2 (1.1) 20.1 (1.5)
Weight (kg) 69.0 (9.8) 65.6 (15.4)
BMI (kg/m2) 24.1 (2.9) 22.7 (3.8)
Body fat (%) 26.1 (7.5) 24.1 (7.1)
Restraint Scale 19.8 (4.3) 9.0 (3.2)

Weight Fluctuation 11.8 (3.6) 5.5 (2.3)
Concern for Dieting 8.0 (2.6) 3.5 (2.6)

Calorie estimation deviation 0.46 (0.64) 0.52 (0.79)

Means and standard deviations by dieting status. There were no between group differences in weight, BMI, or body

fat (all ps > 0.18), and only a marginal group difference in age, t(40) = 2.03, p = 0.053. Dieters and non-dieters

differed in both subscales of the Restraint Scale: Weight Fluctuation, t(40) = -6.76, p < 0.001, and Concern for

Dieting, t(40) = -5.58, p < 0.001. Calorie estimation deviation reflects participants’ absolute proportional deviation of

estimated calories from actual calories [i.e., abs(estimated calories—actual calories) / actual calories].

https://doi.org/10.1371/journal.pone.0204744.t001
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bioelectrical impedance analysis. On average, participants were in the normal weight range (M
BMI = 23.5), with only two (one dieter, one non-dieter) classifying as obese (BMI > 30).

Stimuli

Stimuli consisted of 180 food images collected from two sources: 1) the food-pics database [48],

and 2) from popular fast food restaurant websites where calorie information (total kilocalories)

was provided. Images selected from the internet were edited to replace any existing back-

grounds with a white background and were resized to 650 x 450 pixels using Adobe Photo-

shop. As part of the manipulation of interest, each food image was paired with either an

arbitrary number (e.g., “image 002”) or calorie content (e.g., “450 calories) associated with the

food—which appeared on the screen below the food image (Fig 1). The same images were dis-

played twice—once with the image number and once with accurate calorie information

(M = 396.5, SD = 240.2).

Experimental design and procedure

During the scan, participants first viewed the images of food paired with an accompanying

image number (NO CALORIES: runs 1–2), and subsequently viewed these same food images

paired with the corresponding calorie information (CALORIES: runs 3–4) (Fig 1). Under the

guise of gauging college student food preferences for the dining hall, participants were asked

to indicate how much they would like to eat each of the foods if it were offered in the campus

dining hall on a scale from 1 to 4 (1 = “not at all”, 4 = “very much”). In this manner, we

obtained an explicit food preference for each item while ensuring that the participants were

paying attention to the images. On trials when calorie information was presented, they were

told that because federal regulation might require eating establishments to provide nutritional

information for their foods, we were interested in how it might influence food choices and

preferences. So that participants were not thinking about calories when none were present, all

calorie-present trials came after the calorie-absent trials.

Fig 1. Representation of the food evaluation paradigm. 180 food images were presented (2.5s trial, 0-10s ITI) under two conditions: without calorie information and

with accurate calorie information. At the beginning of each run, participants were instructed to evaluate how much they would like to eat the food presented on each

trial if they saw it in the campus dining hall (1 = “not at all”– 4 = “very much”).

https://doi.org/10.1371/journal.pone.0204744.g001
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Following the scan, participants again viewed all of the same food images and were asked to

estimate the number of calories for each food. To obtain true estimates of food calories, rather

than relying on participants’ memory for the previously presented calorie information, we

falsely informed participants that the calories they had observed during the task may have

been altered for the study (and could be inaccurate) and should be disregarded when making

their estimates.

Behavioral data analysis

To analyze the difference in behavioral food ratings across condition (CALORIES/NO CALO-

RIES), a linear mixed-effects model was used with the lme4 package [49] in R [50]. Random

intercepts for both subject and item (food image) were entered into the model to account for

variability in ratings attributable to the particular food or person-level preferences. Pooled

degrees of freedom using the Satterthwaite approximation are reported for each effect.

Imaging apparatus

Imaging was performed on a Philips Intera Achieva 3.0 Tesla scanner (Phillips Medical Sys-

tems, Bothell, WA) using a 32-channel SENSE (SENSitivity Encoding) head coil. Stimuli were

presented from an Apple MacBook Pro laptop computer running PsychoPy v1.80 software

[51]. An Epson (model ELP-7000) LCD projector displayed the stimuli on a screen at the head

end of the scanner bore. Subjects viewed that screen through a mirror mounted on top of the

head coil. An MR compatible keypress interfacing with the Cedrus Lumina Box recorded par-

ticipant’s responses.

Image acquisition

Anatomical images were acquired using a high-resolution 3-D magnetization-prepared rapid

gradient-echo sequence (TR = 9.9ms; TE = 4.6 ms; flip angle = 8˚; 1x1x1mm3 voxels). Func-

tional images were collected using T2� fast field echo, functional EPIs sensitive to BOLD con-

trast (TR = 2.5 seconds, TE = 35 ms, flip angle = 90˚, 3x3x3mm3 voxels). During each of the

four functional runs, 142 axial images (35 slices) were acquired allowing complete brain cover-

age. The presentation sequence of food images and jittered fixation trials (inter-trial interval of

0-10s; 30% of total duration), were pseudo-randomized to increase the efficiency of estimating

task-related BOLD activation.

Image preprocessing

Neuroimaging data were analyzed using SPM8 (Wellcome Department of Cognitive Neurol-

ogy, London, UK) in conjunction with a suite of preprocessing and analysis tools (https://

github.com/ddwagner/SPM8w). The functional data were slice time corrected, realigned

within and across runs to correct for head movement and transformed into a standard ana-

tomic space (3-mm isotropic voxels) based on the ICBM 152 brain template space [Montreal

Neurological Institute (MNI)]. Normalized data were then smoothed spatially using a 6-mm

Gaussian kernel. To further account for motion artifact, participants that demonstrated sub-

stantial movement (> 3-mm in translation or 2 degrees in rotation) were discarded.

Whole brain comparison of food images > calorie-labeled food images

For each participant, a general linear model (GLM) incorporating task effects (modeled as

onsets of events of interest convolved with the canonical hemodynamic response function),

were used to compute beta images (parameter estimates) representing task-related effects for
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each voxel in the brain. Nuisance regressors included six motion parameters (x, y, z directions

and roll, pitch, yaw rotations), a linear drift, and run constants. The resulting beta images were

used to compute a whole-brain voxelwise contrast comparing the food images to the calorie-

labeled food images. Subsequent contrast maps were used as input into a group-level random-

effects analysis to identify brain areas that were consistently active across participants. The

resulting group-level map was voxelwise thresholded at p< 0.005, and cluster corrected to

p< 0.005 (minimum extent threshold: k = 148 contiguous voxels) using AFNI’s 3dClustSim

with the spatial autocorrelation function to control false positive rates (see [52,53]). The mini-

mum cluster size required for whole-brain multiple comparisons correction was calculated

from Monte Carlo simulations (10,000 iterations).

Region of interest (ROI) analyses

Because research on the self-regulation of food reward has pointed to the opposing influence

of reward and cognitive control systems on food decisions [32,38,62], we predicted that calorie

information might modulate both of these systems. To address these predictions, we extracted

parameter estimates from both brain systems by applying two respective ROI masks. To exam-

ine reward system activation to food cues, we defined an ROI mask from a large-scale online

meta-analytic search for the term “food” (reverse inference, p< 0.01 [54]). The activation map

was downloaded from neurosynth.org and converted to a binary inclusion mask to target acti-

vation associated with food reward. This approach yielded a spatially constrained set of cortical

and subcortical regions that were more likely to appear in studies related to food than those

that unrelated to food, including the left OFC and the NAcc. The cognitive control system

mask was assessed by averaging activation across eight nodes within the fronto-parietal control

system ([55,56]; nodes listed in Table 2). To create this mask, an 8-mm sphere was centered

over each of the eight nodes, and parameter estimates were extracted and averaged across all

eight regions to derive a single composite measure of FP control activation for each partici-

pant. Linear mixed-effects models with random intercepts for subjects, to account for individ-

ual differences in the recruitment of brain regions when viewing food images, were used to

compare neural responses in these ROIs during food evaluations across condition and dieting

status.

Parametric modulation by food ratings

To compare the relative contribution of whole-brain activations to food ratings across the two

conditions, a parametric modulation analysis was conducted. Using the food image ratings (1–

Table 2. Table of eight fronto-parietal control system nodes used in a priori analysis [55,56]. An 8-mm sphere was

centered over each node and parameter estimates averaged across regions to calculate the aggregate mean FP activation

for each participant.

Regions Coordinates (MNI)

X Y Z

R dorsolateral prefrontal cortex / inferior frontal gyrus 46 28 31

L dorsolateral prefrontal cortex / middle frontal gyrus -44 27 33

R middle frontal gyrus / inferior frontal gyrus 44 8 34

L middle frontal gyrus / precentral gyrus -42 7 36

R inferior parietal lobule / supramarginal gyrus 54 -44 43

L inferior parietal lobule -53 -50 39

R intraparietal sulcus / angular gyrus 32 -59 41

L intraparietal sulcus / inferior parietal lobule -32 -58 46

https://doi.org/10.1371/journal.pone.0204744.t002
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4) collected during the scan, a subject-level regressor was entered into a first-level GLM to

identify brain regions whose activity increased linearly with increasing food preference ratings.

One regressor corresponding to the food preference rating was entered for each subject at each

timepoint. Specifically, though each food was presented twice (once per condition), food pref-

erence ratings were collected both times; and brain activation was regressed with the ratings

acquired during the same trial. Next, a second-level t-test was conducted to compare paramet-

ric modulation for the two conditions (NO CALORIES > CALORIES). The resulting group-

level map was voxelwise thresholded at p< 0.005, and cluster corrected to p< 0.005 (mini-

mum extent threshold: k = 38 contiguous voxels) as recommended by AFNI’s 3dClustSim

with the spatial autocorrelation function (see [52,53]). Parameter estimates were extracted

from the reward system (Neurosynth-defined “food” mask) ROI to determine whether the

association between reward activation and food preferences [33] were attenuated in the pres-

ence of calorie information.

Representational similarity analysis

A whole brain searchlight (radius = 3 voxels) representational similarity analysis (RSA;

[45,57]) using multivariate pattern analysis (MVPA) with the PyMVPA software package [58]

was conducted to compare the similarity in activation patterns across the CALORIE and NO

CALORIE conditions. Voxel-level Fisher-z transformed correlation values (1 –correlation dis-

tance) representing similarity across the CALORIE and NO CALORIE conditions were sub-

mitted to a group t-test comparing dieters and non-dieters to identify regions where dieters

more similarly represented foods regardless of condition (CALORIES/NO CALORIES) than

non-dieters. The resulting group-level map was voxelwise thresholded at p< 0.01. Though no

clusters survived, the minimum extent threshold required for whole-brain cluster correction

to p< 0.01 was 459 contiguous voxels.

Results

Behavioral results

Food ratings decreased when images were paired with calorie information than when paired

with an arbitrary image number, B = 0.13, 95% CI [0.12, 0.15], t(14180) = 17.24, p< 0.001 (Fig

2A). A second model tested a difference in behavioral food ratings across condition and diet-

ing status (dieters vs. non-dieters), with a random intercept for subject and item (to control for

individual preferences and variations in baseline ratings of individual foods, respectively).

Overall, the reduction in food ratings when calories were present was stronger for dieters than

non-dieters, B = 0.06, 95% CI [0.03, 0.09], t(14180) = 3.71; p = 0.0002 (Fig 2B). The absolute

proportional deviation in calorie estimates from actual calories deviation [i.e., abs(estimated

calories—actual calories) / actual calories] did not differ for dieters and non-dieters, B = -0.06,

95% CI [-0.14, 0.01], t(40) = 1.66; p = 0.10.

fMRI results

There was a system (reward vs. FP control) by condition (CALORIES vs. NO CALORIES)

interaction, B = -0.22, 95% CI [-0.31, -0.14], t(123) = -5.19, p< 0.001, with calorie-labeled

food images eliciting less reward and more control activation. Compared to food images pre-

sented without calories, those presented with calories elicited less reward activation in the a
priori mask defined from a meta-analysis of the term “food” ([54]; Fig 3), B = 0.08, 95% CI

[0.02, 0.14], t(40) = 2.64, p = 0.01. A similar relationship was found in an a priori defined

region of the OFC (S2 Fig). In contrast, activation in the FP control system was greater for
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food images paired with calorie information, B = 0.11, 95% CI [-0.003, 0.19], t(40) = 2.80,

p = 0.008. Moreover, there was a marginally significant interaction of condition (CALORIES

vs. NO CALORIES) and dieting status (DIETERS vs NON-DIETERS) on the FP control sys-

tem, B = 0.11, 95% CI [-0.00003, 0.22], t(40) = 1.96, p = 0.06, but not the reward system, B =

-0.04, 95% CI [-0.12, 0.04], t(40) = -0.97, p = 0.34. Dieters showed a greater increase in FP con-

trol activation in the context of calories, B = 0.22, 95% CI [0.15, 0.30], t(21) = 5.67, p< 0.001,

than non-dieters, B = 0.11, 95% CI [0.03, 0.19], t(19) = 2.87, p = 0.01.

Additional peak activations from the whole-brain contrast of NO CALORIES > CALO-

RIES (voxelwise p< 0.005, cluster-corrected to p< 0.005; Fig 4) were identified in the left

middle occipital gyrus, left supramarginal gyrus, right postcentral gyrus, right inferior frontal

gyrus, and right insula (Table 3A); activations associated with CALORIES > NO CALORIES

were identified in the right inferior parietal lobule, left inferior parietal lobule, right precuneus,

left lingual gyrus, right middle frontal gyrus, and right middle temporal cortex (Table 3B).

Additional sub-cluster peaks for the contrast of NO CALORIES > CALORIES appeared in

regions of the reward system, including the left OFC (-30, 27, -6: t = 5.44), left NAcc (-9, 3, -6:

t = 4.15) and right NAcc (6, 3, -6: t = 3.57).

Reward activation linearly increased with food preferences for foods

presented without calories

A parametric modulation analysis revealed a stronger positive relationship between activation

of the reward system and food preferences when evaluating food images with NO CALORIES

than when evaluating food images with CALORIES in the reward system, B = 0.08, 95% CI

[0.006, 0.15], t(40) = 2.12, p = 0.04 (Fig 5). This relationship did not differ for dieters and non-

dieters, B = -0.06, 95% CI [-0.16, 0.04], t(40) = -1.13, p = 0.26. A similar relationship was found

in an a priori defined region of the OFC (S1 Fig).

Several additional brain regions revealed a stronger positive relationship between brain

activation and food preferences when evaluating food images with NO CALORIES than when

evaluating food images with CALORIES, including left OFC, left cuneus, left medial OFC, left

occipitotemporal cortex, and left precentral gyrus (voxelwise p< 0.005, cluster-corrected to

Fig 2. (A) Ratings of willingness to eat foods presented in images with NO CALORIES and with CALORIES. Willingness to eat was lower when presented with calories

—and this difference was greater for dieters than non-dieters. (B) Food ratings by dieting status.

https://doi.org/10.1371/journal.pone.0204744.g002
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p< 0.005; Table 4, Fig 6). Importantly, though this analysis was exploratory in nature, food

ratings were more robustly associated with activation in regions of the left OFC (-24, 45, -18)

and left medial OFC (-6, 42, -12) in the absence of calorie information. Though these regions

have previously been associated with tracking food preferences [33,34,38], here we demon-

strate that this relationship is attenuated in the context of additional calorie information. Addi-

tional correspondence between precentral gyrus activation and food ratings might reflect

overall differences in the ratings—and associated button presses—of unlabeled and calorie-

labeled foods. Widespread brain activation, including within regions involved in reward and

valuation, scaled with the desirability of the foods, but this relationship was largely was dimin-

ished in the presence of calorie information (Fig 7).

Multivariate activation patterns across conditions differed more for dieters

than non-dieters

A whole-brain searchlight RSA was performed to identify regions of the brain whose activation

patterns were most similar between conditions (CALORIES/NO CALORIES; Fig 8). A group

Fig 3. (A) ROI masks of the reward system (meta-analytic map of “food” [54]) and fronto-parietal control system

[55,56]. (B) Greater activation in the reward system for NO CALORIES> CALORIES, and greater activation in the

fronto-parietal control system for CALORIES> NO CALORIES. (C) No difference in non-dieters’ and dieters’

recruitment of the reward system but marginally significant difference in recruitment of control system when evaluating

calorie-labeled and unlabeled foods. Dieters more strongly activated the fronto-parietal control system in response to

calorie-labeled food images. Error bars represent standard error of the mean.

https://doi.org/10.1371/journal.pone.0204744.g003

Fig 4. Brain regions showing greater activation to food presented with NO CALORIES> CALORIES. Whole brain cortical activations (voxelwise p< 0.005, cluster-

corrected to p< 0.005, 148 contiguous voxels) are projected onto a 3D rendering of an inflated brain using Workbench [59,60] for data visualization. Brain regions

responding to NO CALORIES> CALORIES (represented by yellow-red color scale) include the left middle occipital gyrus, left supramarginal gyrus, right postcentral

gyrus, right inferior frontal gyrus, and right insula, and brain regions responding to CALORIES> NO CALORIES (represented by blue color scale) include the right

inferior parietal lobule, left inferior parietal lobule, right precuneus, left lingual gyrus, right middle frontal gyrus, and right middle temporal cortex.

https://doi.org/10.1371/journal.pone.0204744.g004
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t-test compared dieters to non-dieters to identify regions where dieters showed more similar

activation patterns for food images presented with and without calories. Though no clusters

survived the cluster-correction threshold recommended by 3dClustSim, at a voxelwise thresh-

old of p< 0.01, the largest cluster (67 contiguous voxels) was in the left OFC (-18, 42, -15).

Table 3. A) Regions activating to NO CALORIES > CALORIES (voxelwise p< 0.005, cluster-corrected to p< 0.005, 148 contiguous voxels). B) Regions activating

to CALORIES > NO CALORIES (voxelwise p< 0.005, cluster-corrected to p< 0.005, 148 contiguous voxels).

Region Coordinates (MNI) Volume (mm3) Peak T

X Y Z

NO CALORIES > CALORIES

Left middle occipital gyrus -33 -87 6 6594 9.78

Left supramarginal gyrus -60 -21 33 3130 7.58

Right postcentral gyrus 66 -18 36 923 5.65

Right inferior frontal gyrus 54 36 3 193 5.14

Right insula 42 -3 9 181 4.67

CALORIES > NO CALORIES

Right inferior parietal lobule 39 -51 48 1481 8.86

Left inferior parietal lobule -54 -57 51 1608 8.76

Right precuneus 6 -69 39 1371 8.70

Left lingual gyrus -6 -81 -6 371 8.55

Right middle frontal gyrus 45 27 33 382 6.68

Right middle temporal cortex 69 -45 -6 203 5.03

Volumes refer to entire supra-threshold clusters.

Cluster peaks are indicated by their region names (adapted from Automated Anatomical Labeling in SPM).

https://doi.org/10.1371/journal.pone.0204744.t003

Fig 5. Parametric modulation by food preferences in the reward system. A) There was a stronger positive association between reward system activation and food

preferences when evaluating food images with NO CALORIES than when evaluating food images with CALORIES in the reward system, B = 0.08, 95% CI [0.006, 0.15],

t(40) = 2.12, p = 0.04. B) This relationship did not differ for dieters and non-dieters, B = -0.06, 95% CI [-0.16, 0.04], t(40) = -1.13, p = 0.26.

https://doi.org/10.1371/journal.pone.0204744.g005
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Discussion

Overall, we found that calorie information altered food evaluations and brain responses during

the evaluation of food images, and that responses to calorie information differed between diet-

ers and non-dieters. In the present study, calorie-labeled foods were rated less appetizing than

foods presented without calories, and this difference was larger for dieters than non-dieters.

Moreover, the presence of calorie information was associated with decreased activation of a

reward system defined from a meta-analysis of task-based studies on food and increased acti-

vation in the FP control system. Interestingly, results from the parametric modulation analysis

replicated previous research [33] in demonstrating that reward system responses in the left

OFC linearly increased with food preferences—but in this study a weaker association was

observed when calorie information was present. These results suggest that the reward system

and self-reported food desire may be most sensitive to the perceived tastiness of the foods

when no calories are present—but when calories are present, a second, competing source of

information (healthiness) influences the valuation and ratings of foods in a more restricted

OFC region of the system.

Although Hare and colleagues [38] found that the VMPFC tracked with both the healthi-

ness and tastiness of foods and influenced food decisions, we found a weaker association

between reward system activation and self-reported food desire in the context of calorie infor-

mation, suggesting that under normal conditions, taste may govern the value and desirability

of foods. By contrast, health-related features of foods may become more salient when cued

externally (e.g., with calorie labeling) or when it is a personally-relevant feature of the food

(i.e., for dieters). In fact, Hare and colleagues [38] demonstrated a bias towards healthier food

decisions when participants explicitly evaluated the healthiness of foods, however, no such bias

occurred when evaluating the tastiness of foods. In the absence of explicit task instruction, par-

ticipants tended to highly weight perceived tastiness when making food decisions.

Another novel aspect of the present study compared activation patterns for calorie-labeled

and unlabeled food across dieters and non-dieters. Dieters often show altered reward and con-

trol responses to food cues [31, 61]—and they are more attentive to and better at estimating

calories than non-dieters [5]. Here, it was expected that dieters and non-dieters might respond

differently to calorie-labeled food. Whereas the univariate analyses conducted here were useful

in elucidating magnitude differences in brain responses, multivariate pattern analysis (MVPA)

is more sensitive to the representational content of the information within an activated region

[45,57] and may be a more useful source of information about higher-level semantic similari-

ties between conditions. We compared patterns of activation associated with each condition to

determine whether the cross-condition similarity differed between dieters and non-dieters. In

Table 4. Brain regions whose responses were more related to food preferences when evaluating food images with NO CALORIES than when evaluating food images

with CALORIES (voxelwise p< 0.005, cluster-corrected to p< 0.005, 38 contiguous voxels).

Region Coordinates (MNI) Volume (mm3) Peak T

X Y Z

Left orbitofrontal cortex / Left middle frontal orbital gyrus -24 45 -18 61 4.78

Left cuneus / Left middle occipital gyrus -18 -99 6 99 4.78

Left medial orbitofrontal cortex -6 42 -12 68 4.68

Left occipitotemporal cortex / Left middle occipital gyrus -30 -84 39 146 4.52

Left precentral gyrus -30 -27 54 94 3.80

Volumes refer to entire supra-threshold clusters.

Cluster peaks are indicated by their region names (adapted from Automated Anatomical Labeling in SPM).

https://doi.org/10.1371/journal.pone.0204744.t004
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fact, dieters’ activation patterns were more highly correlated across conditions in a region of

the left OFC frequently implicated in food reward [25,27,33], suggesting a more similar repre-

sentation of calorie-labeled and unlabeled food. One interpretation of this finding is that diet-

ers may spontaneously represent and consider calories (or some marker of a food’s

healthiness) when viewing food, even in their absence. This is supported by previous research

demonstrating the ability of explicit health cues to influence healthier food decisions in non-

dieters, a relationship that is additionally reflected by increased valuative processing in the

VMPFC [38]. Additionally, non-dieters in that study demonstrated increased functional cou-

pling between the VMPFC and the DLPFC—a region associated with self-control—mimicking

a regulatory strategy employed by dieters when exerting self-control over food desires [62]. As

no clusters survived correction in the present study (p< 0.01, minimum extent threshold:

Fig 6. Parametric modulation by food preferences in the whole brain. (A) Brain regions whose activation when

evaluating food images presented with NO CALORIES linearly increased with food preference ratings (voxelwise

p< 0.005, cluster-corrected to p< 0.005, 114 contiguous voxels). (B) Brain regions whose activation when evaluating

food images presented with CALORIES linearly increased with food preference ratings (voxelwise p< 0.005, cluster-

corrected to p< 0.005, 127 contiguous voxels). (C) Greater association between brain activation and food preferences

when evaluating food images with NO CALORIES than when evaluating food images with CALORIES in the left OFC,

left cuneus, left medial OFC, left occipitotemporal cortex, and left precentral gyrus (voxelwise p< 0.005, cluster-

corrected to p< 0.005, 38 contiguous voxels).

https://doi.org/10.1371/journal.pone.0204744.g006
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k = 459 contiguous voxels recommended by 3dClustSim) for the group comparison, future

studies should replicate and strengthen this effect by collecting data from larger samples of

dieters and non-dieters.

Additionally, considering that 79% of participants in the current sample were female, this

work could be further strengthened with a more gender-balanced replication. Previous work

has demonstrated that females are more responsive to calorie information when making food

decisions than males [15,18]. If so, the brain responses to calorie information seen in the pres-

ent study may not generalize as strongly to a predominantly male population either. Moreover,

beyond the mere presence of calorie information, idiosyncrasies in calorie estimation ability

might shape brain and behavioral responses to calorie-labeled food. To ensure the broadest

impact, future health interventions and policies should consider the motivational, individual,

and societal factors that moderate access and attention to nutritional information and food

options. Consumer subpopulations have differential access to food alternatives, health care,

and nutrition information, as well as different motivations for food selection (e.g., weight man-

agement, meal price, or feeding multiple family members). All of these factors contribute to

decisions about food and should be used to inform policy related to food choice and

availability.

One important limitation of the current study was that food images were always presented

first without calorie information. This was a purposeful and necessary part of the study para-

digm; the alternative—presenting some food images with calorie information first—would

have primed participants to implicitly consider calorie information for subsequently presented

food images. As such, reduced reward system activation in isolation, could be attributed to run

order effects. Several factors, however, mitigate this potential confound somewhat. First, acti-

vation in the FP control system increased from earlier to later runs, suggesting that whole-

brain habituation to the stimuli cannot account for the reductions in reward activity to foods

presented with calories. Second, the multivariate analysis—which reflects differences in the

representation of foods across conditions for dieters and non-dieters—bolsters our confidence

Fig 7. Parametric modulation by food preferences for NO CALORIES and CALORIES. Regions whose activation linearly increased with food preferences when NO

CALORIES were present (but not when calories were present) depicted in blue. Regions whose activation linearly increased with food preferences when CALORIES

were present (but not when calories were absent) depicted in yellow. Overlapping regions whose activation linearly increased with food preferences for both conditions

depicted in green.

https://doi.org/10.1371/journal.pone.0204744.g007
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that magnitude differences in reward activity are not driven by habituation effects. In RSA,

activation patterns are correlated across the two conditions, specifically normalizing any

(potentially spurious) magnitude-level differences. Moreover, the presence of a group

Fig 8. (A) Schematic of multivariate searchlight RSA comparing activation to foods images presented with and without calories. All voxels within a 9-mm

searchlight sphere contribute to the cross-condition correlation value at that location. This process is iterated across the entire brain to generate a whole-brain

cross-condition correlation map for each subject. Between subjects, a whole-brain group comparison reveals any group differences in cross-condition

correlation values. (B) Statistical maps of whole-brain cross-condition correlations for non-dieters and dieters (voxelwise t> 10, cluster correction p< 0.001).

(C) Statistical map representing the interaction between group (DIETERS>NON-DIETERS) and condition (NO CALORIES/CALORIES) pattern similarity

from multivariate searchlight RSA (voxelwise p< 0.01, thresholded to 60 contiguous voxels), featuring one cluster in the left OFC (-18, 42, -15, ventral view).

https://doi.org/10.1371/journal.pone.0204744.g008
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difference (dieters vs. non-dieters) in pattern similarity points to meaningful individual differ-

ences in the processing of calorie-labeled and unlabeled food, which may be further influenced

by person-level motivations toward food.

On a broader level, these results speak to the sensitivity of reward responses to contextual

health information. In fact, many of the exploratory analyses corroborated the results of our

planned analyses and predictions: calorie-labeled food elicited a differential response in the

reward system. Both the whole-brain analysis of activation modulation by food ratings and

cross-condition similarity in activation patterns revealed, among others, differences in a region

of the left OFC. This same region has been implicated in supporting reward responsivity to

food [25,33,34] and alcohol cues [63] across many studies, with individual differences in its

activation relating to domain-specific consumption and health outcomes. In the present study,

we find similar activation of the OFC to food cues, but this activation and its association with

idiosyncratic food preferences is attenuated in the presence of calorie information. Moreover,

activation of the OFC by food cues may differ based on dieting status. That is to say that behav-

iorally-relevant reward processing in the OFC may be sensitive less appetitive aspects of food

(e.g., healthiness) when attention to these aspects is explicitly engaged (by external cues) or

motivationally relevant (for dieters).

Future public policy work may consider leveraging the sensitivity of the reward system to

contextual information about potential reward options when mandating product labeling.

Indeed, recent research on smoking cue reactivity demonstrated that graphic warning labels

successfully altered smoking cravings and neural reactivity to smoking cues [64,65], as well as

the subjective value of cigarettes [66]—but these messages may be more persuasive for light

smokers than regular smokers [64,67]. Considered in the context of the present results, these

findings might suggest a brain-based mechanism—through altered responses in reward and

control systems of the brain—by which health policies can effectively address these public

health crises and elicit behavior change. However, from the present results, we cannot con-

clude anything about the long-term efficacy of these interventions in changing health-related

behavior. In fact, one study observed a waning efficacy of calorie labeling at fast-food restau-

rants over a five year period—as consumers habituated to the labels their visits to fast-food res-

taurants and number of calories purchased returned to baseline [68]. This poses an inherent

challenge for selecting a lasting intervention, which may be addressed by considering the

unique motivations of various consumer subpopulations.

Interestingly, in this study, calorie information induced a greater change in the self-

reported food preferences of dieters relative to non-dieters, yet non-dieters evoked a greater

change in the reward-related neural representation of foods when calorie information was pre-

sented. These findings may reflect trait level differences in motivation and attention to calorie

information at different levels. In fact, counteractive control theory suggests that exposure to

unhealthy, tempting foods might increase self-control among dieters by increasing the value of

their long-term goals for weight management [69]. Dieters might automatically consider the

healthiness of foods in such a way that allows their mental representations of food to be less

affected by external cues such as calorie information; however, the explicit reminder of calorie

information may trigger stronger motivational control over behavior in dieters than in non-

dieters. This increase in control might explain the decrease in desirability ratings for foods in

the current study after the calorie content was revealed. Conversely, in a previous study, non-

dieters exposed to tempting olfactory food cues—the smell of baking cookies—reported an

increased importance of dieting when compared to non-dieters that were not exposed to food

cues, however, the same manipulation did not influence the self-reported importance of diet-

ing among dieters [70]. Our neuroimaging results are consistent with these findings insofar as

dieters demonstrated greater similarity in the neural representation of food cues presented

Calorie information and dieting status modulate activation to food images

PLOS ONE | https://doi.org/10.1371/journal.pone.0204744 November 2, 2018 17 / 22

https://doi.org/10.1371/journal.pone.0204744


with and without calorie information when compared to non-dieters. One interpretation of

this finding is that the exposure to health-relevant information was sufficient to temporarily

motivate similar attention to the healthiness of food cues that dieters spontaneously represent.

Attending to calories may be one strategy by which dieters manage their weight. Extending

this work to overweight or obese populations might reveal whether changes in food represen-

tation is associated with successful weight management. Relative to non-dieters and normal

weight consumers, dieters and overweight consumers more frequently attend to the fat and

sugar content of foods. Moreover, weight loss programs tend to increase the number of catego-

ries by which consumers evaluate foods (e.g., high calorie, likely to lead to weight loss, fills you

up) [5]. Whether these naturally-occurring and programmatic strategies for evaluating foods

successfully change consumers’ relationships with food in a way that contributes to weight

management remains a question of interest. The best route to behavior change might incorpo-

rate a multi-step process that maximizes a person’s motivation to integrate calorie information

into a food decision along with actual calorie information. In fact, though non-dieters’ behav-

ior is typically less influenced by the presence of calories, when they are made aware of recom-

mended daily calories—motivating their attention to this information—they reduce their

eating behavior in a manner similar to dieters [7]. Adding health-related information, like the

calorie content, to food labels might facilitate healthier choices, particularly for those individu-

als who are not independently motivated to consider this aspect of their food choices. Perhaps

policy changes that combine calorie-labeled foods with increased public education about the

importance of considering food calories will be the most effective at eliciting large-scale shifts

in food choices.

Supporting information

S1 Fig. Activation in the OFC for NO CALORIES > CALORIES. (A) Compared to food

images presented without calories, those presented with calories elicited marginally less activa-

tion in the OFC (6-mm sphere centered over -30, 33, -18), B = 0.13, 95% CI [-0.003, 0.26], t
(40) = 1.92, p = 0.06. (B) This relationship did not differ for dieters and non-dieters, B = -0.07,

95% CI [-0.25, 0.11], t(40) = -0.75, p = 0.46.

(TIF)

S2 Fig. Parametric modulation by food preferences in the OFC. (A) There was a stronger

association between activation of the OFC (6-mm sphere centered over -30, 33, -18) and food

preferences when evaluating food images with NO CALORIES than when evaluating food

images with CALORIES in the reward system, B = 0.21, 95% CI [0.07, 0.35], t(40) = 2.82,

p = 0.007. (B) This relationship did not differ for dieters and non-dieters, B = -0.07, 95% CI

[-0.26, 0.11], t(40) = -0.75, p = 0.46.

(TIF)
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