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Abstract

Containing fungal diseases often depends on the application of fungicidal compounds. Fungicides can rapidly lose effectiveness due

to the rise of resistant individuals in populations. However, the lack of knowledge about resistance mutations beyond known target

genes challenges investigations into pathways to resistance. We used whole-genome sequencing data and association mapping to

reveal the multilocus genetic architecture of fungicide resistance in a global panel of 159 isolates of Parastagonospora nodorum, an

important fungal pathogen of wheat. We found significant differences in azole resistance among global field populations. The

populations evolved distinctive combinations of resistance alleles which can interact when co-occurring in the same genetic back-

ground.Weidentified34significantlyassociatedsinglenucleotidepolymorphisms located incloseproximity togenesassociatedwith

fungicide resistance in other fungi, including a major facilitator superfamily transporter. Using fungal colony growth rates and

melanin production at different temperatures as fitness proxies, we found no evidence that resistance was constrained by genetic

trade-offs. Our study demonstrates how genome-wide association studies of a global collection of pathogen strains can recapitulate

the emergence of fungicide resistance. The distinct complement of resistance mutations found among populations illustrates how

the evolutionary trajectory of fungicide adaptation can be complex and challenging to predict.
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Introduction

Fungal pathogens threaten global food security and human

health (Fisher et al. 2012), causing economic losses and

impacting global poverty (Strange and Scott 2005).

Treatment of both animal and plant fungal infections rely

on the application of fungicidal compounds that increas-

ingly exhibit a decrease in effectiveness (Fisher et al. 2018).

The emergence of resistance in fungal populations affects

nearly all major fungicide groups (Stehmann and de Waard

1996; Sierotzki et al. 2000; Avenot and Michailides 2007).

The loss in efficacy is due mainly to the intense selective

pressure imposed by continuous fungicide applications

based on single active compounds (van den Bosch and

Gilligan 2008; Hobbelen et al. 2014). Mutations reducing
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fungicide sensitivity are strongly favored by selection and

quickly increase in frequency in selected populations

(McDonald and Linde 2002; van den Bosch and Gilligan

2008; van den Bosch et al. 2011). The genetic architecture

associated with resistant phenotypes will arise from a com-

plex array of mutations and their interactions, in turn af-

fected by the pathogen population biology and

characteristics of the fungicide. The mode of action (such

as impairing mitochondrial respiration, Yang et al. 2011)

and the number of target sites (single- vs. multisite fungi-

cides) will play key roles in defining routes to resistance.

Genetic trade-offs impacting fitness (Mikaberidze and

McDonald 2015), innate resistance and epistatic effects

will also significantly shape the evolutionary process of re-

sistance emergence (Lucas et al. 2015). Hence, deciphering

the genetic architecture of emerging fungicide resistance

can provide useful insights and potentially identify key fac-

tors governing the evolutionary responses of pathogens.

Fungicides from the family of demethylation inhibitors

(DMIs) are the most widely used molecules in agriculture

and human medicine (Fisher et al. 2018). The mode of action

is to hinder the biosynthesis of ergosterol through inhibition of

the 14a-demethylase (CYP51) enzyme, negatively impacting

the fungal cell membrane integrity and permeability

(Georgopapadakou and Walsh 1996; Lass-Flörl 2011). In

this group of fungicides, resistance emerges through different

mechanisms, including 1) amino acid mutations in the target

protein, 2) overexpression of the gene encoding the target

protein, and 3) enhanced transporter activity reducing intra-

cellular concentrations of the fungicide (Becher and Wirsel

2012; Cools and Fraaije 2013). Importantly, resistance in pop-

ulations may be based on multiple mechanisms and is likely to

be constrained by fitness costs (Zhan and McDonald 2013;

Mikaberidze and McDonald 2015). Resistance can also

emerge multiple times independently within species

(Torriani et al. 2009). Structural changes in the CYP51 protein

are considered the most common mechanism leading to re-

sistance across species (Deng et al. 2007; Lucas et al. 2015).

Highly resistant genotypes can acquire dozens of different

mutations in the CYP51 gene in a stepwise manner (Cools

and Fraaije 2013). The consequences of the stepwise accu-

mulation of mutations are complex interactions with the ge-

netic background and selection for compensatory mutations

(Cools et al. 2010; Lucas et al. 2015; Mullis et al. 2018).

Alternative mechanisms to point mutations include copy-

number variation of CYP51 paralogs that are frequent in

Ascomycota fungi (Deng et al. 2007; Liu et al. 2011; Yan

et al. 2011; Brunner et al. 2016). The lack of knowledge about

resistance mutations occurring outside of the CYP51 gene

limit our understanding of the likely importance of interac-

tions among resistance mutations occurring in other genes.

Genome-wide analyses of fungicide resistance will fill impor-

tant gaps in our understanding of how resistance is acquired

within species.

Knowledge of where resistance genes are located in the

genome is needed to integrate information on standing ge-

netic variation and evidence for recent selection. Genome-

wide analyses led to the discovery of specific structural varia-

tion and single nucleotide polymorphisms (SNPs) underpin-

ning fungicide resistance. A series of studies in Candida

albicans established the contributions of variation in gene

copy number (Selmecki et al. 2010), mutations in transcription

factors (Coste et al. 2006; Dunkel et al. 2008), aneuploidy (Hill

et al. 2013), and specific polymorphisms in over 240 genes

(Ford et al. 2015) to fungicide resistance. Population genomic

analysis of 24 environmental and clinical strains of Aspergillus

fumigatus revealed segregating azole-resistance alleles in dif-

ferent genetic backgrounds (Abdolrasouli et al. 2015). In the

agricultural environment, the emergence of fungicide resis-

tance is expected to be rapid (McDonald and Linde 2002;

Croll and McDonald 2017) as a result of the genetic homo-

geneity of host plants and intensive fungicide usage

(Stukenbrock and McDonald 2008). In addition to rare de

novo mutations, the standing genetic variation from natural

pathogen populations is a likely source for fungicide adapta-

tion that is seldom explored (Barrett and Schluter 2008;

Yamashita and Fraaije 2018). Very few studies have consid-

ered the genomic landscape of natural populations when in-

vestigating the evolution of fungicide resistance in agro-

ecosystems (Mohd-Assaad et al. 2016; McDonald et al.

2019).

The rise of resistance in agroecosystems is usually preceded

by intense fungicide applications. For example, DMI fungi-

cides were introduced in 1977 for use on cereals in Europe

(Wyand and Brown 2005). After 20 years of low intensity

applications, resistance was not detected in 1997 in a Swiss

population of the wheat pathogen Mycosphaerella gramini-

cola now called Zymoseptoria tritici (Gisi et al. 1997).

However, two populations of the same wheat pathogen sam-

pled in Oregon, United States, showed clear shifts in resis-

tance against DMIs after intensive fungicide use with

resistance alleles being undetectable in 1992 but at high fre-

quency in 2012 (Estep et al. 2015). Most European varieties of

wheat are susceptible to the necrotrophic pathogen

Parastagonospora nodorum (Downie et al. 2018) leading to

the application of high amounts of fungicides to control this

and other foliar diseases (Fones and Gurr 2015). The fungicide

application impacts an entire community of wheat pathogens

(Blixt et al. 2010; Knorr et al. 2019).

The haploid fungus P. nodorum negatively impacts wheat

production worldwide (Oliver et al. 2012; Ficke et al. 2018). P.

nodorum colonizes leaves and ears of wheat, causing necrotic

lesions, and reducing yield. P. nodorum spreads across regions

on contaminated seeds and wheat straw (Solomon et al.

2006; Bennett et al. 2007). The main migration routes among

China, Europe, North America, and Australia were described

in earlier studies (Stukenbrock et al. 2006). Most populations

are characterized by frequent sexual recombination (Keller
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et al. 1997; Sommerhalder et al. 2006). A recent population

survey in North America identified two major populations of

P. nodorum with different genomic regions enriched in effec-

tors under selection (Richards et al. 2019). This study and a

second study (Pereira et al. 2020) show that P. nodorum read-

ily responds to selection in the agricultural environment.

European populations of P. nodorum sampled between

1994 and 2005 harbor point mutations in major genes related

to fungicide resistance including in CYP51 (Blixt et al. 2009;

Pereira et al. 2017). However, the genome-wide genetic ar-

chitecture associated with azole resistance emergence

remains largely unexplored.

In this study, we analyze a collection of 159 P. nodorum

genomes from seven field populations collected around the

world and perform genome-wide association studies (GWAS)

to establish the genetic basis of early fungicide sensitivity glob-

ally. All analyzed genomes date from before intensive fungi-

cide application was common practice at most sampling sites.

We also investigate whether the emergence of fungicide re-

sistance led to pleiotropic effects using measures of fungal

growth and melanization.

Materials and Methods

Fungal Populations

Isolates of P. nodorum were sampled from wheat fields nat-

urally infected by the pathogen. A total of 159 isolates chosen

from seven fields (�20 isolates per field) were included in our

analyses. The sampled countries/regions included Australia

(2001), Iran (2005 and 2010), South Africa (1995),

Switzerland (1999A and 1999B), New York (United States,

1991), Oregon (United States, 1993), and Texas (United

States, 1992). All isolates were previously genotyped using

microsatellite markers (Stukenbrock et al. 2006; McDonald

et al. 2012). We selected only unique haplotypes for this

study.

In earlier publications (Sommerhalder et al. 2006;

Stukenbrock et al. 2006; McDonald et al. 2012, 2013;

Pereira et al. 2017, 2020), the Switzerland 1999B population

was indicated to originate from China in 2001. As a result of

the genome sequence analyses reported in this paper, we

believe that a transcription error led to mislabeling of the

China 2001 population, which we now believe originated

from a Swiss field of wheat located near Bern, �150 km

away from where the Swiss 1999A population was collected.

The re-assignment of the China 2001 population to

Switzerland 1999B does not compromise any of the analyses

or interpretations reported in this manuscript.

Fungicide Sensitivity Phenotyping

Isolates were recovered from long-term storage in silica gel at

�80 �C by placing silica gel fragments on the center of round

Petri dishes containing potato dextrose agar (PDA, 4 g l�1

potato starch, 20 g l�1 dextrose, 15 g l�1 agar, and 50 mg

l�1 kanamycin). The plates were placed in chambers with a

constant temperature of 24 �C in the dark to induce mycelial

development. After 3 days of growth, mycelium from each

isolate was excised from the edges of the colonies with a cork

borer (5 mm) and transferred to new PDA plates, to be used

as the inoculum source for the sensitivity phenotyping exper-

iment. All 159 isolates were phenotyped using four doses of

propiconazole (Syngenta, Basel, Switzerland) chosen based

on previous experiments that were conducted to determine

the dose range that revealed the greatest variation in sensi-

tivity among isolates. The selected doses were 0, 0.1, 0.5, and

1 ppm of propiconazole diluted in dimethyl sulfoxide (DMSO,

0.002% v/v). The doses of propiconazole or DMSO alone (as a

control) were incorporated into molten PDA (�50 �C) with a

magnetic stirrer and a 50 ml volume was poured into square

Petri dishes (120 mm � 120 mm � 17 mm, HUBERLAB).

Using a 5 mm cork borer, mycelial plugs were excised from

the edge of colonies developing after 7 days of growth on the

inoculum plates. Four plugs from each isolate were placed in

the corners of square plates with equidistant separation.

Isolates were replicated twice, generating eight colonies in

total for each of the four doses. Plates were randomized in

an incubation chamber and grown at a constant temperature

of 24 �C and with no light during the entire experiment.

Digital images of the colonies were acquired at 8 days after

inoculation through each plate lid. Images were analyzed us-

ing a batch script in ImageJ (Schneider et al. 2012;

Lendenmann et al. 2014) matching parameters used in

Pereira et al. (2020). The method yielded quantitative meas-

ures of each colony for total colony area (mm2) and melani-

zation (mean gray values). The effective concentration that

inhibited mycelial growth by 50% (EC50) was determined us-

ing a dose–response curve based on colony radius

(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
total area=p

p
) values in the R package drc version 3.0-1

(Ritz et al. 2015).

Whole-Genome Sequencing

Fragments of mycelium from 4-day-old colonies growing on

PDA media were transferred to 50 ml Potato Dextrose Broth

(PDB) media and cultured for 4–6 days at 24 �C while shaking

at 120 rpm. The resulting mycelial colonies were filtered

through sterile cheesecloth and lyophilized for 72 h. Dried

fungal material was used for DNA extraction with the

DNeasy Plant Mini Kit (Qiagen) following the manufacturer’s

standard protocol. We sequenced the genomes for all 159

isolates included in this study. The sequencing was performed

on an Illumina HiSeq 2500 platform producing paired-end

reads of 150 bp. Preparation of sequencing libraries and se-

quencing was performed at the Functional Genomics Center

in Zurich. Raw sequence reads were deposited in the NCBI

Short Read Archive under BioProject PRJNA606320.

Genetic Architecture of Fungicide Resistance GBE
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Genome Alignment, Variant Calling, and Quality Filtering

Raw reads were trimmed for remaining Illumina adaptors and

read quality was assessed using Trimmomatic version 0.36

(Bolger et al. 2014) with the following parameters: illumina-

clip ¼ TruSeq3-PE.fa:2:30:10, leading ¼ 10, trailing ¼ 10,

slidingwindow ¼ 5:10, minlen ¼ 50. Trimmed reads were

aligned against the reference genome established for the iso-

late SN2000 (Richards et al. 2017). Reference genome map-

ping was performed using the short-read aligner Bowtie2

version 2.3.3 (Langmead and Salzberg 2012), using the –

very-sensitive-local option. Picard tools version 2.17.2 was

used to mark PCR duplicates (http://broadinstitute.github.io/

picard, last accessed July 2019). All sequence alignment

(SAM) files were sorted and converted to binary (BAM) files

using SAMtools version 1.2 (Li et al. 2009). SNP calling and

variant filtration were performed using the Genome Analysis

Toolkit (GATK) version 3.8-0 (McKenna et al. 2010). Initially,

we used HaplotypeCaller on each isolate BAM file individually

with the –emit-ref-confidence GVCF and -ploidy 1 options.

Then, joint variant calls were produced using GenotypeGVCFs

with the flag -maxAltAlleles 2. Finally, SelectVariants and

VariantFiltration was used for hard filtering SNPs with the

following cut-offs: QUAL < 200; QD < 10.0; MQ < 20.0; –

2> BaseQRankSum > 2; – 2>MQRankSum > 2; –

2> ReadPosRankSum > 2. SNPs that failed the PASS desig-

nation by GATK were removed and we kept only bi-allelic

sites. For the final data set, we retained SNPs with a genotyp-

ing rate of at least 90% and a minimum allele frequency of

5% using vcftools version 0.1.15 (Danecek et al. 2011).

Genome-Wide Association Mapping

Association analysis was performed using the R package

GAPIT version 2 (Tang et al. 2016), using a mixed

linear model (MLM) (Yu et al. 2006). This model improves

the control of false positives (type I errors) by incorporating

fixed and random effects. Alternatively, we tested the inclu-

sion of principal components (PCs) from a PC analysis to cor-

rect for population structure (Q) or a kinship matrix (K) to

account for cryptic relationships (Yu et al. 2006; VanRaden

2008). We identified the most appropriate set of parameters

and covariates by comparing the models MLMþ K and MLM

þ KþQ, where Q stands for the three first PCs. Based on a

Bayesian information criterion (Schwarz 1978) analysis per-

formed in GAPIT, the MLM þ K model was selected as the

most appropriate for our data set. We considered associations

to be significant when P values were smaller than the

Bonferroni threshold at a¼ 0.05 (P< 1.1 e�07). False discov-

ery rate (FDR) thresholds of 5% (P< 7.15 e�07) and 10%

(P< 8.26 e�06) were determined using the R package q-

value version 2.18.0 (Storey and Tibshirani 2003). We ex-

plored the genomic regions containing significantly associated

loci using bedtools version 2.29.0 (Quinlan and Hall 2010).

Population Structure and Linkage Disequilibrium Analyses

Population structure was inferred using both a PC analysis in

TASSEL version 5.2.56 and a model-based clustering imple-

mented in STRUCTURE v.2.3.4 (Pritchard et al. 2000;

Bradbury et al. 2007). We visualized the two first PCs using

the ggplot2 package in R. The genetic markers used as input

in STRUCTURE were composed of 2,348 SNPs. These SNPs

were selected randomly across the genome using a sampling

window of 10 kb to ensure no/very low linkage disequilibrium

(LD) among loci. We chose an admixture model independent

of prior population information and with correlated allele fre-

quencies. The algorithm ran with a burn-in length of 50,000

and a simulation length of 100,000 Markov chain Monte

Carlo repetitions. We varied estimations of K between 1

and 10, with 10 repetitions per K. The most likely number

of populations (K) was estimated based on Evanno’s method

(Evanno et al. 2005) implemented using the R package

pophelper version 2.3.0 (Francis 2017). Regions in the ge-

nome spanning the most significant associations were further

investigated in detail for signatures of LD. Using the vcftools

option –hap-r2, we compared all possible SNP pairs in a 5 kb

window. A heatmap was produced based on the r2 values

using the R package LDheatmap version 0.99-7 (Shin et al.

2006).

Allelic Effect and Trade-Off Analyses

We used GAPIT (Tang et al. 2016) for estimations of allelic

effects. Allelic effects on EC50 values were compared with

allelic effects on growth rate and melanization (under temper-

atures of 18, 24, and 30 �C). The total fungicide resistance

variation explained by each SNP was determined using a linear

mixed-effect model implemented in the lme4 R package ver-

sion 1.1-19 (Bates et al. 2015). EC50 values were used as

response variables, the SNPs as fixed effects and populations

were included as random effects. Using the function

r.squaredGLMM from the MuMln package version 1.43.6 in

R we obtained R2 indices (Nakagawa and Schielzeth 2013).

Homology Analyses of Candidate Genes

Amino acid sequences of all genes in the P. nodorum SN15

reference genome were obtained from the UniProt database

under the proteome ID 000001055 (Hane et al. 2007;

Magrane and Consortium 2011). Gene annotations for the

SN2000 reference genome are not available in databases,

hence we aligned the predicted protein sequences from the

SN15 assembly retaining queries with a 95% minimum iden-

tity score using the software exonerate version 2.2.0 (Slater

and Birney 2005; Richards et al. 2017). For inferences on gene

function, we identified conserved domains using InterProScan

v.5.44-79, NCBI Conserved Domain v.3.17, and HMMER v3.3

database search tools (Quevillon et al. 2005; Finn et al. 2011;

Marchler-Bauer et al. 2015).
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Results

Population Level Differences for Fungicide Sensitivity and
Genetic Diversity

We analyzed sensitivity to an azole fungicide in a worldwide

collection of 159 P. nodorum isolates using individual EC50

measures. The pathogen strains came from seven field pop-

ulations located in Australia (n¼ 22), South Africa (n¼ 21),

Switzerland 1999A (n¼ 20), Switzerland 1999B (n¼ 22), Iran

(n¼ 16), New York (n¼ 21), Oregon (n¼ 16), and Texas

(n¼ 21) (fig. 1A and supplementary table S1,

Supplementary Material online). In total, 39 isolates (24.5%)

had EC50 values higher than the overall average of 0.12 ppm.

The populations from Switzerland showed the highest aver-

age EC50 values (0.20 and 0.37 ppm in 1999A and 1999B,

respectively; P� 0.01; fig. 1B and supplementary fig. S1,

Supplementary Material online) whereas the population

from Oregon had the lowest average EC50 (0.05 ppm). We

sequenced genomes for all 159 isolates using Illumina short-

read sequencing. On average, we obtained a mean sequenc-

ing depth of 24� per individual, with a SNP density of ap-

proximately 12 SNPs per kb. After removing SNPs with more

than 10% missing genotypes and minor allele frequencies

<5%, we retained a total of 436,365 SNPs to be used for

FIG. 1.—Geographic origins of the 159 P. nodorum isolates. (A) World map showing sampling sites, number of isolates per population and the number

of SNPs. (B) Boxplots of EC50 (in ppm) values for each isolate in each population. The red line shows the mean overall EC50 and the blue line indicates the

overall median EC50. (C) The first two PCs from a PCA of 436,365 genome-wide SNP genotypes, and a box with the explained variance across the 30 first

PCs. Populations are color-coded.
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downstream analyses. The total number of SNPs retained per

population varied from 340,929 in Australia to 395,054 in

Switzerland 1999B. LD decayed differently among popula-

tions (fig. 2A). In the populations from Australia,

Switzerland, Iran, and the United States (New York,

Oregon, Texas), r2 reached values below 0.2 within 10 kb.

In the population from South Africa r2 �0.2 was reached at

15 kb.

A population structure analysis revealed clusters of isolates

differentiated according to the continent of origin (fig. 1C and

supplementary fig. S2, Supplementary Material online). A ma-

jor cluster was formed by isolates from Switzerland and the

United States (New York, Oregon, Texas). Isolates from

Australia, South Africa, and Iran constituted a second and

more dispersed cluster. Incorporating a third PC, isolates re-

main grouped according to their continent of origin, except

for the South African becoming more dispersed (supplemen-

tary fig. S2, Supplementary Material online). We analyzed the

clustering scenarios of K¼ 2 and K¼ 3 (supplementary fig. S3

and table S2, Supplementary Material online). At K¼ 2,

Australia and South Africa belonged to cluster 1, whereas

the other populations composed cluster 2. At K¼ 3, the

Iranian population constituted most of cluster 3 which was

shared with genotypes from Switzerland and South Africa

(supplementary fig. S4, Supplementary Material online). The

global dispersal of P. nodorum was proposed to mirror the

domestication and expansion of the wheat host (Heun 1997;

Balter 2007; McDonald et al. 2012; Balfourier et al. 2019).

Wheat originated in the Fertile Crescent and then spread

across Europe and Asia for thousands of years before

Europeans brought it to the American continent �500 years

ago and Australia�200 years ago. P. nodorum is a seedborne

pathogen, so it is likely that the pathogen moved globally on

infected wheat seed. Because the Iranian P. nodorum popu-

lation is closest to the Fertile Crescent, we expect it would

have retained most of the ancestral polymorphism. This is

reflected by the finding that it was a hotspot of genetic di-

versity detected previously by microsatellite markers

(McDonald et al. 2012) and neutral SNP markers (Pereira

et al. 2020). In Australia, strict quarantine measures likely lim-

ited the introduction of the pathogen on infected wheat ma-

terial (Oliver et al. 2012). Consistent with this proposed

bottleneck, we found that the Australian population had

low diversity and was distinct from other populations.

Genetic Architecture of Fungicide Sensitivity across

Populations

To unravel the genetic architecture of fungicide resistance in

P. nodorum, we performed genome-wide association analy-

ses using all 159 isolates. We associated genotypes at the

436,365 SNP markers with the EC50 phenotypes and identi-

fied 34 SNPs significantly associated with fungicide resistance

(supplementary table S3, Supplementary Material online).

Two associations above the most stringent threshold

(Bonferroni a¼ 0.05, P< 1.1 e�07) were located on chromo-

somes 6 and 15 (fig. 2B). At the FDR 5%, we found five

FIG. 2.—LD decay in each population and Manhattan plot of GWAS for fungicide sensitivity. (A) Pairwise LD decay among all SNPs within a fixed

window of 50kb for each population. A nonlinear model was fitted based on r2 measures along with the first 50kb on chromosome 1 using the equation of

Ingvarsson (2005). The gray shading indicates the total area needed for all populations to reach r2 ¼ 0.2. (B) Manhattan plot showing the SNP associations

with fungicide resistance. SNP markers are shown as dots colored according to their associated chromosomes. Different significance levels are displayed on

the y-axis: Horizontal lines represent the thresholds for FDR 10% (dotted line), FDR 5% (dashed line), and after Bonferroni correction (solid line). SNPs above

FDR 5% were labeled with a specific identifier (chromosome number þ SNP coordinates in bp).
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additional associations on chromosomes 12, 15, and 22. At

FDR 10%, we identified a total of 27 additional SNPs on

chromosomes 2, 4, 7, 8, 9, 10, 15, and 20 (fig. 2B). The

average distance between genes in the P. nodorum genome

is 1.2 kb (Syme et al. 2018). We considered SNPs to be in close

proximity if they were located within 1 kb of the closest gene.

We found 5 associations> 1 kb from the nearest gene and 16

within 1 kb of a gene. Thirteen associations were located

within a gene (supplementary table S3, Supplementary

Material online). Quantile–quantile (QQ) plots showed there

was not meaningful inflation due to population structure us-

ing the MLM þ K model (supplementary fig. S5,

Supplementary Material online).

Populations differed in their complement of fungicide re-

sistance mutations. Two SNPs above the Bonferroni threshold

(snp_6_140917 and snp_15_1125165) were both present in

the populations from Switzerland and Texas but were absent

in South Africa. The mutation underlying the third strongest

association (snp_12_743935, FDR 5%) was exclusively pre-

sent in the populations from Switzerland but was missing in

all other populations. Taken together, based on the top seven

SNPs passing the 5% FDR, all populations carried at least one

resistance mutation with the exception of South Africa.

Genomic Context of the Key Loci Contributing to Azole
Sensitivity

We investigated the genomic context of the most strongly

associated SNPs. The strongest association was

snp_6_140917 on chromosome 6 (P¼ 4.03 * 10�9, supple-

mentary fig. S6, Supplementary Material online). This SNP was

located 1,044 bp upstream of the nearest gene

(SNOG_15057), which encodes a helix–loop–helix (HLH) do-

main functioning as a transcription factor (supplementary ta-

ble S3, Supplementary Material online). HLH-domain proteins

constitute a large family of proteins acting as gene expression

regulators (Massari and Murre 2000). Some members of this

family were shown to boost drug resistance gene expression

in human tumors (Vandeputte et al. 2002; Cheung 2004) and

plant pathogens (Liu et al. 2015). The second most strongly

associated genomic region was on chromosome 15 (fig. 3A).

The SNPs snp_15_1125165 (P¼ 5.65 * 10�8), and

snp_15_1124326, (P¼ 3.45 * 10�6), were located in close

proximity at chromosomal positions 1.125 and 1.124 Mbp,

respectively (fig. 3A). The SNP at 1.125 Mbp comprised a

nonsynonymous mutation (threonine to isoleucine) in the

gene SNOG_14185 (supplementary fig. S7, Supplementary

Material online). The SNP at 1.124 Mb comprised an intron

mutation in the same gene. SNOG_14185 encodes a trans-

membrane transporter and belongs to the major facilitator

superfamily (MFS) with similarity to the Yeast Polyamine trans-

porter 1 (Tpo1). MFS transporters are known multidrug resis-

tance components in model organisms and fungal pathogens

(De Rossi et al. 2002). The chromosomal regions surrounding

snp_6_140917 and snp_15_1125165 show low LD (r2< 0.2)

with each region harboring only a single gene (supplementary

fig. S6A, Supplementary Material online and fig. 3A,

respectively).

Combinatorial Effects of Fungicide Resistance Loci

We evaluated how the frequencies and effects of the individ-

ual SNP associations contributed to the overall azole resistance

of P. nodorum. The resistance allele at snp_6_140917 was

present in 41% of isolates from Switzerland 1999B, in 10%

of the New York isolates and in 10% of the Texas isolates

(supplementary fig. S8A, Supplementary Material online). The

global frequency was about 8% across all 159 isolates. The

resistance allele at snp_15_1125165 was present at a global

frequency of 14%, at 5% in Australia, 15% in Switzerland

1999A, 55% in Switzerland 1999B, 19% in Iran, 6% in

Oregon, and 5% in Texas (supplementary fig. S8B,

Supplementary Material online). When comparing the degree

of fungicide sensitivity, the group of isolates containing either

of the two resistance alleles had higher EC50 values (fig. 3B

and supplementary fig. S6, Supplementary Material online).

At the population level, the group of isolates harboring the

resistant allele at snp_6_140917 was significantly more resis-

tant only within Switzerland 1999B (t-test P¼ 0.004; supple-

mentary fig. S6, Supplementary Material online). For

snp_15_1125165, the group of isolates containing the resis-

tant allele was more resistant within Switzerland 1999A (t-test

P¼ 0.03) but only marginally more resistant in Switzerland

1999B (t-test P¼ 0.08, fig. 3C). In contrast, in the populations

from Australia, Iran, and Oregon, there were no significant

differences between isolates carrying the different alleles.

We expanded the comparisons with genotypes differenti-

ated by nonsynonymous mutations in the CYP51 gene.

Isolates with a nonsynonymous CYP51 resistance mutation

in the background and a resistance allele identified by

GWAS showed a significant increase in resistance in 4 out

of 5 combinations (fig. 4). However, when considering only

the resistance alleles detected by the GWAS, while disregard-

ing the CYP51 resistance mutations in the genetic back-

ground, we did not find a significant increase in resistance.

We performed a second GWAS after excluding isolates car-

rying the CYP51 nonsynonymous resistance mutations and

we found no significant associations at genome-wide signif-

icance thresholds. Next, we assessed the individual contribu-

tions of the identified resistance alleles to the overall variation

in fungicide sensitivity among populations. The mutations

identified in the CYP51 gene contributed 63.2% of the total

phenotypic variation whereas the snp_15_1125165 in the

MFS transporter gene contributed only 6.1% of the pheno-

type variation. Despite the major effect of CYP51 haplotypes

on resistance, we found that individual CYP51 SNPs were as-

sociated only at a FDR 10% for the strongest associations

(supplementary table S3, Supplementary Material online).
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This is possibly explained by high LD in the chromosomal re-

gion and relatively minor contributions of individual mutations

to resistance (supplementary fig. S9, Supplementary Material

online).

Allelic Effects Associated with Fungicide Resistance and

Testing for Trade-Offs

Allelic effects quantify the mean difference in phenotypic val-

ues between genotypes carrying either of two alleles at a

locus. We investigated the correlation of allelic effects be-

tween fungicide sensitivity and six quantitative life history

traits including growth and melanization at the temperatures

18, 24, and 30 �C (fig. 5). Melanin is an important secondary

metabolite in microbes and is broadly related to host coloni-

zation and survival under stressful conditions such as UV ra-

diation, heat stress, and antimicrobial compounds (Rosas et al.

2000; Nosanchuk and Casadevall 2006; Lendenmann et al.

2015). Melanin was previously shown to be associated with

fungicide resistance in the plant pathogen Z. tritici

(Lendenmann et al. 2014). We focused on the seven most

significant SNPs identified in the GWAS for fungicide resis-

tance and performed association mapping analyses for the six

other traits. Using allelic effect correlations, we investigated

whether resistance mutations showed evidence for pleiotro-

pic effects on any other trait. We found that the most signif-

icant SNPs had no meaningful impact on any other analyzed

traits (fig. 5A and B) and we found no strong correlation be-

tween allelic effects of fungicide resistance and the other traits

(fig. 5C).

Discussion

We used whole-genome sequencing data and association

mapping to reveal the multilocus genetic architecture of fun-

gicide resistance in P. nodorum. We identified significant dif-

ferences in azole resistance among a global set of field

populations. Some populations evolved distinct combinations

of resistance alleles which showed interactions when co-

occurring in a same genetic background. We identified sev-

eral significantly associated SNPs in close proximity to candi-

date resistance genes, including an MFS transporter. There

FIG. 3.—Analysis of the SNP associations near the MFS transporter gene SNOG_14185 associated with azole resistance. (A) Top panel: Scatter plot for

association P values of SNPs within a 5kb region centered on the peak snp_15_1125165. Horizontal lines represent the thresholds for FDR 10% (dotted line),

FDR 5% (dashed line), and after Bonferroni correction (solid line). SNOG_14185 encoding an MFS transporter is shown in orange. Bottom panel: LD map for

the pairwise comparison among SNPs within a 5 kb window. (B) Boxplots showing EC50 values (in ppm) for propiconazole among global isolates carrying the

resistant or susceptible allele at snp_15_1125165. (C) Boxplots showing EC50 values in isolates carrying the resistant or susceptible allele at snp_15_1125165

organized according to population.

Pereira et al. GBE

2238 Genome Biol. Evol. 12(12):2231–2244 doi:10.1093/gbe/evaa203 Advance Access publication 28 September 2020



was no evidence for trade-offs associated with the observed

resistance to azoles.

The genetic basis of fungicide resistance includes both

qualitative and quantitative factors (de Waard et al. 2006).

The presence or absence of a sensitive target site is typically

considered a qualitative factor [e.g., Strobilurus tenacellus and

strobilurin A fKraiczy et al. 1996g]. Previous studies oriented

around single known loci identified major genetic determi-

nants (e.g., qualitative factors) associated with fungicide re-

sistance in P. nodorum (Blixt et al. 2009; Pereira et al. 2017).

Quantitative factors are often associated with a number of

different mechanisms that make minor contributions to over-

all resistance. In this study, we used a genome-wide approach

to identify both major and minor contributions to resistance.

We found 34 candidate loci distributed across the genome,

including the CYP51 gene, underlying quantitative variation in

fungicide sensitivity across populations. In clinical resistance

studies, an increasing number of genetic loci affecting drug

resistance have been described in viruses, protozoa, and bac-

teria (Manolio 2013; Chewapreecha et al. 2014; Holt et al.

2015; Power et al. 2017). The emergence of fungicide resis-

tance in plant pathogenic fungi has been associated mainly

with mutations in genes encoding the targeted protein.

However, GWAS based on whole-genome sequencing in

the barley scald pathogen Rhynchosporium commune

(Mohd-Assaad et al. 2016) showed that R. commune evolved

resistance to azoles via a combination of genetic variants in

addition to mutations in the CYP51 gene.

The evolution of azole resistance in P. nodorum was likely

initiated by mutations in the CYP51 gene coupled with more

recent mutations in other loci. In both P. nodorum and

R. commune, the mutations with the greatest impact on azole

resistance were found in the CYP51 gene (Mohd-Assaad et al.

2016). The convergent evolution of azole resistance based on

CYP51 mutations is a major feature of azole resistance glob-

ally (Fisher et al. 2018). However, additional loci may elevate

fungicide resistance in a subset of populations. There is grow-

ing evidence that herbicide resistance in plants involves sites

that are not targeted by the herbicide (Baucom 2019). These

nontarget sites are usually related to herbicide translocation or

detoxification (Peng et al. 2010; Leslie and Baucom 2014).

We observed different levels of resistance and combina-

tions of resistance alleles among our worldwide populations.

Such a mosaic structure in resistance factors was also ob-

served among populations of Streptococcus pneumoniae

and Mycobacterium tuberculosis (Chewapreecha et al.

FIG. 4.—Comparisons of EC50 values among resistance haplotypes. Combinatorial genotypes of mutations in the CYP51 gene and the most significant

associations found by GWAS are shown. The number of isolates carrying a specific genotype is indicated on the y-axis. On the right side, the CYP51

haplotype column identifies genotypes by their nonsynonymous Y144 mutations. Contrasting resistant and susceptible CYP51 haplotypes. The SNP locus

column identifies the resistant (black square) versus the susceptible (empty square) at SNP loci identified by GWAS.
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2014; Farhat et al. 2019), with certain populations enriched in

particular resistance determinants (Chewapreecha et al.

2014). The highest number of resistance alleles was found

in P. nodorum isolates from Switzerland (both 1999A and

1999B), which were also the most resistant populations.

The use of azoles in Europe started in 1979 (Estep et al.

2015). We postulate that the Swiss populations were either

directly selected for fungicide resistance or received resistance

alleles through gene flow from areas where fungicides were

intensively used. Considering migration patterns based on mi-

crosatellite markers (Stukenbrock et al. 2006), it is likely that

resistance genotypes will be exchanged among populations.

Populations of the barley pathogen R. commune showed a

similar pattern, with the Swiss population among the most

resistant worldwide and an exchange of migrants among

continents (McDonald 2015; Mohd-Assaad et al. 2016).

Broad usage of DMIs in Australia only started in 2002 to

control wheat diseases (Wellings 2007). In South Africa foliar

application of DMI was introduced in 1988 for barley patho-

gens (Campbell and Crous 2002). Therefore, the lower selec-

tion pressure imposed by the fungicide application regime

was likely insufficient for the widespread emergence of resis-

tant genotypes or an increase in base-line resistance in pop-

ulations. Given that we analyzed populations many years after

the onset of widespread fungicide applications, many muta-

tions affecting azole resistance may have arisen in these

populations.

We identified a potentially new mechanism of azole resis-

tance in P. nodorum. Isolates with the lowest sensitivity to

propiconazole often harbored resistance mutations at both

the CYP51 locus and the MFS transporter locus. MFS trans-

porters are among the largest protein families (Stergiopoulos

et al. 2002), ubiquitous in the cell membrane of prokaryotes

(Hirai and Subramaniam 2004), and eukaryotes (Henderson

FIG. 5.—Genome-wide allelic effect correlations. Allelic effects for EC50 and (A) growth rate and (B) melanization at 24 �C. SNPs that were significantly

associated with propiconazole sensitivity are indicated. (C) Mean allelic effect correlation coefficients for EC50, growth rate (mm day�1), and melanization at

different temperatures. Sizes of circles represent degrees of significance and the opacity of colors are proportional to the size of the correlation coefficient.
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and Maiden 1990). These transporters contribute to cell-to-

cell communication as well as movement of pathogenicity

toxins and antimicrobial drugs through the cell membrane

(Paulsen et al. 1996). Importantly, MFS transporters can also

act as efflux pumps that reduce intracellular drug concentra-

tions (Kretschmer et al. 2009; Omrane et al. 2015; Redhu

et al. 2016). In the plant pathogens Botrytis cinerea and Z.

tritici, upregulation of an MFS transporter was shown to re-

duce sensitivity to azole fungicides (Kretschmer et al. 2009;

Omrane et al. 2017). In P. nodorum, we observed correlations

between MFS mutations and azole sensitivity. MFS transport-

ers can also vary in their substrate affinity as found for a

multidrug transporter in C. albicans (Pasrija et al. 2007).

Depending on the type of MFS transporter mutations,

C. albicans varied in sensitivity to different drugs, including

an azole. The nonsynonymous mutation we identified in

P. nodorum could influence this MFS transporter’s affinity

for propiconazole. Interestingly, the group of isolates lacking

CYP51 resistance mutations, but carrying the more resistant

variant of the MFS transporter were highly susceptible, indi-

cating that the MFS transporter mutations depend on CYP51

mutations to have an effect. This is similar to what was ob-

served in Z. tritici (Omrane et al. 2015). Epistasis among

resistance-encoding genes is also known from C. albicans

(Hill et al. 2013; Ciudad et al. 2016) and appears to be a

common phenomenon associated with the emergence of

de novo resistance mutations.

A major constraint on the emergence of resistance muta-

tions is negative pleiotropy. Fungicides generally target essen-

tial metabolic processes. By reducing the synthesis of

ergosterol, azoles negatively impact cell fluidity and functions

through membrane defects (Georgopapadakou and Walsh

1996; Lass-Flörl 2011). Resistance mutations are most suc-

cessful if they confer decreased binding affinity with the fun-

gicide but do not negatively impair normal protein functions

(Karaoglanidis et al. 2001; Yan et al. 2011). Resistance muta-

tions that lead to overproduction of targeted proteins may

negatively impact the cellular energy budget (Lang et al.

2009). Hence, resistance mutations are likely to confer advan-

tageous effects only in the presence of the fungicide. Fitness

costs in the absence of the pesticide constrain the emergence

of acquired resistance in plants, bacteria, and fungi (Schenk

and de Visser 2013; Moura de Sousa et al. 2017; Pagnout

et al. 2019). Interestingly, we found no evidence that the

most important fungicide resistance mutations negatively im-

pacted growth rates or melanization in P. nodorum. This is in

contrast to other fungal pathogens such as Z. tritici and

R. commune where growth rates were negatively affected

in the absence of azoles (Lendenmann et al. 2015; Mohd-

Assaad et al. 2016). Herbicide resistance shows a broader

spectrum of pleiotropic effects among species (Powles and

Yu 2010; Baucom 2019) with the most common mutations

having limited fitness costs (Tranel and Wright 2002). Fitness

costs of resistance mutations can also be reduced through

compensatory mutations, as shown in bacteria (Levin et al.

2000; Trindade et al. 2009; Moura de Sousa et al. 2017) and

postulated in fungi (Lucas et al. 2015; Dettman et al. 2017).

We also found no evidence for genetic trade-offs between

fungicide resistance and growth at different temperatures.

These findings suggest that P. nodorum either evolved

azole resistance without relying on costly mutations that

would affect other traits or that trade-offs have already

been resolved through fixed compensatory mutations. The

negative pleiotropic effects associated with resistance muta-

tions can be masked by compensatory mutations occurring in

the genetic background (Becher and Wirsel 2012; Cools et al.

2013). Fitness costs could also manifest for different traits

than we analyzed (e.g., virulence and competitive ability) or

depend on specific environmental conditions that we did not

consider.

Our study demonstrates how GWAS of a global collection

of pathogen strains can recapitulate the emergence of fungi-

cide resistance. The distinctive complements of resistance

mutations found among populations reflect how the evolu-

tionary trajectory of fungicide adaptation is complex and dif-

ficult to predict. The apparent lack of trade-offs to adapt to

azole fungicides in P. nodorum highlights how more sustain-

able crop protection strategies are needed. An absence of

trade-offs will contribute to a rapid decline in fungicide effec-

tiveness and more widespread losses in crop production.
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