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A massively asynchronous, parallel brain

Semir Zeki

Laboratory of Neurobiology, University College London, London WC1E 6BT, UK

Whether the visual brain uses a parallel or a serial, hierarchical, strategy to

process visual signals, the end result appears to be that different attributes of

the visual scene are perceived asynchronously—with colour leading form

(orientation) by 40 ms and direction of motion by about 80 ms. Whatever the

neural root of this asynchrony, it creates a problem that has not been properly

addressed, namely how visual attributes that are perceived asynchronously

over brief time windows after stimulus onset are bound together in the

longer term to give us a unified experience of the visual world, in which all attri-

butes are apparently seen in perfect registration. In this review, I suggest that

there is no central neural clock in the (visual) brain that synchronizes the

activity of different processing systems. More likely, activity in each of the par-

allel processing-perceptual systems of the visual brain is reset independently,

making of the brain a massively asynchronous organ, just like the new gener-

ation of more efficient computers promise to be. Given the asynchronous

operations of the brain, it is likely that the results of activities in the different

processing-perceptual systems are not bound by physiological interactions

between cells in the specialized visual areas, but post-perceptually, outside

the visual brain.
1. Introduction

In a synchronous chip, the clock’s rhythm must be slow enough to accommodate the
slowest action in the chip’s circuits . . . Even though many other circuits on that chip
may be able to complete their operations in less time, these circuits must wait until
the clock ticks again before proceeding to the next logical step. In contrast, each
part of an asynchronous system takes as much or as little time for each action as it
needs. Complex operations can take more time than average, and simple ones can
take less. Actions can start as soon as the prerequisite actions are done, without wait-
ing for the next tick of the clock. Thus, the system’s speed depends on the average
action time rather than the slowest action time.

Sutherland & Ebergen [1, p. 64]
Many would today subscribe to the view that the visual brain is organized to pro-

cess visual signals in parallel, by which I mean that different attributes such as

colour, motion and form are processed by separate systems [2]. This is reflected

anatomically in the parallel outputs from the primary visual cortex, area V1, to

different, specialized, visual areas of the prestriate cortex [3,4]. As I discuss

below, parallelism may be an even more pervasive strategy in the visual brain

than is commonly assumed.

There are probably sound computational reasons for this neural separation

of functions as well as more mundane perceptual ones [5]. The latter can be

summarized as follows: that different attributes do not necessarily co-occur.

A given colour can invest any form, and a form can be in any colour. If the

specific form of a stimulus (or its direction of motion) always co-occurred

with a specific colour, then the stimulus can be specified by any of these attri-

butes. But, this is not the case. Moreover, there are different computational

demands for processing different attributes, for example colour and motion.

The former requires the brain to register the wavelength–energy composition

of light coming from one surface and its surrounds simultaneously, whereas

the latter requires it to register activity at least at two successive points in time.

Many would today also subscribe to the view that each one of these parallel

systems consists of several hierarchical, apparently sequential, stages [3,4].

http://crossmark.crossref.org/dialog/?doi=10.1098/rstb.2014.0174&domain=pdf&date_stamp=2015-03-30
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Figure 1. The perceptual pairing experiment, in which subjects view stimuli, each of which can be in one of two conditions, in two halves of the screen. Their task
is to pair the condition in one half with that in the other. In (a), a checkerboard pattern moves up and down on the left hand, whereas the identical stimulus moves
left – right on the right. The task for subjects here is to indicate what direction the motion of the pattern was on the left (left or right) when the one on the right
was moving upwards. In (b), one of two orientations is presented on the left and one of two colours (green or red) is presented on the right. In (c), the pairing is
between movement of the checkerbard (up – down or left – right) with one of two orientations, whereas in (d ), the pairing is between colour and motion. (Adapted
from Moutoussis & Zeki [10].)
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Some would go beyond and subscribe to a more extreme

form of hierarchies, or rather the lack of it and the lack of a

necessity for it as well. They would claim that cells along

the visual pathways that process signals related to colour

also process signals related to form as well as motion, in

other words that they are ‘multiplex’ cells [6–8]. I do not

agree with the latter view nor do I think that its proponents

have made a near enough compelling case for it. But, this is

not the place to go into a discussion of the relative merits

of the different processing strategies proposed, because,

whatever strategy one is inclined to prefer, each comes with

a major problem, which is the same for all. The problem is

that of perceptual asynchrony, namely that different attri-

butes of the visual scene such as form, colour and motion

are not perceived simultaneously. Instead, some attributes

(such as colour) are perceived before others (such as

motion), in the millisecond scale (see below).

Although largely restricted to a discussion of the visual

brain, I believe that both the problem of perceptual asyn-

chrony and what it reflects, namely that the operations of

the brain are massively asynchronous with respect to each

other, may be relevant to other sensory systems as well,

and indeed, to higher cognitive processing systems in the

brain. I suspect that there are lessons to be learned from

this for developing future brain research strategies and poss-

ibly for computational neuroscience as well, although I am no

expert in the latter field. I have not been exhaustive in citing

the relevant literature, which is altogether enormous, but

have selected instead papers with which I am familiar,

many from our own work, and which not only provide

good evidence in favour of both hierarchical and parallel pro-

cessing systems, but also point to the problem associated

with both. I also concentrate on the three visual attributes

that I am most familiar with, namely colour, form and
motion, but believe that these are sufficient to illustrate the

general point that I am making, because they all point, ineluc-

tably, to the brain as a massively asynchronous, parallel, organ.

Hence, my emphasis in this review is more on the brain as an

asynchronous organ, and the imperative to investigate it as

such in future research.
2. The problem: asynchronous perception
A central problem in visual perception is that of perceptual

asynchrony, demonstrated in psychophysical pairing exper-

iments [9,10], in which subjects are asked to pair two states

of two attributes (for a review, see Moutoussis [11]). The

experiment has variants, but essentially is as follows: subjects

have to pair one of two rapidly alternating colours (say red

and green) which appear in one half of a monitor screen

with one of two rapidly changing directions of motion (say

up and down) of a checkerboard pattern, or one of two

rapidly changing orientations, which appear in the other

half of the screen (figure 1d ). The stimuli, one on each half

of the screen, oscillate between their two states, the oscil-

lations on either side having the same period T but being

presented at various phase differences with respect to each

other. The experiment can equally well be done with a

single stimulus, say a checkerboard pattern that moves up

and down and changes in colour, the changes in direction

of motion and colour being at different phases. The results

are illustrated as polar (response) curves (figure 2). In these,

the percentage of times that the answer was X for the prop-

erty of the right half of the screen when Y is the property

of the left half is plotted for each phase difference. If there

is no difference in the time taken to perceive colour and

motion, the response curves should be broadly similar and
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Figure 2. The averaged responses (in white), the standard deviations (in green) and the response vectors of four subjects to (a) up – down and left – right motion,
(b) colour and orientation, (c) orientation and motion and (d ) colour and motion pairings. (Adapted from Moutoussis & Zeki [10].)
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the vector of the curves vertical (figure 2a). On the other

hand, if there is a difference in perception times for the two

attributes, the response curve will deviate from the veridical

one, in one direction or the other. In the colour–motion pair-

ing experiment, for example, a clockwise deviation of the

response curve indicates that motion is perceived first, and

an anticlockwise deviation that colour is perceived first.

What these pairing experiments show is that these different

attributes of a visual scene are not perceived simultaneously.

Instead, colour is perceived before orientation (form) and

orientation before motion [9,12–16], the perceptual asyn-

chrony between colour and motion being as large—in neural

terms—as 80 ms. The functional specialization of the visual

brain thus appears to be projected in time. Moreover, because

of this asynchrony, we misbind different attributes over very

brief time windows, even though we bind them correctly

over longer periods, something that has to be accounted for.

In colour–motion pairing experiments, for example, subjects
pair the direction of motion that was present on a screen at

time t, with the colour that was present 80 ms earlier [9]. In

other words, they misbind visual attributes that occur simul-

taneously in time (on a screen), which suggests that there is

no system in the brain that ‘waits’ for all the processing systems

to terminate their tasks before binding them. Hence, to perceive

colour and motion at the same identical moment, one would

have to present the colour some 80 ms before the direction of

motion, in objective time.

Perceptual asynchrony may not be evident in every psy-

chophysical task employing colour and motion. There is

some disagreement as to whether there is any temporal asyn-

chrony in temporal order judgements (TOJ) in which subjects

have to decide, after the presentation, the order of appearance

of perceptual events [11], with some finding no asynchrony

[17], whereas others maintain that colour changes precede,

perceptually, motion changes occurring at the same time

[13]. Even assuming that there is no perceptual asynchrony
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in TOJ experiments, one is inevitably led to the conclusion

that, if the task is so critical, then the neural mechanisms

underlying them are themselves asynchronous, because it

implies that different tasks involving these two attributes

take different times to completion.

Although perceptual asynchrony can only be demon-

strated over very brief time windows lasting about 100 ms,

it, nevertheless, offers us a window into the strategies that

the brain uses to construct the visual image.
0.1

0

motion–motion colour–motioncolour–colour

Figure 3. The results of psychophysical experiments to show the temporal
difference in binding the same attribute (motion – motion, colour – colour)
and different attributes (colour – motion) across the two hemi-fields.
(Adapted from Bartels & Zeki [24].)
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3. Asynchrony as a consequence of different
times taken to process different attributes

One explanation given for asynchronous perception is based on

the supposition that there are differences in the time taken to

process different attributes. What I mean by processing time

here is the time taken for activity at a given node (station) of

the visual pathways to achieve a conscious correlate. The precise

time taken, from onset of the stimulus to the moment of aware-

ness of that stimulus and its characteristics, has not been

measured. Perceptual asynchrony rather refers to the relative

times taken to become aware of different visual attributes [10].

If the asynchronies are the result of differences in proces-

sing times (as defined above), then one should be able to

manipulate the degree of asynchrony by varying the par-

ameters of the attributes that are to be paired. Arnold &

Clifford [18] were the first to provide direct evidence for this,

by showing that the degree of motion–colour asynchrony

can be reduced or increased by changing the angular difference

in the direction of motion that is to be paired with colour. More

recently, this has been shown to be true even within a single

attribute, that of visual motion [19]. No asynchrony is detected

in pairing experiments in which subjects are asked to pair up–

down motion presented in one half of their field of view with

left–right motion presented in the other half [9]. However,

when asked to pair up–down motion with up–right motion,

a temporal advantage in favour of up–right motion emerges.

This can be accounted for by the fact that there is much less

cortical inhibition for up versus up–right motion than for

up–down versus left–right motion [19]. Motion in one direc-

tion suppresses or delays subsequent responses of cells in V5

to motion in the same or opposite direction [20,21]. Hence,

the suppressive effects of up–down motion would be similar

to those of left–right motion, and the pairing should result in

no asynchrony. By contrast, there is much less suppression or

delay between non-opponent motion directions (up and up–

right); hence, the suppressive effects are relatively greater for

up–down motion than for up–right motion, with the conse-

quence that up–right motion is perceived first. Equally, it is

well known that, although V5 responds to isoluminant stimuli

that are in motion, the response is much attenuated [22,23].

Correspondingly, when the up–down motion of isoluminant

dots is paired with the left–right motion of luminance dots (or

vice versa), the advantage lies with the luminance dots [19],

whereas no asynchrony is found when the same pairings are

between luminous or between isoluminant stimuli. Hence, one

can manipulate the asynchrony in a number of ways, which

implies that it may indeed be the result of differences in

processing times.

Perceptual asynchrony of a different temporal order can also

be demonstrated when subjects are asked to pair similar

(colour–colour; motion–motion) or different (colour–motion)
attributes distributed across space (that is across the two

hemi-fields, when the images would be projected to the

two hemispheres separately). Now, motion–motion pairings

take temporal precedence over colour–colour pairings which,

in turn, take precedence over colour–motion pairings [24].

This may seem surprising, given the precedence in perceiving

colour over motion, but is explicable by a difference in the

conduction velocities of the fibres that unite areas V4 and V5,

specialized for colour and motion respectively, in one

hemisphere with their counterparts in the other; the interhemi-

spheric connections of V5 are mediated by larger myelinated

fibres than those mediating the interhemispheric connections

of V4. This therefore also suggests that asynchronies can be

traced to differences in processing times (see below and figure 3).
4. Temporal hierarchies in visual processing
Perceptual asynchrony introduces a new and unexpected

element into visual processing, namely that of temporal hier-

archies, which is distinct from the hierarchies in serial

processing systems and not to be confused with them [10].

Perceptual temporal hierarchies may even be in reverse

order from the one expected from serial hierarchical proces-

sing chains (see below). Perceptual asynchrony thus raises

the question of how attributes that take different times to pro-

cess and to perceive over brief time windows are bound

together over longer periods to give us our apparently inte-

grated perception of the visual world, where all the

different attributes are seen in precise temporal and spatial

registration (see [25,26] for excellent general reviews).

Functional specialization in the visual brain was demon-

strated over 40 years ago [2,27–29] and immediately raised

the question of how different attributes of the visual scene,

processed in separate pathways, are bound together. Percep-

tual asynchrony was demonstrated 18 years ago [9]; it

showed that we do not perceive all the attributes of the

visual world at the same precise moment. This, in turn,

immediately suggested that binding might be a more com-

plex temporal issue than previously supposed and even

raised questions about the nature of visual consciousness

[30]. Yet, little attention has been given to perceptual
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asynchrony, which results from functional specialization, and

its consequences. This is surprising. The binding problem

was a central issue even before the demonstration of percep-

tual asynchrony and continues to be so; it even assumed a

role in discussions of how conscious experiences are gener-

ated [31]. It is also surprising, because the problems raised,

it seems to me, are huge and of importance in understanding

how the brain functions. And the problem is one that is

shared by those who believe in an extreme hierarchy or no

hierarchies as much as by those who believe in parallel,

modular, processing systems.

In this review, I do not discuss synchronization and bind-

ing between the activity of cells in a given area, registering

the same attribute (e.g. orientation of lines). This intra-
attribute binding may serve as a ‘glue’ that enables the brain

to ‘bind’ the responses of cells located in geographically separ-

ate positions within the same visual area but which otherwise

respond to the same attribute, for example the same orientation

of lines. This is a topic that has been extensively addressed (see

[32,33] for reviews), but is distinct from the one that I am

addressing here, the question of inter-attribute binding. The

temporal requirements for the two kinds of binding are

probably significantly different. At any rate, the two types of

binding should be distinguished, perhaps by referring

specifically to inter- and intra-attribute binding.
5. Problems created by perceptual asynchrony
Perceptual asynchrony creates a problem for understanding

how the visual brain operates, no matter what strategy one

believes in.

For those who believe in ‘multiplex’ cells coding for

colour, form and direction of motion [6] or for just colour

and form [7,8], the problem is to account for some waiting

mechanism in multiplex cells that regulates their responses

to two or more attributes in time, to ensure that the final

signal from the cell is that of an integrated output which sig-

nals colour, form and motion simultaneously; alternatively,

they have to account for why, given perceptual asynchrony,

the responses of such cells are perceptually ineffectual. Just

how perceptually ineffective such cells are, assuming them

to have the multiplex role imputed to them, is suggested by

experiments on inter-attribute binding [34–36] which show

that the accuracy of reporting two simultaneously presented

attributes—colour and form—are independent, with accuracy

for reporting the correct colour being higher than the one for

reporting the correct form, presumably because colour is

processed faster. This is so even when both attributes are

focally attended to [36], a result that would not be expected

if individual cells, wherever they may be located within the

visual brain, code for both attributes.

Those subscribing to a hierarchical strategy within each of

the parallel chains, with activity in a chain acquiring a con-

scious correlate only at the terminal node of the chain,

assuming such a terminal node exists (see below), also face

much the same problem. They have to account for some

mechanism that waits until the final nodes in each of the par-

allel hierarchical chains terminate their processing and

acquire a conscious correlate. That, over brief time windows,

we misbind attributes that, veridically, occur at the same time

[9] implies that there is no waiting mechanism in the brain, no

universal visual clock which sets the time for all the
processings in the terminal nodes of parallel hierarchical

chains to terminate and acquire a conscious correlate.

Those who believe in parallel strategies, with activity at

each node of a parallel chain capable of acquiring a conscious

correlate [5], face the identical problem, but now magnified

several times, because any hypothetical neural clock would

have to wait for all the nodes within the parallel chains,

not just the end nodes, to terminate their processings. In

such a system, some kind of mechanism must be capable of

binding activity at each node of each of the parallel systems

to each node of any of the other parallel systems, a task of

some magnitude.

(a) Hierarchical processing systems
There is little doubt of a hierarchical chain in anatomical

connections, extending from the lateral geniculate nucleus

(LGN) to the primary visual cortex (area V1) and from

there to areas such as V2, V3, V4 and V5 of prestriate

visual cortex (figure 4b). In addition, prestriate visual areas

are connected to each other hierarchically, as in the examples

of the connections from V1 to V2 to V4 in the colour system

[37] and the connections from V1 to V2 to V5 in the motion

system [38,39], thus introducing a hierarchical element into

each of the parallel processing systems ([3,4] for reviews).

There is also impressive evidence in favour of a physio-

logical hierarchy. The earliest came from the studies of

Hubel and Wiesel, who showed a gradation in complexity

of response between orientation-selective cells [40] within

V1 itself [41,42], and between orientation-selective cells in

V1 and those in areas of the prestriate cortex [43]. There is,

as well, evidence of a functional hierarchy within the colour

system, extending from V1 to V4 [44–47], with the responses

of cells in V4 approximating more closely to constant colours

and to specific hues than those in V1 and V2. Among the

most impressive evidence in favour of a functional hierarchy

is the one provided by the motion system [48,49], which

shows that the cells of V1 projecting to V5 respond to the direc-

tion of motion of the components of a visual stimulus, whereas

those in V5 commonly respond to its true, global direction of

motion. This no doubt reflects the fact that the connections

from V1 to V5 are highly convergent [50], although this conver-

gent input, which operates to enlarge receptive fields, is rather

subtle, because critical computational elements that dis-

tinguish between local and global motion are undertaken

within subregions of the large receptive fields [51].

(b) Problems raised by the hierarchical system
Hierarchical systems consisting of several stations, or nodes,

within a chain raise operational and perceptual problems,

although there may be other ones besides. If the sole function

of a node A within a hierarchical chain is to process signals

for the next stage, B, within that same system, then what has

been processed in A will be lost to perception, which would

represent a considerable waste of neural resources and is

improbable [5] (figure 4a). More likely, what is processed at

each node must be available to conscious perceptual experi-

ence, without further processing in subsequent nodes within

the hierarchical chain (this is not to say that a node does not

undertake other functions which may be important to the

next node in the chain, for example that of error detection).

In other words, activity at each node must, potentially, have

a conscious correlate. But, if that is so, then the outputs from
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Figure 4. (a) The classical picture of a single hierarchical chain with two (or
more) nodes and a terminal node (in pink) at which activity becomes per-
ceptually explicit (needs no further processing). (b) The parallel outputs
from V1 to two (or more) areas of the prestriate visual cortex and the
serial, hierarchical, connections between them. Unlike in (a), activity becomes
perceptually explicit at each node of the chain, the length of the downward
arrows representing the asynchronous outputs from the nodes. (c) The more
elaborate picture of parallel outputs from V1 and directly from the LGN – pul-
vinar to three or more areas of the prestriate cortex, as well as the serial
connections between the visual areas. As in (b), the length of the downward
arrows signifies that the outputs from these nodes are asynchronous with
respect to each other.
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the nodes of a hierarchical system must themselves be parallel,

because the output from node A could be independent of that

from node B and vice versa (figure 4b). Parallel outputs imply a

certain degree of autonomy of each node within a hierarchical

chain, making each not totally dependent on either the pre-

vious node in the chain or the next one for activity in it to

acquire a conscious correlate. This would constitute, therefore,

one solution to the perceptual problem posed by an exclusively

hierarchical system. There is indeed evidence to suggest that a
parallel output system is used by the brain (see below). But,

such a solution creates problems for the interbinding of

visual attributes processed in separate areas of the visual

brain, which I return to below.

One can give examples from all three visual systems dis-

cussed here, whether one is a proponent of the hierarchical or

the parallel doctrine. In the form system, one can be aware of

a complex form as well as of its constituent parts, including

single oriented lines; if oriented lines are the preserve of early

visual areas and complex forms of later areas, it follows that

activity at each must become perceptually explicit. Although

the colour system of the brain operates to confer a constant

colour on objects and surfaces, in spite of wide-ranging fluctu-

ations in the wavelength–energy composition of the light

reflected from them [52], an individual can nevertheless be

aware of sudden changes in wavelength composition (illumi-

nation) of the light [53]. It is likely that the former is

signalled through the activity of cells in V4 [45,47,54,55], and

the latter through the activity of cells in V1 and V2 [56,57], as

well as some in V4—all three areas constituting hierarchical

nodes within the brain’s colour system. For the motion

system, patients blinded by lesions in V1 but with an intact

V5 can become aware of fast visual motion, whereas a patient

rendered akinetopsic (motion-blind) [58] by a lesion in V5

but with an intact V1 can become aware of slow but not fast

motion [59,60], again suggesting that activity at each of these

two nodes can acquire a perceptual correlate, though a much

impoverished one.
6. End nodes in the brain?
Based on anatomical evidence, I have argued in the past [61]

that there is no end station in the cerebral cortex. This argu-

ment derives from the fact that all areas of the cerebral

cortex have anatomical inputs and outputs, and receive and

send signals. Consequently, there is no terminal station in

the cerebral cortex. While this remains true in terms of anat-

omy, it requires reformulating in perceptual terms. If activity

at each node of a chain can become perceptually explicit with-

out the need for further processing, then it is reasonable to

argue that, perceptually, there are end nodes in the brain,

activity at which can be perceptually explicit without further

processing. But, because, these nodes are recipient of feedback

connections, which may modulate their activity, it follows that

even such a modicum of perceptual independence does not

constitute an endpoint. The critical issue here, which I return

to below, is that these feedback inputs must themselves

be acting asynchronously, thus highlighting further the

asynchronous operations of the brain.
7. Parallel processing systems
The evidence for parallel processing, in both anatomical

and physiological terms, is impressive. It is evident in the par-

allel outputs from each cortical visual area, including area V1,

to other visual areas (figure 4b). But parallel processing is

almost certainly a more extensively used strategy than pre-

viously supposed. It is now becoming apparent that a

relative independence for the nodes constituting a chain

within a parallel visual system is conferred on them not only

by parallel cortical inputs originating in V1 and other visual

areas, but also by parallel inputs from subcortical visual
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Figure 5. A simplified diagrammatic representation to show the asynchrony
in the arrival of signals from two different sources, using V5 of prestriate
cortex as an example. (a) The direct input from the LGN – pulvinar delivers
signals to V5 at much earlier latencies (ca 30 ms), whereas the classical path-
way through V1 delivers signals later (ca 60 ms). There is, as well, a
difference in the motion signals delivered by these two pathways; the
former delivers predominantly signals from fast-moving stimuli, whereas
the latter delivers signals predominantly from slow-moving ones [68,69].
(b) When V5 is disconnected from V1 following a lesion in the latter, signals
from the LGN – pulvinar can still reach V5, and the activity in the latter can
become perceptually explicit, as in the Riddoch syndrome. All other details of
the cortical connections of V5, including the return connections from V5 to
V1, are omitted from this simplified diagram. (Online version in colour.)
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stations (figure 4c). While the major emphasis in research on

the visual brain has revolved around the retina–LGN–V1

system, it has also been long known that both the LGN and

the pulvinar project directly to visual areas of the prestriate

cortex [62–66]. These projections have been relatively neg-

lected in the past and their significance has only recently

become evident, especially with reference to area V5 [67]

(figure 5). This relative neglect may be due partly to the greater

prominence of the LGN–V1 pathway, partly to the historical

progression of research, during which activity of cells in V1

was charted before that in prestriate visual areas, and partly

because of the latency of responses to flash visual stimulation

in V1 and in prestriate cortex. This showed that, broadly,

there is a temporal hierarchy in responses, consistent with a

hierarchical view, with responses in V1 having shorter latencies

and therefore preceding responses in prestriate cortex. Prob-

ably, all three reasons played a role. But, a reading of the

evidence shows that there is significant overlap in response

latencies obtained from V1 and visual areas of the prestriate

cortex [70–72]. More recently, it has been found that, when

stimuli tailored to the physiology of the visual areas, instead

of flash stimuli, are used, the temporal order may not be in

accord with the hierarchical order reflected in the connections

from the LGN to V1 and from there to the specialized visual

areas. With fast-moving visual stimuli, the latency of responses

in V5 precedes those in V1 [68,69]. Thus, the input that reaches

V5 from the subcortex in parallel with the input that reaches it
from V1 also constitutes one of the best examples of parallelism

in the visual brain. But the two parallel inputs do not deliver

their signals synchronously; hence, V5 also provides one of the

clearest examples to date of asynchronous parallel operations.

There is evidence that this ‘V1-bypassing’ input can sustain a

certain level of visual activity that has, as a correlate, a conscious

visual experience. Patients blinded by lesions in V1 can have a

rudimentary and much impoverished, though nevertheless con-

scious, experience of the direction of fast-moving visual stimuli

without being aware of the other characteristics of the moving

stimulus. [73]. Such patients can apparently also be aware of

coloured stimuli if they are large [74].

Parallelism involving parallel inputs from V1 and direct

V1-bypassing inputs to prestriate visual cortex is not

unique to V5. In the form system, stimuli constituted from

oriented lines (lines, angles, rhombuses) appear to activate

both V1 and areas V2 and V3 of prestriate cortex within the

same time frame (25–40 ms) [75,76]. More complex stimuli

constituted from lines (faces and houses) also activate V1

and areas of the prestriate cortex critical for their perception

within the same time window of 25–40 ms [77]. This stands

in opposition to the common assumption that, in form per-

ception, V1 is activated first and before areas outside it are

activated. It follows that parallel processing is a very signifi-

cant part of the strategy used by the visual brain to process

visual signals, far more so than previously supposed

(figure 4). It helps to confer a certain autonomy on the

nodes within a hierarchical chain, because it implies that

their responses are not entirely dependent on input from

antecedent cortical nodes.
8. Relative autonomy of nodes
The above suggests a relative autonomy for nodes within a

processing chain, worth discussing briefly for two reasons.

The first is that it is unlikely that a node within a chain that

is completely disconnected from other cortical areas, in

terms of connections with them, and thus solely dependent

on subcortical visual inputs, will be able to process signals

to completion. But which inputs and outputs are mandatory

is not known. There is evidence that some inputs to, and out-

puts from, a node may not be necessary for that node to

process signals in a way that makes the endpoint of what

they have processed accessible to conscious experience.

Equally, there is evidence to suggest that a node such as

V5, isolated from V1 by a lesion in it, may be active when

visually stimulated without the subject being able to perceive

or discriminate, consciously or unconsciously, the visual

stimulus [78]. But, perhaps the clearest evidence for a relative

autonomy of a node that is part of a hierarchical chain comes

from studies of V5, which show that an input to it that

bypasses V1 can, at least in some patients, confer a modest

ability to experience, consciously, visual motion. As men-

tioned, the motion system extending from V1 to V5, both

directly and through area V2 [38,39], is one of the best

examples of a hierarchical chain, both anatomically and

physiologically. It is natural to suppose, therefore, that

activity in V5 is entirely dependent on the healthy function-

ing of area V1. But this turns out not to be so. Physiological

activity in V5, though impoverished, can apparently be sus-

tained by the pathways that reach V5 without passing

through V1 [79,80], just as cells in V2 and V3 are reactive to
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appropriate visual stimulation in the absence of an input

from V1, although with significantly reduced strength [81].

The V5 activity mediated by this direct subcortical input

can evidently acquire a conscious correlate. This is reflected

in the Riddoch syndrome, when patients blinded by lesions

in V1 are able to perceive, consciously, fast but not slow

motion [73,82,83]. (For the nature of this consciousness, see

reviews [84–87].)

Critically, this autonomy is not only conferred on V5 by

direct inputs to it from subcortical stations, but it is also inde-

pendent of the feedback from V5 to V1 [83], hence calling into

question the notion that, to acquire conscious status, signals in

a specialized visual area must mandatorily be referred back to

V1 [88,89]. All this is not to imply that the perception of visual

motion of those deprived of a V1 is not very significantly

impoverished; it of course is. But it shows that input from

V1 and feedback to it are not essential for activity in V5 to

lead to a crude but conscious experience of fast visual motion.

Finally, it is important to emphasize here that not all

activity in V5 of an intact brain reaches conscious awareness,

because motion information in a peripheral location of the

field of view, though invisible to humans, can modulate

activity in V5 [90]. These results, together with results reporting

the relationship between single cell activity in V5 and percep-

tual decisions, suggest that a direct relationship between

activity of V5 cells and (conscious) perception and decisions

relating to motion may be the privilege of subpopulations of

cells in V5 [91]. This is consistent with the notion of the ‘quan-

tized’ nature of visual awareness [92], which posits that visual

awareness may arise from the action of a limited number of

cells in the visual cortex or, indeed, within a single visual

area or node.
9. Multiple asynchronous processings within a
cortical area

A brief review of the operations undertaken by a single area,

V5, suggests that visual areas may undertake several oper-

ations asynchronously. Signals from the parallel inputs to

V5, from V1 and from the subcortex (LGN–pulvinar), reach

it asynchronously. Signals from fast-moving stimuli (more

than 228 s21) reach V5 with latencies of about 30 ms, whereas

those from slowly moving stimuli (less than 58 s21) reach it

(through V1) at latencies of about 60 ms [68]. This temporal

privileging of the fast motion input into V5 no doubt reflects

the fact that, although the pathways to the cortex from the M,

P and K systems are mixed within it [93,94], the M system

probably constitutes the dominant one that inputs into V5.

The asynchronous input into V5 from these two parallel

systems is complemented by what are probably also asyn-

chronous inputs into it from antecedent cortical visual

areas, including V1 and V2. Smith et al. [95] report that

responses of cells that signal component motion in V5 start

about 6 ms earlier than cells that respond to pattern motion

and that it takes about 50–75 ms for pattern motion cells to

build up their selective profile, suggesting a temporal hierar-

chy. Seventy-five ms is considerably longer than the shortest

latency activation recorded in V5 with fast-moving stimuli

[68,96]. In the absence of a ‘clock’ in V5 that determines

that processing in it starts only when all the signals reach

it, it becomes reasonable to suppose that V5 processes signals

reaching it at different times asynchronously, and that the
activity produced by the fast input to V5 becomes percep-

tually explicit (i.e. requires no further processing) without

support from the input from V1. While in Riddoch syndrome

patients, the V1-bypassing input to V5 can result in a crude

but conscious perception of the direction of motion of fast-

moving stimuli without input from V1, it is likely that, in

the normal brain, this V1-bypassing input is integrated into

the temporally hierarchical elaboration of pattern motion

cells in V5, which suggests a further asynchronous operation

within it.

The above-mentioned time-based activation studies

imply, theoretically at least, that the activity of cells detecting

fast motion and driven by the V1-bypassing input may

become perceptually explicit before the activity of cells that

signal pattern motion, which are driven by V1 inputs. This

alone makes it possible, and even likely, that V5 processes

separate motion-related signals asynchronously. It is also

possible that other stimulus-related features, for example

motion in depth [97–99], are also processed asynchronously

with respect to motion in the fronto-parallel plane. This

would make of V5 an area that processes several distinct,

but motion-related, signals separately, in parallel and asyn-

chronously. Indeed, V5 may have subcomponents that are

specialized for specific motion features such as optic flow

[100], or a clustering (even if a relatively weak one) according

to speed of motion [101,102], implying that different group-

ings in V5 may process signals relatively independently

from each other, making parallel and asynchronous

processing a probability.

I have concentrated largely on V5, because it is one of the

most extensively studied visual areas. However, it is unlikely

that V5 is unique in this; more likely other nodes in the visual

pathways also process, in parallel and asynchronously, a var-

iety of signals related to their specialization, but used for

different ends in relation to that specialization.

Even if signals reach different visual areas in parallel and

synchronously, it does not follow that they process them syn-

chronously. In the visual form systems, signals apparently

reach V1 and the prestriate areas (V2 and V3, or the visual

areas critical for the perception of faces and houses) within

the same time frame, as is shown by the parallel inputs to

V1 and prestriate areas when subjects view perceptually

simple and complex form stimuli [75,77]. But, just like V5,

prestriate areas such as the ones enumerated above also

handle signals that reach them through V1, which may be

asynchronous with respect to the signals reaching them

directly from the LGN and pulvinar, pointing to possible

asynchronous operations within them. The relationship of

synchronous–asynchronous parallel inputs to synchro-

nous–asynchronous operations within individual areas has

not been tested and merits future study.
10. Parallel outputs from different nodes
If an area undertakes several parallel operations asynchro-

nously and in parallel (regardless of whether signals reach

it synchronously or asynchronously), it is likely that the out-

puts from it will also be asynchronous (figure 6), unless one

were to posit the existence of some clock within an area

which dictates the timing of outputs from it. In the motion

system, psychophysical experiments [19] have shown that

different directions of motion are perceived asynchronously,



V5

Figure 6. Diagram to illustrate the asynchronous operations within a single
visual area (in this case V5), the asynchronous outputs resulting from the
three operations (shown by differences in arrow lengths in red) and the asyn-
chronous inputs from ‘higher’ areas to V5 (in green). The three compartments
within V5 represent fast motion (left), slow motion (centre) and pattern
motion (right). (Online version in colour.)

lines
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Figure 7. A summary diagram to illustrate the results of masking exper-
iments in which subjects were presented with different target-mask pairs,
using lines, angles and rhombuses. Heavy arrows show strong masking
effects, whereas thin ones show weak effects. Lines are strongly masked
by lines, angles by angles and rhombuses by rhombuses. In contrast, rhom-
buses are weakly masked by lines but lines are strongly masked by
rhombuses. The numbers next to each line indicate the accuracy of target
identification. (Adapted from Lo & Zeki [103].)
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suggesting that the activity of cells at single nodes, in this

instance V5, may acquire a conscious correlate at a different

time from that of other cells in the same node.

If two or more areas process their incoming signals asyn-

chronously, it is possible and even likely that the outputs

from them may also be asynchronous, hence compounding

the number of asynchronous outputs. In the form system, par-

allel outputs are implied by the results of psychophysical

masking experiments which show that rhombuses constituted

from oriented lines, whereas easily masked by rhombuses,

are relatively resistant to masking by oriented lines [103]

(figure 7), quite contrary to what might be expected from the

widely adhered view of a strictly hierarchical strategy in form

processing whose source lies in the orientation-selective cells

of V1. Such a hierarchical system would predict results

in which lines would be more effective at masking rhom-

buses than rhombuses would be at masking lines. This is

because the rhombuses in these experiments were constituted

from the same oriented lines whose perception they masked.

This suggests, again, that there are parallel subsystems even

within what is traditionally considered to be a single hierarchi-

cal chain—the form system—with parallel output possibilities

from them. Clinical evidence supports this, too, because agno-

sias for static forms need not be accompanied by agnosias for

them when in motion [104], whereas agnosias for line drawings

of objects need not be accompanied by agnosias for the objects

themselves [105]. Together with the demonstration that one

subdivision of the lateral occipital complex (LOC), heavily

implicated in shape and object recognition [106], responds to

shapes but not to orientation of lines, whereas another to orien-

tation but not to shapes [107], these results argue against an

interpretation of form construction solely in hierarchical

terms, with the exclusive source of the hierarchy being the

orientation-selective cells in V1. As well, parallel but asynchro-

nous outputs from different nodes in the parallel visual
processing systems are also strongly implied by the observation

that the reaction times of human subjects to different visual attri-

butes vary [12] and the observation that, even under conditions

of focal attention, errors made in correctly identifying colour and

form (orientation) are independent [36], presumably because

colour is processed faster than orientation.

Such parallel outputs are also very much implied by signifi-

cant differences in the activity time courses of different visual

areas when subjects view action movies consisting of many

different visual features, and hence activity in many special-

ized areas [108]. The activity time course between different

visual areas decorrelates when viewing movies, compared

with the resting state, the precise opposite of what one might

have expected. This implies that the time courses of activity

within different areas are not governed by a central clock but

that activity at each is reset independently [109]—the precise

opposite of what one might have expected.
11. Higher levels of perceptual asynchrony and
parallel, asynchronous ‘top-down’ inputs to
visual areas

More demanding visual tasks show that specializations for

colour, form and motion are taken to further levels, because

both the grouping of visual signals according to attribute and

the formation of concepts according to them engage anatomi-

cally distinct parts of the parietal cortex [110–112]. Although

the necessary experiments have yet to be done, it is intuitively

reasonable to suppose that grouping according to colour

will take temporal precedence over grouping according to

motion, given that colour is perceived before motion. This

raises the inter-attribute ‘binding’ problem at a yet higher

level. Nor are parallelism and asynchrony to be thought of

solely in terms of ‘elementary perception’ that is the result

of feed-forward, ‘bottom-up’ processes. It may extend to
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‘top-down’ processes, widely suspected to operate in the visual

brain (figure 6). In one of the few papers to address the question

of perceptual asynchrony in relation to brain voxels that code

for both colour and motion, Seymour et al. [113] have used

multivariate pattern analysis techniques in imaging exper-

iments to show that there are conjunction units in the visual

brain that code for both attributes. I have reservations about

the interpretation they give to their results but these reser-

vations are immaterial in the present context. What is

interesting is their explanation for how such units, assuming

them to represent actual cells, handle the asynchrony. They

write of a feedback which would ‘gate’ their inputs, because

‘the timing of this gating might be important for adaptation

of ‘double-duty’ units in V1 that are selective both for the

color and the direction of motion of the stimulus’ [113], an

idea also present in Clifford’s review [25]. Such a ‘feedback’

must, of course, take account of the asynchronous processing

of colour and motion and be applied accordingly, thus

highlighting once again the asynchronous nature of brain oper-

ations. As well, much discussed these days, is the error

prediction system of the brain [114–116]. Such a system must

be operating on perceptual systems that are themselves asyn-

chronous in their operation. The ‘top-down’ system is often

thought of as operating in the direction of ‘lower’ areas from

‘higher’ ones. But, there is also the possibility that it operates

within individual nodes or stations [116].

If processing within one system, say the colour one, is faster

than in another system, such as the motion system, it follows that

the predictive coding operating on the two systems will be doing

so asynchronously. Indeed, such iterative operations between

‘higher’ and ‘lower’ areas need not be restricted to the cortex.

The LGN is known to project directly to both V4 [117] and V5

[118]. Given the asynchronous perception of colour and

motion, all this implies that the results of action of different

‘top-down’ systems may not be applied simultaneously, because

that would involve waiting for all the processing systemsto com-

plete their tasks. More likely, the massive error prediction system

must itself act asynchronously.

It is interesting here to allude again to the temporal differ-

ence between inter- and intra-attribute binding. It would seem

that the two do not occur synchronously, which suggests that

asynchronous operations must be even more widespread.
12. A post-perceptual solution to inter-attribute
binding?

Parallel and asynchronous outputs make the problem of inter-

attribute binding even more emphatic. How to bind activity at

so many different nodes, when processing speeds within and

between them differ, as do the outputs from and return

inputs to them? We had previously suggested that binding is

a multi-stage activity, because it can involve any node within

one processing system with any node in another [119]. But, per-

haps it is simpler than that. One solution that has been recently

proposed to this complex and apparently insurmountable pro-

blem is that inter-attribute binding is post-perceptual [36]; it

does not occur by direct physiological interaction between

cells in the specialized visual areas but post-perceptually,

through fast-acting memory mechanisms, in the millisecond

band, which are coincidence detectors. In such a system, the

activity occurring at two nodes, no matter where they are

located within the processing chains, would be bound if
coincidence detectors detect these activities to have occurred

within the same phase or cycle of some on-going activity.

This may involve the hippocampus [120], in which temporal

discontinuities may be bridged [121]. The merits of such a

proposition have yet to be tested.
13. An overall strategy for visual processing
So how could we envision the brain solving a problem that is

imposed by a natural world in which different visual attri-

butes do not co-occur but covary instead, and one in which

different attributes are processed at different speeds?

One solution is to use parallel processing. This became evi-

dent a long time ago, but the extent of its use by the brain is

only now becoming apparent. Parallel connections in the

brain have been much discussed and their computational sig-

nificance assessed [122,123]. But, parallelism appears to be

much more widespread than previously supposed. This is evi-

dent in the parallel inputs to a visual area not only from

cortical, but also from subcortical sources. Moreover, parallel

strategies appear to be used even within single processing sys-

tems such as the motion system, in terms of inputs to it and

outputs from it and in terms of the parallel operations executed

within it. The form system itself, almost universally considered

to consist of a hierarchical chain commencing in V1, may con-

sist of parallel subsystems, given that the orientation-selective

cells of V1 may not be the sole source of inputs to the form

system [75,76] just as, in the motion system, V1 cells responsive

to motion are not the sole source of the input to V5.

Another strategy is to confer a certain degree of autonomy

on each station or node of each parallel system, giving

activity at each of its nodes the capacity to acquire a percep-

tual correlate without the necessity for further processing.

But the imposition of such an autonomy, however limited,

also raises the necessity of allowing for parallel outputs

from the different nodes, with an output from one area not

being necessarily totally dependent on either the previous

area in the hierarchical chain or a subsequent one. Moreover,

if the processing time (as defined above) at each node is not

necessarily the same as the processing time at another or

other nodes, then the outputs from different nodes must be

asynchronous with respect to each other, as must the return

inputs to them. It follows that the visual perceptual system

is massively parallel, both spatially and temporally.

It also follows that even a relatively simple system

restricted to the processing of form, colour and motion

would require an extremely complex coordination in time.
14. A possible solution
The solution, I suggest, that evolution has adopted for the

brain is to make of the visual brain a totally asynchronous

organ, one in which the parallel systems operate with a fair

degree of temporal autonomy and in which activity at differ-

ent nodes of different parallel processing systems is not

simultaneously reset to zero continuously by some master

clock in the brain. If that is the solution, then it follows that

binding of different visual attributes must itself be subject

to a different rule than the one we have been entertaining

so far [36]. One suggestion would be that discrete perceptual

events occurring at different nodes are somehow related to

another timing system, say, the theta rhythm in the
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hippocampus (6 Hz). Two or more events occurring within

the hippocampal cycle might then be perceived as being

bound. There is, indeed, some clinical evidence to suggest

that this may be so [124,125]. Although there is no exper-

imental evidence for this, it emphasizes the need to study

neural events surrounding very short memories [31].

As an example, and entirely speculatively, let us suppose

that visual area A has an ongoing alpha cycle and visual area

B has another alpha cycle, not in phase with that of area A

(whether separate visual areas have their own alpha cycles

is not known). When the subject views a stimulus consisting

of two attributes, say colour and motion, the desynchroniza-

tion between the alpha activity in the two areas becomes

maximal, since stimuli cause desynchronizations, the so-

called evoked response desynchronization [126]. If alpha

rhythms in area A and area B, which in this speculative argu-

ment are asynchronous with respect to each other, can

nevertheless coincide in their cycle with the hippocampal

theta rhythm or be related to it in some temporal way, sig-

nifying that the two events occurred concurrently, and are

read as such by hippocampal ‘reader’ neurons [127], then

the two separate events may be perceived as if bound.

(Arnold [26] writes similarly of coincidence detectors.) In

fact, it is known that there are unique firing patterns in the

hippocampus that correlate with unique visual events (see

[128] for a review). Hence, it is the relationship of two desyn-

chronized rhythms to the rhythm in the hippocampus that

becomes critical. It is evident that in such a system, no central
clock is necessary. It is simply a question of one system ‘tag-

ging’ onto another through a third. Whether this approaches

what happens even remotely remains to be seen. This is not

an entirely novel idea. Similar ideas have been proposed in

the past [129], though not with reference to the visual brain

or to binding different visual attributes. Nor is it necessarily

the only solution. What seems to me to be necessary to

emphasize in the future, far more than we have in the past,

is the apparently ubiquitous asynchronous operations of the

brain.

Computer technologists, who were relatively late in

understanding the power of parallel systems [130] and who

have never acknowledged the primacy of anatomists in unco-

vering the parallel operations of the visual brain [61], are now

seeking to develop a new generation of computers that are

faster and more efficient than the present generation of com-

puters [1]. The defining feature of such computers is that they

operate asynchronously.

The brain may, in fact, be much more like asynchronous

computers than synchronous ones.

Or rather, asynchronous, parallel, computers may end up

being much more like the brain than parallel, synchronous ones.
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