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Objective: Endovascular clot retrieval (ECR) is the standard of care for acute ischemic

stroke due to large vessel occlusion. Performing ECR is a time critical and complex

process involving many specialized care providers and resources. Maximizing patient

benefit while minimizing service cost requires optimization of human and physical assets.

The aim of this study is to develop a general computational model of an ECR service,

which can be used to optimize resource allocation.

Methods: Using a discrete event simulation approach, we examined ECR performance

under a range of possible scenarios and resource use configurations.

Results: The model demonstrated the impact of competing emergency interventional

cases upon ECR treatment times and time impact of allocating more physical (more

angiographic suites) or staff resources (extending work hours).

Conclusion: Our DES model can be used to optimize resources for interventional

treatment of acute ischemic stroke and large vessel occlusion. This proof-of-concept

study of computational simulation of resource allocation for ECR can be easily extended.

For example, center-specific cost data may be incorporated to optimize resource

allocation and overall health care value.

Keywords: discrete event simulation (DES), endovascular clot retrieval, resource optimization, mechanical

thrombectomy, resource allocation, workflow simulation, ECR

INTRODUCTION

Endovascular clot retrieval (ECR) is the first-line treatment for acute ischemic stroke (AIS) due
to arterial large vessel occlusion (LVO) with several trials demonstrating its efficacy in reducing
mortality and morbidity (1–3). However, ECR is considerably more costly than traditional care (4),
with estimated procedure costs ranging between 9,000 and 14,000 US dollars per patient (4, 5).
Major expenditure is required for capital equipment such as angiography equipment purchase and
maintenance. Staffing must be adequate to deliver a 24/7 rapid response service.
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Government funding agencies seek to optimize return on
investment, such as that on resources allocated to acute
stroke services. In contrast to other healthcare fields, a
resource-use optimization model has not been implemented
for comprehensive stroke services. For example, Alvarado and
colleagues have identified the optimal staffing capacity to match
a service demand increase for an outpatient oncology clinic (6).
Luo et al. showed that a decrease in emergency patient wait time
for imaging can be achieved by introducing a reserving capacity
to the radiology department (7). As healthcare is experiencing
both increasing resource demands and fiscal constraints, there is
a need to determine how resources may be optimally allocated
to improve overall health care value, i.e., high quality and timely
care at low cost.

Optimization of resource allocation in healthcare generally
involves mathematical or computational modeling of the service
pipeline (8). Simulations of outcomes under various competing
scenarios identify the most efficient workflow with the least
resource usage. Common methods are system dynamics, Markov
modeling and discrete event simulation (DES) (9–12). Of these
methods, DES is the most widely used approach to optimize
healthcare workflow (11, 13, 14). Several features make DES
more attractive than the other methods. Firstly, DES allows
customizable patient attributes, generating simulations that are
patient-focused rather than system or workflow-focused (8,
15–19). Secondly, patient interaction with the environment
(i.e., other patients and resources) are tracked in a way that
makes it easy to calculate resource usage and patient wait
time (8, 15–19). Lastly, empirical comparison between DES
and Markov modeling showed that the former approach scales
better with model complexity (19). For these reasons, DES
is routinely used by industries for workflow optimization
and appears to be an appropriate tool for investigating ECR
resource utilization.

Here we implemented a model of ECR resource utilization
using the open source statistical language R. We developed an
interactive web application of a discrete event model of an ECR
service, enabling patient wait time and resource utilization to be
simulated under various competing scenarios. While the online
model was developed based on conditions relevant to our 2017
local health environment, it is widely configurable to model any
ECR service.

METHODS

A discrete event model describes a continuous workflow process
as a sequence or sequences of discrete events (20, 21). Each
event is an interaction between a system entity and a workflow
resource. In our case, entities represent patients, and resources
represent human and physical resources such as interventional
radiologist (IR), interventional neuroradiologist (INR), stroke
physician, nurse, radiology technologist, CT scanner, single
plane (angioIR), and biplane (angioINR) angiography suites. In
between events, the model assumes that no changes occur to
patient and resource statistics. In this study, the ECR service is
described as multiple overlapping sequences of discrete events

FIGURE 1 | A schematic diagram of our discrete event model of an ECR

service from Emergency to angiography suite. CT, Computed Tomography;

AIS, Acute Ischemic Stroke; LVO, Large Vessel Occlusion; ECR, Endovascular

Clot Retrieval; IR, Interventional Radiology; INR, Interventional Neuroradiology.

as illustrated in Figure 1. The source code for the model is
available at https://github.com/shiweih/desECR under a GNU
General Public License.

Model Algorithm
Briefly, the model describes four overlapping sequences of
discrete events re-presenting (1) a stroke pathway, (2) an
elective non-stroke interventional neuroradiology (elective INR)
pathway, (3) an emergency interventional radiology (emergency
IR) pathway and (4) an elective interventional radiology (elective
IR) pathway.

The stroke pathway begins with a new patient in the
Emergency Department (ED) and ends with the patient “seizing”
an angioINR, an INR and angio staff which represents nurses
and technologists. The patient must proceed through a sequence
of events chronologically as follows: triage in ED, assessment
by the stroke team, CT imaging, assessment for ECR eligibility
and lastly, acquiring ECR resources (Figure 1). The decision to
proceed to the next event is probabilistic and is acquired from
logged data from a Comprehensive Stroke Service in Melbourne,
Australia, between 2016 and 17 (Table 1).

The elective INR, elective IR and emergency IR pathways are
modeled because they utilize resources shared with the stroke
pathway. These pathways are each represented by two sequential
events: procedure preparation by angiography staff and the
procedure itself which is the concurrent use of an angiography
suite (angioINR or angioIR), angiography staff and a radiologist
(IR or INR).

A distinction is made between elective and emergency
patients (including emergency IR and stroke patients). While
elective patients specifically compete for resources during work
hours, emergency patients require immediate treatment and
therefore have priority in resource queues (see next section
for details).

Frontiers in Neurology | www.frontiersin.org 2 June 2019 | Volume 10 | Article 653

https://github.com/shiweih/desECR
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Huang et al. Des for ECR Pipeline Optimization

TABLE 1 | DES model inputs.

Resource N Capacity

schedule

(A)

Physical resources Angiography machine for

INR and IR

1 Not applicable

Angiography machine for IR

only

1 Not applicable

CT 2 Not applicable

Human resources Interventional

neuroradiologist

1 24 h

Interventional radiologist 2

1

0800–1700

1700–0800

Angiography staff 6

3

0800–1700

1700–0800

ED team 10 24 h

Stroke team 1 24 h

Patients N Average interarrival time (min)

(B)

ED 107,700 5

suspected stroke 750 701

AIS 450 1,168

ECR 58 9,062

elective INR 104 5,054

emergency IR 468 1,123

Elective IR 3,805 138

(A) Human and physical resources. (B) Patient statistics.

Model Properties
Patients
Patients are generated by a Poisson process with an inter-arrival
time as specified in Table 1. Inter-arrival times are calculated
from patient statistics which were obtained from logged data
from a Comprehensive Stroke Service in Melbourne, Australia
between 2016 and 17. For example, we estimated that 3,800
elective IR patients were managed by the IR service between 2016
and 17. This translates to an inter-arrival time of 138 min.

Events
An event is when a patient interacts with a resource, where an
interaction is the patient queueing for a resource, “seizing” or
occupying a resource, or releasing a resource. Once a resource
is seized, the resource becomes unavailable for other patients to
use until its release.

Queuing
In the real world, resources are preferentially given to emergency
patients over elective or non-emergency patients. In our model,
emergency IR and stroke patients have higher priority than
elective patients for resources. Specifically, angioINRs are capable
of both INR and IR procedures, although all patient types can
utilize this resource, stroke patients have priority compared to
other patient types. Emergency IR patients are next in line,
followed by elective patients. For example, if a stroke patient

and an emergency IR patient enter a queue with 10 elective
patients for angioINR, the stroke patient will automatically be
placed in front of the queue followed by the emergency IR patient.
For an angiography machine for IR procedures only (angioIR),
emergency IR patients have priority over elective IR patients.
When no resources are available, but multiple resource choices
are present, a patient automatically enters the resource queue
with the least number of entities (i.e., the shortest queue).

Capacity Schedule
Capacity schedule describes the maximum number of staff
available at a given time of the day. This feature allows us to define
staffing numbers during work and after-work hours.

Outcome Measures
We examined two outcome measures in this model: the patient
wait time and resource utilization rate. “Patient wait time” is the
time spent queuing for a resource. “Resource utilization rate”
represents the median occupancy rate.

Statistics and Software
The goal of this study was to compare how resource allocation
strategies affect patient wait times. Although the DES model
provides outputs in terms of numbers of patients waiting
at each resource, these numbers can be difficult to compare
across simulations and are not inherently meaningful, as they
are sensitive to model parameters. To facilitate graphical and
descriptive comparison across models, we express waiting
times as relative probabilities of waiting a given amount of
time, compared to not waiting at all. Since most patients
accessed services without waiting, wait time densities could be
directly compared across simulations after this normalization.
Statistical significance was not computed in this study as
all comparisons will be statistically significant given sufficient
simulation replicates. Each scenario has a runtime of 365 days
and was simulated 30 times. The DES model was built with
Simmer (version 4.1.0), a DES package for R (22). The interactive
web application was built with R-Shiny.

RESULTS

We simulated a model of an ECR service to identify workflow
bottlenecks. Using data from a Comprehensive Stroke Service in
Melbourne (Table 1), our simulation showed that the proportion
of patients who waited, relative to those who did not, is
substantially higher for a biplane angiographic suite (angioINR)
compared to other resources (Figure 2A, red compared to
other colors).

To investigate why a bottleneck exists at angioINR, we tested
three scenarios with varying degrees of patient accessibility to
angioINR. First, in the “exclusive-use” scenario, angioINR is not
available for elective IR patients. Its use is restricted to stroke,
elective INR and emergency IR patients. Second, in the “two
angioINRs” scenario, the angioIR is replaced with an angioINR,
doubling angiography availability for ECR patients. Lastly, in
the “extended schedule” scenario, day time working hours of all
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FIGURE 2 | Patient wait time under various simulation scenarios (A). Baseline scenario simulated using inputs from Table 1 (B). Exclusive-use scenario: IR patients

can only utilize angioIR (C). Two angioINRs scenario: 2 angioINRs, no angioIRs. Standardized density of patients in queue: the probability density of patients who are

waiting standardized to patients who are not waiting.

FIGURE 3 | The effect of increasing working hours on ECR patient wait time at angioINR (A). Baseline scenario (B). Exclusive-use scenario (C). Two angioINRs

scenario. Standardized density of patients in queue: the probability density of patients who are waiting standardized to patients who are not waiting.

human resources are extended by up to 2 h, extending resource
access to all patients.

Exclusive-Use Scenario
In this scenario, the overall wait time probability at angioINRwas
reduced compared to baseline (red line in Figure 2B compared
to Figure 2A). This represents a decrease in ECR patient wait
time for angioINR by an average of 6min. Furthermore, the
exclusive-use scenario explains the mechanism underlying the

bottleneck at angioINR. While ECR patients have been explicitly
programmed to skip the queue for angioINR, they must still
wait for this resource to be vacated. However, angioINR is
almost never “empty” on patient arrival because it is constantly

occupied by other patient types, especially elective IR patients

who outnumber ECR patients by a factor of 65 (elective IR: 3805,
ECR: 58). Preventing elective IR patients from using angioINR
redistributes resources to ECR patients and thereby reduces their
wait time.
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FIGURE 4 | Disability-free life gained under various scenarios.

FIGURE 5 | A comparison of the utilization of angioINR by ECR patients under

various scenarios.

Two angioINRs Scenario
This scenario simulates the effect a facility upgrade to two biplane
angiographic suites, but without additional staff changes. The
wait time probability at angioINR was reduced compared to
baseline (Figure 2C). The reduction represents an average of
4min less in queue for angioINR.

Extended Schedule Scenario
The wait time probability at angioINR in the exclusive-
use scenario was further reduced by extended work hours
(Figure 3B). In contrast, work extension did not affect baseline
or the 2 angioINRs scenario (Figures 3A,C). For the baseline
scenario, 1 and 2 h of extra work resulted in an average wait time
of 1.7 and 0.9min reduction, respectively. For the 2 angioINRs
scenario, 1 and 2 h of extra work resulted in an average wait time
gain of 1 and 0.3min, respectively.

Clinical Outcomes of Reducing ECR
Patient Wait Times
Reducing patient wait time for ECR has been shown to increase
disability-free life at a rate of 4.2 days per minute (23). Based on
this rate, the exclusive-use, exclusive-use with 1 h of extra work
and the two angioINRs scenario saves on average 4, 4.5, and 2.5
weeks of disability-free life (Figure 4).

Resource Utilization
Whilst the exclusive-use scenario is the most effective at
reducing ECR patient wait time for angioINR, the utilization
rate of angioINR is the lowest (6% relative to 26% for the
baseline scenario, Figure 5). In contrast, no relevant change
to the utilization rate of angioINR was observed in the two
angioINRs scenario.

Using DES to Predict Future Resource
Usage
Since acquiring data for this study, the demands for ECR at our
Comprehensive Stroke Service has doubled between 2018 and 19
and is predicted to triple by the end of 2019. We simulated these
increased demands on the resource. As expected, the patient wait
times do become longer, but the patterns of resource utilization
remained unchanged, suggesting that the same bottlenecks affect
throughput (Supplementary Figure).

DISCUSSION

Our study illustrates the potential use of DES to optimize
resource allocation for ECR. Specifically, the ability
of DES to model patient-resource interaction allows
immediate identification of service bottlenecks and resource
underutilization. In brief, the bottleneck at angioINR in the
baseline scenario is attributed to resource competition from
elective IR patients. Limiting access of elective IR patients to
angioINR is an approach to reduce ECR patient wait time,
but that is at the cost of straining the elective IR service and
underutilizing angioINR.

It is important to note that the absolute values of the
model output should not be taken literally as the models are
simplifications of a complex multi-disciplinary service. What
should be taken into consideration is the dynamic change of
the output in response to parameter variation, which is why we
represented the outcomes as densities of wait times scaled to the
probability of not waiting for a resource.

While increasing the number of resources is often the
default approach to an over-subscribed demand, we did
not simulate this scenario because it is trivially true. For
example, an additional angiography suite coupled with an
additional radiologist and appropriate levels of angiography
staff will necessarily reduce patient wait times, though at
a cost. However, DES modeling may be used for making
decisions on whether capacity expansion is cost-effective
vs. varying capacity schedules and resource access. Ideally,
modeling should reduce unnecessary infrastructure and
staffing investments and allow more rational utilization of
existing resources.

The quality of the ECR service appears to be robust to
important parameters, such as the number of radiologists.
The simulation findings apply to ECR services that can be
represented by the model in this study. As such, utilization
of this model to its maximum capacity requires tailoring
the model to local needs, as institutional bottlenecks differ
between providers (24). We specifically developed this model
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using an open source programming language so that the
source code can serve as a basis for future model refinement
and modification.

Another common solution to increased service demand
is increasing staff working hours. Indeed, this approach
does decrease stroke patient wait time, particularly by
reducing elective patient wait time (data not shown).
However, this solution does increase the calculable
cost of overtime pay. This strategy may also have
less tangible effects, such as increasing staff overwork
and decreasing morale, and these factors need to be
considered in conjunction with mathematical modeling for
policy development.

Patient arrival pattern determines how congested a service
workflow will be, and this pattern needs to be better modeled to
produce more realistic patient wait time prediction. Therefore,
future model refinement should consider the effects of season,
public holidays, time of day, and time of week on patient arrival
pattern. Ideally, these parameter specifications should be based
on empirical data.

In general, a limitation of the current implementation
is that few measurements exist to parameterize or validate
many aspects of the simulation, because such records
are not routinely kept. However, explicitly modeling the
workflow can allow administrators to keep track of key
parameters and performance, improving the model over
time. This data-driven approach combined with adjustment
of work schedules may improve the performance of
individual centers.

In conclusion, we built a computational model to mimic the
workflow of an ECR environment. Potential future developments

of the model include automatic cost calculation, modeling the
entire stroke service, from transportation to severity triage
through to ECR, and adaptation to other time-critical emergency
treatment services. The model is currently available online
at https://rebrand.ly/desECR11.
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Supplementary Figure | Increasing ECR patient volume on service bottleneck.

Standardized density of patients in queue: the probability density of patients who

are waiting standardized to patients who are not waiting. (A) Baseline scenario.

(B) Doubling ECR patients in baseline scenario. (C) Tripping ECR patients in

baseline scenario.

REFERENCES

1. Albers GW, Marks MP, Kemp S, Christensen S, Tsai JP, Ortega-Gutierrez

S, et al. Thrombectomy for Stroke at 6 to 16 h with selection by perfusion

imaging. N Engl J Med. (2018) 378:708–18. doi: 10.1056/NEJMoa1713973

2. Nogueira RG, Jadhav AP, Haussen DC, Bonafe A, Budzik RF, Bhuva P, et al.

Thrombectomy 6 to 24H after stroke with a mismatch between deficit and

infarct. N Engl J Med. (2018) 378:11–21. doi: 10.1056/NEJMoa1706442

3. Goyal M, Menon BK, van Zwam WH, Dippel DWJ, Mitchell PJ, Demchuk

AM, et al. Endovascular thrombectomy after large-vessel ischaemic stroke: a

meta-analysis of individual patient data from five randomised trials. Lancet.

(2016) 387:1723–31. doi: 10.1016/S0140-6736(16)00163-X

4. Arora N, Makino K, Tilden D, Lobotesis K, Mitchell P, Gillespie

J. Cost-effectiveness of mechanical thrombectomy for acute ischemic

stroke: an Australian payer perspective. J Med Econ. (2018) 21:799–809.

doi: 10.1080/13696998.2018.1474746

5. Kass-Hout T, Kass-Hout O, Sun C-H, Kass-Hout T, Belagaje SR, Anderson

AM, et al. Periprocedural cost-effectiveness analysis of mechanical

thrombectomy for acute ischemic stroke in the stent retriever era. Interv

Neurol. (2015) 3:107–13. doi: 10.1159/000371729

6. Alvarado MM, Cotton TG, Ntaimo L, Pérez E. Modeling and simulation of

oncology clinic operations in discrete event system specification. Simulation.

(2018) 94:105–21. doi: 10.1177/0037549717708246

7. Luo L, Zhang Y, Qing F, Ding H, Shi Y, Guo H. A discrete event

simulation approach for reserving capacity for emergency patients

in the radiology department. BMC Health Serv Res. (2018) 18:452.

doi: 10.1186/s12913-018-3282-8

8. Brennan A, Chick SE, Davies R. A taxonomy of model structures for

economic evaluation of health technologies.Health Econ. (2006) 15:1295–310.

doi: 10.1002/hec.1148

9. Standfield L, Comans T, Scuffham P. Markov modeling and discrete event

simulation in health care: a systematic comparison. Int J Technol Assess Health

Care. (2014) 30:165–72. doi: 10.1017/S0266462314000117

10. Palmer R, Fulop NJ, Utley M. A systematic literature review of operational

research methods for modelling patient flow and outcomes within

community healthcare and other settings. Health Syst. (2018) 7:29–50.

doi: 10.1057/s41306-017-0024-9

11. Günal MM, Pidd M. Discrete event simulation for performance modelling

in health care: a review of the literature. J Simulat. (2010) 4:42–51.

doi: 10.1057/jos.2009.25

12. Taylor K, Lane D. Simulation applied to health services: opportunities for

applying the system dynamics approach. J Health Serv Res Policy. (1998)

3:226–32. doi: 10.1177/135581969800300409

13. Jun JB, Jacobson SH, Swisher JR. Application of discrete-event simulation

in health care clinics: a survey. J Oper Res Soc. (1999) 50:109–23.

doi: 10.1057/palgrave.jors.2600669

14. Zhang X. Application of discrete event simulation in health care: a systematic

review. BMC Health Serv Res. (2018) 18:687. doi: 10.1186/s12913-018-

3456-4

15. Cooper K, Brailsford SC, Davies R, Raftery J. A review of health care models

for coronary heart disease interventions. Health Care Manage Sci. (2006)

9:311–24. doi: 10.1007/s10729-006-9996-x

16. Davies R, Davies H. Modelling patient flows and resource provision in health

systems. Omega. (1994) 22:123–31. doi: 10.1016/0305-0483(94)90073-6

17. HollingworthW, Spackman DE. Emerging methods in economic modeling of

imaging costs and outcomes a short report on discrete event simulation. Acad

Radiol. (2007) 14:406–10. doi: 10.1016/j.acra.2007.01.007

18. BookerMT, O’Connell RJ, Desai B, Duddalwar VA. Quality improvement with

discrete event simulation: a primer for radiologists. J Am Coll Radiol. (2016)

13:417–23. doi: 10.1016/j.jacr.2015.11.028

Frontiers in Neurology | www.frontiersin.org 6 June 2019 | Volume 10 | Article 653

https://rebrand.ly/desECR11
https://www.frontiersin.org/articles/10.3389/fneur.2019.00653/full#supplementary-material
https://doi.org/10.1056/NEJMoa1713973
https://doi.org/10.1056/NEJMoa1706442
https://doi.org/10.1016/S0140-6736(16)00163-X
https://doi.org/10.1080/13696998.2018.1474746
https://doi.org/10.1159/000371729
https://doi.org/10.1177/0037549717708246
https://doi.org/10.1186/s12913-018-3282-8
https://doi.org/10.1002/hec.1148
https://doi.org/10.1017/S0266462314000117
https://doi.org/10.1057/s41306-017-0024-9
https://doi.org/10.1057/jos.2009.25
https://doi.org/10.1177/135581969800300409
https://doi.org/10.1057/palgrave.jors.2600669
https://doi.org/10.1186/s12913-018-3456-4
https://doi.org/10.1007/s10729-006-9996-x
https://doi.org/10.1016/0305-0483(94)90073-6
https://doi.org/10.1016/j.acra.2007.01.007
https://doi.org/10.1016/j.jacr.2015.11.028
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Huang et al. Des for ECR Pipeline Optimization

19. Simpson KN, Strassburger A, Jones WJ, Dietz B, Rajagopalan

R. Comparison of Markov model and discrete-event simulation

techniques for HIV. Pharmacoeconomics. (2009) 27:159–65.

doi: 10.2165/00019053-200927020-00006

20. Karnon J, Stahl J, Brennan A, Caro JJ, Mar J, Möller J. Modeling using

discrete event simulation: a report of the ISPOR-SMDM modeling good

research practices task force-4. Med Decis Making. (2012) 32:701–11.

doi: 10.1177/0272989X12455462

21. Altiok T, Melamed B. Discrete event simulation. In: Simulation Modeling

and Analysis with ARENA. Cambridge, MA: Elsevier Inc, Academic Press

(2007). p. 11–4.

22. Ucar I, Smeets B, Azcorra A. simmer: Discrete-event simulation for R. arxiv.

(2017) arXiv:1705.09746

23. Meretoja A, Keshtkaran M, Tatlisumak T, Donnan GA, Churilov L.

Endovascular therapy for ischemic stroke: save a minute-save a week.

Neurology. (2017) 88:2123–7. doi: 10.1212/WNL.0000000000003981

24. Goyal M, Fargen KM, Menon BK. Acute stroke, Bayes’ theorem and

the art and science of emergency decision-making. J Neurointervent Surg.

(2014) 6:256–9. doi: 10.1136/neurintsurg-2013-011056

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019 Huang, Maingard, Kok, Barras, Thijs, Chandra, Brooks

and Asadi. This is an open-access article distributed under the terms of

the Creative Commons Attribution License (CC BY). The use, distribution

or reproduction in other forums is permitted, provided the original author(s)

and the copyright owner(s) are credited and that the original publication in

this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neurology | www.frontiersin.org 7 June 2019 | Volume 10 | Article 653

https://doi.org/10.2165/00019053-200927020-00006
https://doi.org/10.1177/0272989X12455462
https://doi.org/10.1212/WNL.0000000000003981
https://doi.org/10.1136/neurintsurg-2013-011056
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles

	Optimizing Resources for Endovascular Clot Retrieval for Acute Ischemic Stroke, a Discrete Event Simulation
	Introduction
	Methods
	Model Algorithm
	Model Properties
	Patients
	Events
	Queuing
	Capacity Schedule

	Outcome Measures
	Statistics and Software

	Results
	Exclusive-Use Scenario
	Two angioINRs Scenario
	Extended Schedule Scenario
	Clinical Outcomes of Reducing ECR Patient Wait Times
	Resource Utilization
	Using DES to Predict Future Resource Usage

	Discussion
	Data Availability
	Author Contributions
	Supplementary Material
	References


