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The Hidden Control Architecture
of Complex Brain Networks

Byeongwook Lee," Uiryong Kang,! Hongjun Chang,' and Kwang-Hyun Cho'-#*

SUMMARY

The brain controls various cognitive functions in a robust and efficient way. What is the control archi-
tecture of brain networks that enables such robust and optimal control? Is this brain control architec-
ture distinct from that of other complex networks? Here, we developed a framework to delineate a
control architecture of a complex network that is compatible with the behavior of the network and
applied the framework to structural brain networks and other complex networks. As a result, we re-
vealed that the brain networks have a distributed and overlapping control architecture governed by a
small number of control nodes, which may be responsible for the robust and efficient brain functions.
Moreover, our artificial network evolution analysis showed that the distributed and overlapping
control architecture of the brain network emerges when it evolves toward increasing both robustness
and efficiency.

INTRODUCTION

Cogpnitive functions are performed by the coordinated control of multiple brain regions (Cocchiet al., 2013;
Ghazanfar and Schroeder, 2006; Koh et al., 2011). Such control is evolutionarily optimized for efficiency
(Tang et al., 2017) and robustness (Aerts et al., 2016). Although such optimality is rooted in the complex
interconnectivity of brain regions (Tang et al., 2017), our understanding of fundamental control architecture
of brain networks that determines the specific coordinated control of interconnected brain regions is still
lacking. Here, we investigated the control architecture of structural brain networks (hereafter, brain net-
works) by analyzing high-resolution brain networks reconstructed from multiple species, including fruit
fly, nematode worm, mouse, cat, macaque, and human (Jarrell et al., 2012; Rubinov et al., 2015; Shih
etal.,, 2015), and comparing them with 26 real-world complex networks. Our analysis included the recon-
struction of brain networks of 100 healthy human adults (Figure 1A) to identify the control architecture of
human brain networks. Using structural and diffusion magnetic resonance imaging (MRI) data obtained
from Human Connectome Project, we performed whole-brain parcellation and diffusion tractography to
identify the anatomical connections (i.e., edges) between 164 brain regions (i.e., nodes) extracted from
the Destrieux atlas (Fischl et al., 2004) (Figure 1A, see Transparent Methods for details).

We developed a framework that determines the control architecture of complex networks on the basis of
the minimum dominating set (MDSet) (Haynes et al., 1998), which refers to a minimal subset of nodes
(MD-nodes) that control the remaining nodes through a one-step direct interaction (Figure 1B, see Trans-
parent Methods). The important role of MD-nodes in network control is recognized both in theory (Nacher
and Akutsu, 2012) and in various real-world networks (Nacher and Akutsu, 2013; Wan et al., 2002; Wuchty,
2014). In particular, the concept of MDSet has recently been adopted to analyze various biological net-
works, and the results showed that MD-nodes not only occupy strategic locations to control the networks
but are also associated with various biological functions (Nacher and Akutsu, 2013, 2016; Sun, 2015; Wakai
etal., 2017, Wuchty, 2014; Zhang et al., 2016). Thus, we postulated that the composition of MD-nodes in a
network represents its hidden control architecture. By examining the MD-nodes in various complex net-
works, we delineated the distinct control architecture of each network, categorized the control architec-
tures on the basis of the composition of MD-nodes in each network, and determined the attributes of
each type of control architecture (Figure 1C). Through this process, we revealed the hidden control
architecture of brain networks that is responsible for the efficient and robust control of brain functions.

RESULTS
Composition of Minimum Dominating Set in Brain Networks

We determined the MDSet of each network and compared the fraction of MD-nodes (Mp) of various net-
works. Mp is defined as the proportion of the size of MDSet to the size of the network and represents the
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Figure 1. Comparison of Brain Networks and Other Real-World Complex Networks

(A) Schematic depicting the basic procedure of reconstructing a structural brain network (hereafter, brain network. See Transparent Methods for details).
(B) A minimum dominating set (MDSet) is defined as a minimal subset of nodes (yellow circle) with which all other remaining nodes (black circle) can be
reached by one-step interactions.

(C) Schematic describing the overall framework of analysis. The control architectures of brain networks (Caenorhabditis elegans, Drosophila, mouse, cat,
macaque, and human) and other real-world complex networks (26 networks of 7 categories) were characterized on the basis of their MDSet. By examining the
composition of MD-nodes in each network, the control architecture of each network was categorized into a particular type. The attributes of each control
architecture were then analyzed from various perspectives.

(D) Scatterplot comparing the fraction of MD-nodes, Mp, of various networks.

(E) Scatterplot showing the relationship between Mp and the proportion of high-degree nodes in the MDSet for each network (left, Pearson correlation
r=0.572,p =405 x 1074.

See also Figure S1.

minimum effort required to control the entire network (Nacher and Akutsu, 2012). We found that the
average Mp of brain networks is lower than that of other networks (Figure 1D, see Table S1), implying
that brain networks are optimized to minimize the control effort. High-degree nodes (nodes connected
to many other nodes), especially highest-degree nodes, are more likely to be MD-nodes. Thus, we hypoth-
esized that a network with low Mp would have MD-nodes that were enriched in high-degree nodes, which
would result in a negative correlation between Mp and the proportion of high-degree nodes in the MDSet.
To test this hypothesis, we investigated the relationship between the proportion of the top 5% high-degree
nodes that are included in the MDSet and Mp. Unexpectedly, Mp and the proportion of high-degree nodes
showed a positive correlation (Figure 1E, left, see Table S1). This positive correlation held when performed
with the top 2%, 3%, 5%, 10%, 15%, and 20% of high-degree nodes (Figure S1), showing that this is a robust
relationship. The proportion of high-degree nodes in the MDSets was more than 50% in most of the
networks except brain networks, in which the proportion was much smaller (only 29% on average for eight
brain networks, Figure 1E, right). This implied that the MD-nodes in brain networks are not solely deter-
mined by their degrees. Instead, they might be strategically placed and have a characteristic composition
in the networks.

Identification of the Hidden Control Architecture of Brain Networks

To investigate the composition of MD-nodes in brain networks, we introduced two measures: distribution
of control (DC) and overlap in control area (OCA), where we define DC as the ratio of control area domi-
nated by the MD-nodes in the top 5% high-degree nodes to that dominated by the rest of the MD-nodes,
and we define OCA as the degree of overlap across all control areas among different MD-nodes (Figure 2A,
left, see Transparent Methods). We tested various percentages (N = 5%—20%) of the top high-degree
nodes and found that we could capture the particular control architecture of the brain networks that is
distinct from other networks at N = 5% (Figure S2). Thus, we set N = 5% for the definition of DC measure.
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Figure 2. The Characteristics of Different Control Architectures

(A) Categorization of control architectures. On the basis of two measures, distribution of control (DC) and overlap in control area (OCA), which determine the
interdependence of control areas (measured by counting the number of nodes dominated by an MD-node, see Transparent Methods), the control
architecture of a network can be categorized into four types. The background color indicates the type of different control architecture: blue for centralized
and non-overlapping control architecture, pink for centralized and overlapping control architecture, yellow for distributed and non-overlapping control
architecture, and purple for distributed and overlapping control architecture. The background color of the scatterplots in Figures 2B-2D indicates each type
of control architecture described in Figure 2A.

(B) Scatterplot of DC versus OCA for each network. Using these two measures, each network can be categorized into a different type of control architecture.
See also Figures S2 and S3.

(C) Domination stability of each control architecture under targeted attack. Disruption of control area along with the accumulated network damage was
investigated for various networks (represented by each thin line). See also Figure S4.

(D) Scatterplot showing the mean modal controllability versus mean average controllability of various networks (Pearson correlation r = —0.83,

p = 1.57 x 1079 and the underlying control architectures associated with controllability preference.

We defined networks with DC > 1 as centralized and DC < 1 as distributed. We confirmed the robustness of
the classification by determining 100 MDSets for each network and computing the DC values of the corre-
sponding MDSets (Figure S3A). We defined OCA > 1.5 as overlapping and OCA < 1.5 as non-overlapping
and confirmed the robustness of this classification (Figure S3A). Using these two measures, we categorized
the control architectures of various networks into four distinct types (Figure 2A, right). We found that all
brain networks are categorized into one type, the “distributed and overlapping” control architecture
(Figure 2B, see Table S1).

To further investigate whether this particular architecture is related to the robustness and efficiency of brain
functioning, we examined the domination stability (Molnar et al., 2015) (see Transparent Methods), which
reflects the robustness of the network to loss of nodes, of brain networks. Brain functions are robust against
random attack (Hillary and Grafman, 2017), in biological terms, small, randomly occurring instances of
neural injury or death or disruption in synaptic activity. Consequently, not all brain lesions have observable
functional consequences. In contrast, damage of high-degree nodes, such as that caused by increased
metabolic stress accompanied by high network burden, is associated with neurological disorders (Fornito
et al., 2015), indicating that high-degree nodes represent vulnerabilities in the network with functional
consequences to their disruption. Therefore, to measure domination stability we monitored the disruption
of control area along with the network damage resulting from random attacks (Figure S4A) and targeted
attacks that preferentially removed the highest-degree nodes (Figure S4B) in sequence to represent the
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worst-case deterioration of network. In contrast to random attacks for which each type of network was
robust (Figure S4A), each category of control architecture showed distinct domination stability to targeted
attack of the highest-degree nodes (Figures 2C, S4B, and S4C). The centralized control architecture was the
most fragile, showing a reduction in domination stability after removal of the fewest high-degree nodes
(Figure 2C, left), whereas the distributed and overlapping control architecture showed the most robust
stability and exhibited stair-like decrement against the sequential targeted attack (Figure 2C, right). We
postulate that this property of distributed and overlapping control architecture might represent the
robustness of brain functions despite deterioration of brain networks.

We also examined the controllability of different control architectures (see Transparent Methods). Here,
controllability means the capability of driving a network state defined by a set of node activities into
another one (Klamka, 1963). In particular, we considered mean average controllability and mean modal
controllability, which describes the average ability to drive a network state into the easy-to-reach nearby
state and that to drive into difficult-to-reach distant state, respectively (Gu et al., 2015) (see Transparent
Methods). Under the previously known trade-off relationship between these two controllability measures
(Tang et al., 2017), most of the networks showed a clear preference for either average or modal controlla-
bility (Figure 2D, see Table S1). Furthermore, such preference was associated with the underlying control
architecture. For instance, networks with the centralized control architecture showed high mean modal
controllability and low mean average controllability, whereas the networks with the distributed and
non-overlapping control architecture showed the opposite. Notably, only the networks with the distributed
and overlapping control architecture showed balanced controllability with respect to these two measures,
indicating that the brain networks are optimized for both types of controllability.

The Structural Principle Underlying the Composition of MDSet in Brain Networks

Modern network science has revealed fundamental aspects of brain network organization, such as hierar-
chical modularity, hub nodes, and rich-club (RC)-nodes (Park and Friston, 2013; Sporns and Betzel, 2016
Van Den Heuvel and Sporns, 2011). RC-nodes function as connector hubs that determine inter-modular
connectivity and are responsible for global integration (Van Den Heuvel and Sporns, 2011) (Figure 3A).
We investigated whether MD-nodes have similar or distinct roles from RC-nodes and what kind of structural
principles underlie the composition of MDSet. Therefore, we explored the MDSet of human brain networks
with respect to modularity and RC organization of the networks (Figure 3A, see Transparent Methods). We
found that the degree distribution of MD-nodes differs from that of RC-nodes (Figure 3B, left) and that only
38% of MD-nodes correspond to RC-nodes (Figure 3B, right).

Another type of hub node is the provincial hub node, which tends to have intra-modular connectivity
(Sporns et al., 2007). Deletion of provincial hubs decreases network transitivity, measure reflecting the prev-
alence of clustered connectivity in the network (Sporns et al., 2007). We examined whether MD-nodes are
provincial hubs by exploring the relationship between MD-nodes and network transitivity. We found that
deletion of MD-nodes decreases the transitivity of networks (Figure 3C), indicating that many MD-nodes
are provincial hub nodes. We further investigated the overall structural principle underlying the composi-
tion of MDSet by classifying MD-nodes into provincial nodes or connector nodes on the basis of their
participation coefficients (Figure 3D, see Transparent Methods), a measure of a node’s contribution to
intra- or inter-modular connectivity. We found that the ratio of provincial to connector nodes is about
6:4 on average (Figure 3E). This means that about 60% MD-nodes are provincial nodes, which function
as local controllers for segregated modules (that is execute distributed control), and the remaining MD-no-
des function as global controllers for multiple modules (that is execute overlapping control). Thus, our re-
sults indicated that the MD-nodes constitute a distributed and overlapping control architecture of brain
networks (Figure 3F). We explored whether this particular control architecture contributes to the optimal
(i.e., balanced) controllability of brain networks with both effective average and modal controllability (Fig-
ure 2D). We selectively eliminated either provincial MD-nodes or connector MD-nodes from the network
and assessed the effect on controllability (Figure 3G). We found that deletion of provincial MD-nodes re-
duces mean average controllability, whereas deletion of connector MD-nodes reduces mean modal
controllability (Figure 3G, right). These results indicated that the combination of provincial and connector
MD-nodes is a key structural characteristic resulting in the optimal controllability of brain networks.

The human ability to perform complex cognitive functions are rooted in the inter-regional brain network. In
particular, previous neuroimaging studies revealed that subnetworks composed of different sets of brain
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Figure 3. The Structural Principle Underlying the Composition of MDSet in Human Brain Networks
(A) lllustration of identifying MDSets from brain networks of 100 healthy adult subjects, composed of 164 cortical and subcortical regions extracted from the
Destrieux atlas. The structural principle underlying the composition of MDSet is explored with respect to modularity and rich-club (RC) organization of the
network.
(B) Degree distributions of all nodes, MD-nodes, and RC-nodes (left). The thin lines of black, yellow, and purple indicate the degree distributions of all nodes,
MD-nodes, and RC-nodes of each network, respectively. The thick lines of black, yellow, and purple indicate the average of all thin lines of the same color.
Comparison of MD-nodes and RC-nodes. Data are represented as box-and-whisker plot (right).
(C) Contribution of MD-nodes to the clustering capacity of each network is examined by the measure of transitivity. Data are represented as
box-and-whisker plots.
(D) Participation coefficient (PC) values of MD-nodes are computed. MD-nodes are classified into either provincial or connector MD-nodes by their PC value
(provincial if PC < 0.5 and connector otherwise).
(E) Ratio of provincial to connector MD-nodes is computed. Data are represented as box-and-whisker plots.
(F) Illustration of the distributed and overlapping control architecture of brain networks that is formed by provincial and connector MD-nodes.
(G) Contribution of provincial- and connector-MD-nodes to determining the optimal (i.e., balanced) controllability of brain networks (left). Effect of
elimination of provincial- and connector-MD-nodes on mean average controllability and mean modal controllability (right).
(H) Identification of the highly selected MD-nodes across 100 subjects. MD-nodes that are selected from more than 60% of the 100 subjects were chosen as
the highly selected MD-nodes. Twelve nodes were chosen as the highly selected MD-nodes. FFG, fusiform gyrus; IFG, inferior frontal gyrus; PUT; putamen;
S.CC, sulcus of corpus callosum; SFG, superior frontal gyrus; SPG, superior parietal gyrus; STG, superior temporal gyrus. Association of the highly selected
MD nodes with the specific cognitive system (right).

regions are involved in carrying out distinct cognitive functions (Dosenbach et al., 2007; Power et al., 2011).
These subnetworks are referred to as cognitive control networks or systems and commonly classified into
visual, auditory, sensorimotor, attention, subcortical, frontoparietal, cingulo-opercular, and default-mode
system (Power et al., 2011). From a cognitive perspective, the control of each cognitive system is important
for implementing distinct cognitive functions and for a smooth transition between them. To explore the
relationship between MD-nodes and cognitive functions, we chose the 12 MD-nodes, representing specific
regions of the brain that are highly selected across subjects (Figure 3H, left), and examined whether the
selected 12 bihemispheric regions are differently located in or between the cognitive systems. We found
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Figure 4. Exploring the Development of Control Architecture by Artificial Network Evolution

(A-C) We generated 100 degree-preserved random null networks (blue circles) derived from 100 structural human brain networks composed of 164 nodes
(gray circles). Each colored circle represents an individual network. Starting from the generated random null networks, we performed artificial network
evolution on each network by employing Pareto optimization to advance the following objective functions: (A) domination stability against targeted attack of
top 20% high-degree nodes; (B) mean average controllability and mean modal controllability. Pink line in each figure indicates an evolution trajectory of each
random null network, and red circles represent the pareto-optimal networks after the artificial evolution. (C) As the evolution proceeds, the control
architecture of networks was transformed from a centralized and overlapping control architecture to the distributed and overlapping control architecture.
See also Figure S5.

that each MD-node is differently associated with the cognitive system, suggesting that MD-nodes play a
central role in controlling distinct cognitive functions (Figure 3H, right. See Table S2 for details). In partic-
ular, by classifying the MD-nodes into provincial or connector nodes, we found that provincial MD-nodes
are associated with specialized cognitive control systems, such as the visual, sensorimotor, attention sys-
tem, whereas the connector MD-nodes are associated with the default-mode system that enables the brain
to move smoothly between different cognitive functions. These results indicate that MD-nodes might
occupy strategic locations in the brain networks to control the cognitive functions.

Exploring the Development of Control Architecture by Artificial Network Evolution

We found that the brain networks have a distributed and overlapping control architecture and such a con-
trol architecture provides enhanced robustness (Figure 2C) and optimal (i.e., balanced) controllability
(Figure 2D). To examine the relationship between structure and functional characteristics, we performed
artificial network evolution starting from random null networks derived from the human brain networks
and investigated robustness, controllability, and the corresponding control architectures along with evo-
lution trajectories (Figure S5, see Transparent Methods for details). For this purpose, we first compared
the following three features of the random null networks and the brain networks: domination stability
against targeted attack of top 20% high-degree nodes, mean average controllability, and mean modal
controllability (see Transparent Methods). As a result, we found that random null networks have much lower
robustness and controllability than the brain networks (Figures 4A and 4B, and see Figure S5 for details).
Moreover, random null networks have a centralized and overlapping control architecture in contrast with
brain networks (Figures 4C and S5).

Starting from the random null networks, we performed artificial network evolution by employing Pareto
optimization (Holland and Goldberg, 1989) in the direction of increasing the aforementioned three fea-
tures (domination stability, mean average controllability, and mean modal controllability). Each evolu-
tionary epoch was performed by carrying out two steps: network variation and network selection (see
Transparent Methods for details). We generated randomly rewired networks, then we chose one that
most advances the three features and used it in the next evolutionary epoch. Intriguingly, the artificial
evolution trajectories that increase robustness and controllability (Figures 4A and 4B) lead to the
distributed and overlapping control architecture (Figure 4C), implying that such a control architecture
of the brain network might have emerged during evolution toward increasing both robustness and
efficiency.
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DISCUSSION

In many cases, efficiency and robustness are often regarded as having a trade-off relationship. However,
the brain unusually exhibits both attributes when it performs complex cognitive functions. Such optimality
must be rooted in a specific coordinated control of interconnected brain regions, but our understanding of
the intrinsic control architecture of complex brain networks is still lacking. In this study, we investigated the
intrinsic control architecture of structural brain networks of various species and compared them with the
control architectures of other biological and man-made (e.g., social, infrastructural, technological) com-
plex networks. In particular, we developed a framework for analyzing the control architecture of complex
networks based on the minimum dominating set (MDSet), which refers to a minimal subset of nodes
(MD-nodes) that control remaining nodes with one-step direct interaction.

Here, by exploring and comparing the structural principles underlying the composition of MDSets of
various complex networks, we delineated their distinct control architectures. Interestingly, we found that
the proportion of MDSet in brain networks is remarkably smaller compared with other complex networks
(Figure 1D), implying that brain networks may have been optimized to minimize the control cost. Further-
more, we found that the MDSet of brain networks is not solely determined by the degree of nodes but
rather strategically placed to form a particular control architecture (Figure 1E). Consequently, we revealed
the hidden control architecture of brain networks, namely, distributed and overlapping control architecture
that is distinct from other complex networks (Figure 2B). We found that such a particular control architec-
ture brings about robustness against targeted attack (i.e., preferential attack on high-degree nodes,
Figure 2C), which might be a fundamental basis of the robust brain functions against preferential damages
of high-degree nodes (i.e., brain regions) (Fornito et al., 2015). Moreover, we found that the particular con-
trol architecture of brain networks also enables high efficiency in switching from one network state (defined
by a set of node activities) to another (Figure 2D), a capability that is crucial for traversing diverse cognitive
states. Lastly, our artificial network evolution analysis showed that the distributed and overlapping
control architecture of the brain network emerges when it evolves toward increasing both robustness
and efficiency (Figure 4). Taken together, our results suggest that the distributed and overlapping control
architecture of brain networks might be responsible for the robust and efficient control of brain functions.

A variety of biological processes are determined by the underlying regulatory networks (Assmus et al.,
2006; Dubitzky et al., 2013; Eshaghi et al., 2010; Kim and Cho, 2006; Kim et al., 2011; Kwon and Cho,
2007; Lee et al., 2018; Murray et al., 2010; Park et al., 2006; Shin et al., 2006; Sreenath et al., 2008) and disrup-
tion of the networks can lead to diverse biological disorders (Shin et al., 2014, 2017; Yeo et al., 2018). Hence,
control of a biological network has become an important issue to systematically regulate or modulate
biological processes at a network level (Kim et al., 2013; Wolkenhauer et al., 2004). Likewise, there is a
growing interest in brain network control (Bassett and Sporns, 2017), and various control strategies were
suggested (Betzel et al., 2016; Gu et al., 2015; Khambhati et al., 2016; Yan et al., 2017) with the aim of devel-
oping therapeutics (Braun et al., 2018) and methods for cognitive enhancement (Kenett et al., 2018). It is,
however, essential to understand the inherent control architecture of brain networks before applying any
external interventions, because the brain itself is already an autonomously controlled system. Our study
revealed an intrinsic control architecture of brain networks that not only sheds light on the intrinsic control
properties of a normal brain but also provides a basis for exogenous control of brain networks to address
altered control architectures of various neurological disorders.

Limitations of the Study

In this study, we performed tractography and constructed structural brain networks (i.e., connectome) of
100 healthy human adults to investigate the control architecture of the human brain networks. Yet, there
exist inherent limitations in the current tractography algorithms (Daducci et al., 2016; Jbabdi and Johan-
sen-Berg, 2011; Jones and Cercignani, 2010). Briefly, current tractography algorithms can yield false-
positive and false-negative connections, and in consequence, genuine connections might be detected
invalid and spurious ones as plausible. Accordingly, biased or inaccurate conclusions can be drawn from
missing or duplicated connections. These limitations have motivated ongoing technical improvement of
tractography algorithms and development of connectome validation standards.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.
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Figure S1. Proportion of high-degree nodes included in the MDSet and its relationship with
the fraction of MD-nodes (Mp) in a network. Related to Figure 1. Proportion of high-degree
nodes included in the MDSet was examined for top (A) 2%, (B) 3%, (C) 5%, (D) 10%, (E) 15%,
and (F) 20% high-degree nodes in each network.
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Figure S2. Changes in networks’ control architectures depending on the distribution of
control (DC) measure. Related to Figure 2. The measure distribution of control (DC) is defined
as the ratio between the control area dominated by the MD-nodes in the top N% high-degree
nodes and that dominated by the rest of MD-nodes. Control architectures of the networks
were examined over N of 5% to 10%, 15%, and 20%.
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Figure S3. Robustness of distribution of control (DC) value and overlap in control area (OCA)
value against different MDSets in a network. Related to Figure 2. For a given network, the



minimum dominating set (MDSet) may not be unique. For this purpose, we determined 100
MDSets for each network and computed DC and OCA values of corresponding MDSets. (A)
We examined how the different choices of MDSet affect the network’s distribution of control
(DC) value, which determines whether the network will follow a centralized or distributed
control architecture. (DC > 1: centralized, DC < 1: distributed). (B) We examined how the
different choices of MDSet affect the network’s overlap in control area (OCA) value, which
determines whether the network will follow an overlapping or non-overlapping control
architecture (OCA > 1.5: overlapping, OCA < 1.5:non-overlapping).
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Figure S4. Domination stabilities of various networks against random and targeted attacks.
Related to Figure 2. (A) Disruption of control area along with random attacks was monitored
for each network. Random attacks were performed by removing random nodes with equal
probability in a random order. Random attacks were repeated for 1,000 times, and each plot
shows an averaged domination stability of each network. (B) Disruption of control area along
with targeted attacks was monitored for each network. Targeted attacks were carried out by
sequentially removing highest degree nodes. (C) Domination stabilities of various networks



against the targeted attacks were reorganized according to their underlying control
architectures.
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Figure S5. Comparison of robustness and controllability of brain networks with those of
random null networks. Related to Figure 4. We generated random null networks derived
from human brain networks and examined their robustness (measured by domination
stability against targeted attack of top 20% high-degree nodes), controllability (measured by
average controllability and modal controllability), and the characteristics of control
architecture. (A, B) We found that the random null networks have much lower robustness
and controllability than the brain networks. (C) Random null networks have a centralized and
overlapping control architecture while the brain networks have a distributed and overlapping
control architecture.



Supplemental Tables

Table S1. Information of networks analyzed in this study. Related to Figure 1 and Figure 2.
For each network, we show its type and name; number of nodes (N); fraction of MD nodes
(Mb); fraction of top 5% high-degree nodes included in the MDSet (degree concentration);
distribution of control (DC) and overlap in control area (OCA); mean average controllability

(Conavg) and mean modal controllability (Conmod).

Type Name N Mo Degree DC  OCA  Conay  Conmos
concentration
C.elegans network 272 0.127 0.214 0345 1.878 1.061  0.974
Drosophila network 49 0.143 0.333 0.579 2.136 1.160 0.962
Mouse structural network 112 0.080 0.333 0.670 1.781 1.131 0.969
c Cat structural network 95 0.063 0.200 0.682 1.981 1.120 0.977
g M |
@ acaque structura 71 0127 0.250 0506 1.677 1.096  0.962
network
Human structural network
83 0.090 0.250 0413 2251 1157  0.959
(ROI 83)
Human structural network -\ 179 0.375 0669 2.614 1.102 0977
(ROI 164) : ’ . ’ ' ’
Human structural network 5, 5ee 0.333 0.628 2.069 1.089  0.971
(ROI 234) ' . : ' : '
Diseasome network 516 0.186 0.613 0.706 1.642 1.046 0.974
Protein structure 1A4J 95 0211 0.600 0236 1.246 1.182  0.889
3 Protein structure 1AOR 99  0.263 0.400 0.146 1313 1127 0924
o
(=]
-:—; Protein structure 1IEAW 53 0.226 0.337 0.192 1.351 1.169 0.899
S.cerevisiae transcription g0 () 135 0.834 2100 1539 1.037  0.977
network
Yeast network 1458 0.242 0.904 0962 1.542 1.051  0.963
£ CS. Ph.D. collaboration 1882  0.228 0.983 1.010 1264 1.038  0.976
S
(] N k sci
s stwork science 379 0.145 0.694 0892 1436 1057 0963
- collaboration
S Sandi authors collaboration 86 0.233 1.000 0.776  1.402 1.139 0.912




Table S1: Continuation of Supplementary Table 1.

Type Name N b conf'):gt;;etion OCA Conagyy  CoNpod

Word adjacency (English) 7724 0.108 0.466 5.946 5.417 1.008 0.999

gp Word adjacency (French) 9424  0.212 0.548 5.601 2.779 1.005 0.998
>

g Word adjacency (Japanese) 3177  0.243 0.691 5.769 2.891 1.009 0.997

Word adjacency (Spanish) 12642 0.146 0.496 10.408 3.721 1.005 0.999

Dolphins club 62 0.226 0.333 0.306 1.634  1.095 0.938

= Ego Facebook 2888  0.003 0.069 Inf 1.308 1.015 0.998
‘S

3 Obama twitter retweet 3212 0.126 0.929 5.920 1.242 1.015 0.993

Copenhagen retweet 761 0.261 0.968 0.959 1.796 1.036 0.973

& § Euro road 1174  0.327 0.553 0.236  1.222  1.125 0.904

-

- % US 500 busiest airport 500 0.102 0.724 1.705 4455 1.051 0.995
® Electronic circuit 5208 122 0.263 0.809 0.439 1.286 1.171 0.881
g Electrical circuit S420 252 0.262 0.746 0.425 1.303  1.155 0.889
=
E Electrical circuit S838 512 0.262 0.710 0.391 1.314 1.117 0.911

Educational institute 3031 0.082 0.568 9.275 1.428 1009  0.995

website
g EPA website 4772  0.159 0.463 6.135 1.360 1.017 0.988
Google website 1299 0.158 0.424 0.605 1.502  1.020 0.988




Table S2. Association of the highly selected MD-nodes to cognitive systems. Related to
Figure 3. We identified MDSets from brain networks of 100 healthy adult subjects, composed
of 164 cortical and subcortical regions extracted from the Destrieux atlas (Fischl et al., 2004).
Then, we identified highly selected (more than 60%) MD-nodes across 100 subjects.
Consequently, 12 nodes were chosen as the highly selected MD-nodes. We associated each
MD-node to cognitive systems, which are previously defined in the literature: default-mode,
sensorimotor, auditory, visual, dorsal attention, ventral attention, fronto-parietal, and

subcortical systems.

Association to cognitive system

Cognitive system
assignment

Position Node (region)
ode (region
(L: left, &
. name
R: right)
Inferior frontal
(L R)
gyrus
Superior frontal
(L R) P
gyrus
(L) Fusiform gyrus
n Superior parietal
gyrus
Superior temporal
(LR) P P
gyrus
Sulcus of corpus
(L R) P
callosum
(L, R) Putamen

Triangular part of the inferior frontal gyrus is
associated with the front-parietal network(Coull et
al., 1996; Sturm et al., 1999).

The superior frontal cortex is predominantly
affiliated with the default mode system (Garrity et
al., 2007; Power et al., 2011; Watanabe et al.,
2013).

The fusiform gyrus forms a visual system (Agam et
al., 2010; Bolte et al., 2006; Power et al., 2011; Xu et
al., 2014).

The superior parietal cortex plays a crucial role in
both the sensorimotor system(Fabbri et al., 2014)
and the dorsal attention system(Sestieri et al., 2013;
Xu et al., 2014).

The superior temporal gyrus plays a central role in
both the auditory system(Woods and Alain, 2009)
and the ventral attention system(Corbetta et al.,
2005).

The corpus callosum is predominantly associated
with the default mode system(Garrity et al., 2007).
The putamen is predominantly associated with the
subcortical system(Karnath et al., 2002).

Frontoparietal
system

Default-mode
system

Visual system

Sensorimotor &
dorsal attention
system

Auditory system &
ventral attention
system

Default-mode
system

Subcortical system




Transparent Methods

Brain network construction

In this study, structural brain networks representing anatomical connections (i.e., edges)
between brain regions (i.e., nodes) were constructed from the structural and diffusion
magnetic resonance imaging (MRI) data obtained from the Human Connectome Project (HCP)
database. The HCP scanning protocol was approved by the local Institutional Review Board at
Washington University in St. Louis. We constructed brain networks of 100 healthy human
adults by using the preprocessed structural and diffusion dataset of 100 unrelated subjects
from the HCP 1200 Subject Release (https://db.humanconnectome.org). Full details of the
preprocessing pipeline can be found from (Glasser et al., 2013). Brain network construction
was performed through the following processes using MRtrix (Tournier et al., 2012).
Specifically, by using structural MRI data, the brain was parcellated into 164 cortical and
subcortical regions extracted from the Destrieux atlas (Fischl et al., 2004). Parcellated regions
were determined as nodes in the network. In the next, the inter-regional connections (i.e.,
fiber tracts) were identified using the diffusion MRI data. This step consists of two sub-
processes: (1) calculation of the fiber orientation density (FOD) by utilizing constrained
spherical deconvolution (CSD) (Tournier et al., 2004) and (2) tracing white-matter fiber tracts
by using the probabilistic tractography algorithm (Jbabdi and Johansen-Berg, 2011). In this
study, 10 million tracts were traced using anatomically constrained tractography (ACT) (Smith
et al., 2012) with the default settings of MRtrix (Tournier et al., 2012). Finally, the adjacency
matrix was obtained by counting the number of fiber tracts connecting each pair of regions.

To determine a minimum dominating set (MDSet) from each of the reconstructed networks,
we represented each network in a binary fashion by setting connection between region i and
j to 1 if a streamline between i and j exists and zero otherwise. To compare with other real-
world complex networks (for Figures 1D, E and Figures 2B, C, D), we reconstructed a group-
averaged structural brain network of 100 individual subjects by selecting all connections that
were present in at least 75% of the 100 subjects.

Network collection

For comparison, structural brain networks of human at different scale and those of other
species (Caenorhabditis elegans, drosophila, mouse cat and macaque) were collected.
Structural brain networks of the same 100 human adult subjects parcellated into 83 and 234
regions (subdivided by Lausanne atlas (Hagmann et al., 2008)) were collected from the
Budapest Reference Connectome Server v2.0 (Szalkai et al., 2015), and we further
reconstructed a group-averaged network for each parcellation scheme. Structural brain
networks of cat and macaque were collected from the Brain Connectivity Toolbox website
(https://sites.google.com/site/bctnet/). Lastly, structural brain networks of mouse, C.elegans,
and drosophila were collected from the NeuroData’s Graph DataBase
(https://neurodata.io/project/connectomes/). In addition to collecting structural brain
networks, we collected 26 complex networks from 7 disparate fields, ranging from biological



networks and social networks to technological networks and various other types of complex
networks. These were collected from the Uri Alon’s website
(http://www.weizmann.ac.il/mcb/UriAlon/) and the Network Repository website
(https://toreopsahl.com/datasets/). Details of each network are summarized in Table S1.

Determination of a minimum dominating set

A subset of nodes D € V in a network G = (V, E) is defined as the dominating set if every
node v € V is either an element of D or connected to at least one element of D. The smallest
dominating set for a network G is defined as the minimum dominating set (MDSet), and we
used the binary integer programming to determine the MDSet in a network (Nacher and
Akutsu, 2013, 2014; Wuchty, 2014). In particular, we used the branch-and-bound
algorithm(Land and Doig, 1960) in /pSolve library of the programming language R to solve the
binary integer-programing problem. Determination of MDSet was performed by finding
min Yyey Xy, With the constraint x,, + Y er@w) Xw = 1, where T'(v) is the set of one-step

neighbors of node v.

Categorization of control architecture
To characterize the underlying control architecture of a network, we defined two measures
to determine the interdependence of the control areas dominated by the MD-nodes:
distribution of control and overlap in control area. The distribution of control is defined as the
ratio between the control area dominated by the MD-nodes in top 5% high-degree nodes and
that dominated by the rest of MD-nodes. The distribution of control, DC, is given by
DC = |Uiempset_topC ()| (1)

|UieMDset_bottomC@)|’

where MDSet_top is the subset of MDSet, consisting of the MD-nodes in top 5% high-degree-
nodes in a network, MDSet_bottom is the subset of MDSet, consisting of the MD-nodes in
rest of 95% nodes in a network, and C(i) is the set of nodes dominated by the dominating-
node i. The control area is defined as the number of nodes dominated by dominating-node i,
i.e., |C(i)|. We defined that the control architecture of a network is a centralized architecture
if DC > 1 and a distributed architecture if DC < 1. The overlap in control area is defined as
the degree of overlap between control areas dominated by MD-nodes. The overlap in control
area, OCA, is given by

0CA = zﬁ”illlvcan’ )
where N is the number of nodes in the network and M is the number of MD-nodes in a MDSet.
We defined that the control architecture of a network is an overlapping architecture if OCA >
1.5 and a non-overlapping architecture if 0CA < 1.5. Using distribution of control and overlap
in control area, we categorized the control architecture of a network into the following four
distinct types: centralized and overlapping, centralized and non-overlapping, distributed and
overlapping, and distributed and non-overlapping control architectures.



Domination stability
The disruption of control areas along with the network damage was measured by
domination stability (Molnar Jr et al., 2015), which is given by

UiepsetCT (i
ps(f) = st 0L 3)

where N is the number of nodes in the network, f is the number of nodes removed from the
network, DSet is the subset of the original MDSet that remains after network damage, and
C* (i) is the set of nodes still dominated by the dominating-node i after network damage.

We considered two attack scenarios: random attacks and targeted attacks. Random attacks
were performed by removing nodes randomly with equal probability in a random order (see
Figure S4A for the domination stability of each network against random attacks). On the other
hand, targeted attacks were performed by removing highest degree nodes sequentially (see
Figure 2C and Figure S4B and Figure S4C for the domination stability of each network against
targeted attacks).

Average controllability versus modal controllability

Controllability of a network means the capability of driving a network state, defined as a
set of node activities, into another one by an external control input (Klamka, 1963). Let us
consider the following linear discrete-time and time-invariant model as in study by Gu et al.
(Guetal., 2015):

x(t+1) = Ax(t) + Byug(t), (8)
where x is the state of brain network over time, A is the binarized structural connectivity
matrix of brain derived from tractography data, B4 is the input matrix that identify the
control points, and uy is the control strategy.

Previous results in control theory guarantee that controllability of a network in Eq. (4) by
the set of control nodes X is equivalent to the controllability Gramian W4 being invertible,
where

Wy = X720 A"By By A%, (5)

We adopted this framework to select control nodes one at a time, resulting in reducing the
input matrix B to a one-dimensional vector.

We examined two different control strategies: average controllability and modal
controllability (Gu et al., 2015). Average controllability of a network is identical to the average
input energy from XK (i.e., a set of control nodes) and over all possible target states. Following
the study by Gu et al. (Gu et al., 2015), we used Trace (W) as a measure for the average
controllability. Nodes with high average controllability are known to be most influential for
controlling a network over all nearby target states with the least amount of input energy.
Modal controllability is computed from the eigenvector matrix V = [v;;] of the structural
connectivity matrix A. Modal controllability of node i is defined as ¢; = X)_; (1 — A7(4))1F;,
providing a measure of the controllability to all N modes A4, (A), ..., Ay (A4) from the node i
(see the study by Gu et al. (Gu et al., 2015) for details). Nodes with high modal controllability
can drive a network state into the difficult-to-reach distant state.



In this study, we used the MATLAB codes downloaded from Danielle Bassett’'s website
(https://www.danisbassett.com) to compute average and modal controllability of various
networks. Our major interest was comparing controllability of various networks rather than
analyzing controllability of particular nodes in a specific network. So, to investigate the overall
controllability of a network, we examined the mean average controllability and mean modal
controllability that are computed by averaging the average controllability and modal
controllability, respectively, of all nodes.

Graph theoretical analysis
All graph theoretical analyses were performed using the Brain Connectivity Toolbox
(http://sites.google.com/site/bctnet/).

Rich club detection

Rich club (RC) nodes are a group of high-degree nodes that are densely interconnected
beyond the expectation. Detection of RC-nodes was performed over a range of degrees. For
degree k, nodes with degree < k were eliminated from the network and the RC coefficient
¢ (k), which is defined as the ratio of existing connections to all possible connections, was
computed. Then, ¢ (k) was simultaneously normalized to the averaged RC coefficient over
1,000 random networks with a preserved degree distribution. The normalized RC coefficient,
Drorm (k) = ¢(k) /P ranaom (k), that exceeds one suggests the existence of a set of RC-nodes
of degree k. This procedure was repeated over a larger degree than k. To examine the
correspondence between MD-nodes and RC-nodes (Figure 3B and 3C), we detected a set of
RC-nodes from each structural brain network that matches the size of the MDSet determined
from the same network. We confirmed that ¢,,,,,m of the detected set of nodes in each
network is greater than one, satisfying the aforementioned condition for being RC-nodes.

Computation of transitivity
Transitivity determines the prevalence of clustered connectivity in a network. Transitivity

of a network is given by
YieN 2t
- Yien ki(ki—1) (6)

where N is the number of nodes in the network, t; is the number of triangles around a node
i, and k; is the degree of node i. In this study, we explored the relationship between MD-
nodes and the network transitivity by deleting MD-nodes from the networks. Transitivity of a
network is known to be strongly influenced by provincial hubs and connector hubs, where
deleting provincial hubs decreases the transitivity of a network while deleting connector hubs
produces the opposite effect (Sporns et al., 2007). By examining the change of transitivity in
the network after deletion of MD-nodes, we determined whether the MD-nodes are primarily
provincial hubs or connector hubs.



Module detection and participation coefficient

To examine the modularity of structural brain networks and the role of MD-nodes in
interconnecting modules, we performed module partitioning on each structural brain
network using the Louvain community detection algorithm (Blondel et al., 2008). MD-nodes
were further classified into provincial hubs and connector hubs based on their level of
participation to the local module connection or between module connection. The level of
intra-module connectivity versus inter-module connectivity of a node can be determined by
the participation coefficient of the node(Rubinov and Sporns, 2010). Formally, participation
coefficient of node i, PC;, is defined as

PC; =1 —ZZ’ZI(",Z")Z, (7)

where N,,, is the number of modules, k; is the degree of node i, and k;,, is the number of
connections from node i to module m. Following the study by Heuvel et al. (Van Den Heuvel
and Sporns, 2011), we defined node i as a provincial hub if PC; < 0.5 and connector hub
otherwise.

Artificial network evolution based on Pareto optimization

For artificial network evolution analysis, we generated 100 random null networks derived
from 100 structural human brain networks composed of 164 nodes. The random null
networks were generated using the function randmio_und_connected in the Brain
Connectivity Toolbox, which randomly permutes the edges of a network while preserving the
number of nodes and degree distribution.

Starting from the generated random null networks, we performed 500 epochs of network
evolution on each network in the direction of improving the following three objective
functions: domination stability against targeted attack of top 20% high-degree nodes, mean
average controllability, and mean modal controllability. We employed an evolutionary
algorithm called Pareto optimization (Holland and Goldberg, 1989), which has been used in
previous studies to explore brain network topology (Avena-Koenigsberger et al., 2014; Tang
etal., 2017). Pareto optimization was performed by repeatedly carrying out the following two
steps in each evolutionary epoch: network variation and network selection. Network variation
was performed by employing a rewiring algorithm called ‘edge-swaps’ (Avena-Koenigsberger
et al., 2014; Coolen et al., 2009) which randomly choose an existing edge in a network and
replace it with an edge that did not previously exist. Such edge-swapping was performed to
generate 100 networks with differently rewired edges. Network selection was performed by
evaluating three features (i.e., domination stability, average controllability, and modal
controllability) for all the 100 edge-rewired networks according to Pareto optimality (Holland
and Goldberg, 1989). A network that advances the Pareto front (Petrie et al., 1995) most (i.e.,
advances the three objective functions most) was selected and the next evolutionary epoch
was performed with the selected network. During the evolutionary process, all networks were
kept to preserve the number of nodes, edges, and degree distribution.



Reference

Agam, Y, Liu, H., Papanastassiou, A., Buia, C., Golby, A.J., Madsen, J.R., and Kreiman, G. (2010).
Robust selectivity to two-object images in human visual cortex. Current Biology 20, 872-879.
Avena-Koenigsberger, A., Gofii, J., Betzel, R.F,, van den Heuvel, M.P,, Griffa, A., Hagmann, P,,
Thiran, J.-P., and Sporns, O. (2014). Using Pareto optimality to explore the topology and
dynamics of the human connectome. Phil Trans R Soc B 369, 20130530.

Blondel, V.D., Guillaume, J.-L., Lambiotte, R., and Lefebvre, E. (2008). Fast unfolding of
communities in large networks. Journal of statistical mechanics: theory and experiment 2008,
P10008.

Bolte, S., Hubl, D., Feineis-Matthews, S., Prvulovic, D., Dierks, T., and Poustka, F. (2006). Facial
affect recognition training in autism: can we animate the fusiform gyrus? Behavioral
neuroscience 120, 211.

Coolen, A., De Martino, A., and Annibale, A. (2009). Constrained Markovian dynamics of
random graphs. Journal of Statistical Physics 136, 1035-1067.

Corbetta, M., Kincade, M.J., Lewis, C., Snyder, A.Z., and Sapir, A. (2005). Neural basis and
recovery of spatial attention deficits in spatial neglect. Nature neuroscience 8, 1603.

Coull, J., Frith, C., Frackowiak, R.S.J., and Grasby, P. (1996). A fronto-parietal network for rapid
visual information processing: a PET study of sustained attention and working memory.
Neuropsychologia 34, 1085-1095.

Fabbri, S., Strnad, L., Caramazza, A., and Lingnau, A. (2014). Overlapping representations for
grip type and reach direction. Neuroimage 94, 138-146.

Fischl, B., Van Der Kouwe, A., Destrieux, C., Halgren, E., Ségonne, F., Salat, D.H., Busa, E.,
Seidman, L.J., Goldstein, J., and Kennedy, D. (2004). Automatically parcellating the human
cerebral cortex. Cerebral cortex 14, 11-22.

Garrity, A.G., Pearlson, G.D., McKiernan, K., Lloyd, D., Kiehl, K.A., and Calhoun, V.D. (2007).
Aberrant “default mode” functional connectivity in schizophrenia. American journal of
psychiatry 164, 450-457.

Glasser, M.F,, Sotiropoulos, S.N., Wilson, J.A., Coalson, T.S., Fischl, B., Andersson, J.L., Xu, J.,
Jbabdi, S., Webster, M., and Polimeni, J.R. (2013). The minimal preprocessing pipelines for the
Human Connectome Project. Neuroimage 80, 105-124.

Gu, S., Pasqualetti, F., Cieslak, M., Telesford, Q.K., Alfred, B.Y., Kahn, A.E., Medaglia, J.D., Vettel,
J.M., Miller, M.B., and Grafton, S.T. (2015). Controllability of structural brain networks. Nature
communications 6, 8414.

Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C.J., Wedeen, V.J., and Sporns, O.
(2008). Mapping the structural core of human cerebral cortex. PLoS biology 6, e159.

Holland, J., and Goldberg, D. (1989). Genetic algorithms in search, optimization and machine
learning. Massachusetts: Addison-Wesley.

Jbabdi, S., and Johansen-Berg, H. (2011). Tractography: where do we go from here? Brain
connectivity 1, 169-183.

Karnath, H.O., Himmelbach, M., and Rorden, C. (2002). The subcortical anatomy of human
spatial neglect: putamen, caudate nucleus and pulvinar. Brain 125, 350-360.

Klamka, J. (1963). Controllability of linear dynamical systems.

Land, A.H., and Doig, A.G. (1960). An automatic method of solving discrete programming
problems. Econometrica: Journal of the Econometric Society, 497-520.

Molnar Jr, F., Derzsy, N., Szymanski, B.K., and Korniss, G. (2015). Building damage-resilient
dominating sets in complex networks against random and targeted attacks. Scientific reports
5, 8321.



Nacher, J.C.,, and Akutsu, T. (2013). Structural controllability of unidirectional bipartite
networks. Scientific reports 3, 1647.

Nacher, J.C., and Akutsu, T. (2014). Analysis of critical and redundant nodes in controlling
directed and undirected complex networks using dominating sets. Journal of Complex
Networks 2, 394-412.

Petrie, C.J., Webster, T.A., and Cutkosky, M.R. (1995). Using Pareto optimality to coordinate
distributed agents. Al EDAM 9, 269-281.

Power, J.D., Cohen, A.L.,, Nelson, S.M., Wig, G.S., Barnes, K.A., Church, J.A., Vogel, A.C,
Laumann, T.O., Miezin, F.M., and Schlaggar, B.L. (2011). Functional network organization of the
human brain. Neuron 72, 665-678.

Rubinov, M., and Sporns, O. (2010). Complex network measures of brain connectivity: uses and
interpretations. Neuroimage 52, 1059-1069.

Sestieri, C., Capotosto, P., Tosoni, A., Romani, G.L., and Corbetta, M. (2013). Interference with
episodic memory retrieval following transcranial stimulation of the inferior but not the
superior parietal lobule. Neuropsychologia 51, 900-906.

Smith, R.E., Tournier, J.-D., Calamante, F., and Connelly, A. (2012). Anatomically-constrained
tractography: improved diffusion MRI streamlines tractography through effective use of
anatomical information. Neuroimage 62, 1924-1938.

Sporns, O., Honey, C.J., and Koétter, R. (2007). Identification and classification of hubs in brain
networks. PloS one 2, e1049.

Sturm, W., De Simone, A., Krause, B., Specht, K., Hesselmann, V., Radermacher, I., Herzog, H.,
Tellmann, L., Miller-Gartner, H.-W., and Willmes, K. (1999). Functional anatomy of intrinsic
alertness: evidencefor a fronto-parietal-thalamic-brainstem network in theright hemisphere.
Neuropsychologia 37, 797-805.

Szalkai, B., Kerepesi, C., Varga, B., and Grolmusz, V. (2015). The Budapest reference
connectome server v2. 0. Neuroscience Letters 595, 60-62.

Tang, E., Giusti, C., Baum, G.L., Gu, S., Pollock, E., Kahn, A.E., Roalf, D.R., Moore, T.M., Ruparel,
K., and Gur, R.C. (2017). Developmental increases in white matter network controllability
support a growing diversity of brain dynamics. Nature Communications 8, 1252.

Tournier, J.-D., Calamante, F., Gadian, D.G., and Connelly, A. (2004). Direct estimation of the
fiber orientation density function from diffusion-weighted MRI data using spherical
deconvolution. Neurolmage 23, 1176-1185.

Tournier, J.D., Calamante, F., and Connelly, A. (2012). MRtrix: diffusion tractography in crossing
fiber regions. International Journal of Imaging Systems and Technology 22, 53-66.

Van Den Heuvel, M.P., and Sporns, O. (2011). Rich-club organization of the human connectome.
Journal of Neuroscience 31, 15775-15786.

Watanabe, T., Hirose, S., Wada, H., Imai, Y., Machida, T., Shirouzu, |., Konishi, S., Miyashita, Y.,
and Masuda, N. (2013). A pairwise maximum entropy model accurately describes resting-state
human brain networks. Nature communications 4, 1370.

Woods, D.L., and Alain, C. (2009). Functional imaging of human auditory cortex. Current
opinion in otolaryngology & head and neck surgery 17, 407-411.

Wuchty, S. (2014). Controllability in protein interaction networks. Proceedings of the National
Academy of Sciences 111, 7156-7160.

Xu, P,, Huang, R., Wang, J., Van Dam, N.T., Xie, T., Dong, Z., Chen, C,, Gu, R., Zang, Y--F,, and He,
Y. (2014). Different topological organization of human brain functional networks with eyes
open versus eyes closed. Neuroimage 90, 246-255.



	The Hidden Control Architecture of Complex Brain Networks
	Introduction
	Results
	Composition of Minimum Dominating Set in Brain Networks
	Identification of the Hidden Control Architecture of Brain Networks
	The Structural Principle Underlying the Composition of MDSet in Brain Networks
	Exploring the Development of Control Architecture by Artificial Network Evolution

	Discussion
	Limitations of the Study

	Methods
	Supplemental Information
	Acknowledgments
	Author Contributions
	Declaration of Interests
	References


