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A B S T R A C T   

Major depressive disorder is among the most prevalent psychiatric disorders, exacting a substantial personal, 
social, and economic toll. Antidepressant treatment typically involves an individualized trial and error approach 
with an inconsistent success rate. Despite a pressing need, no reliable biomarkers for predicting treatment 
outcome have yet been discovered. Brain MRI measures hold promise in this regard, though clinical translation 
remains elusive. In this review, we summarize structural MRI and functional MRI (fMRI) measures that have been 
investigated as predictors of treatment outcome. We broadly divide these into five categories including three 
structural measures: volumetric, white matter burden, and white matter integrity; and two functional measures: 
resting state fMRI and task fMRI. Currently, larger hippocampal volume is the most widely replicated predictor of 
successful treatment. Lower white matter hyperintensity burden has shown robustness in late life depression. 
However, both have modest discriminative power. Higher fractional anisotropy of the cingulum bundle and 
frontal white matter, amygdala hypoactivation and anterior cingulate cortex hyperactivation in response to 
negative emotional stimuli, and hyperconnectivity within the default mode network (DMN) and between the 
DMN and executive control network also show promise as predictors of successful treatment. Such network- 
focused measures may ultimately provide a higher-dimensional measure of treatment response with closer ties 
to the underlying neurobiology.   

1. Introduction 

Major Depressive Disorder (MDD) is among the most ubiquitous 
psychiatric disorders affecting nearly 300 million people worldwide 
(Whiteford et al., 2010), with the highest disability-adjusted life years of 
any mental illness (Murray et al., 2012). Its adverse effects are felt from 
the individual to the societal level, impacting quality of life (Brenes, 
2007), incurring a $210 billion economic burden (Greenberg et al., 

2015), and, in up to 8% of depressed individuals, resulting in suicide 
(Strakowski and Nelson, 2015). As a first-line treatment, pharmaco
therapy has an eventual success rate between 54% and 71% (Fava and 
Davidson, 1996). However, as explicitly stated in one clinician’s guide 
(Eisenberg Center at Oregon Health & Science University, 2007), “There 
is no evidence to guide selection of the best initial drug for an individ
ual.” Hence, antidepressant treatment assumes a trial-and-error 
approach, with medication selection based on physician and patient 
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preferences, an approach that may prolong the course of the disease 
through unsuccessful trials. Given the negative outcomes associated 
with depression, there is a pressing need for development of biomarkers 
of treatment response. 

MDD is a highly heterogeneous disorder, both phenomenologically 
and pathophysiologically (Monroe and Anderson, 2015), with an 
equally unpredictable treatment outcome. This poses a serious challenge 
for the development of clinically relevant biomarkers, and it is unlikely 
that any single biomarker will provide substantial predictive value 
across the multi-dimensional spectra of depression. Nevertheless, by 
focusing on specific neurobiological facets of MDD and treatment 
response, we may be able to advance prediction science toward better 
clinical outcomes. 

One important source of heterogeneity within depression is differ
entiation across the life span. Adolescence, mid-life, and late-life show 
marked differences in pathophysiology, clinical profiles and neurobio
logical makers (Kessler, 2010). Late-life depression (LLD) is particularly 
pernicious, as it carries a longer treatment response time together with a 
higher relapse rate (Aizenstein et al., 2014). There is also evidence of 
distinct neural differences in LLD versus mid-life depression (Aizenstein 
et al., 2014). Cognitive decline, neurodegeneration, and increased ce
rebrovascular burden may all play a more important role in LLD. 

There is no single modality capable of capturing the complex path
ophysiology underlying treatment response in MDD. Neuroimaging, 
gene expression, proteomics, neuroendocrinology and other modalities 
all may contribute in varying extents and interrelatedly toward the goal 
of understanding treatment response (Breitenstein et al., 2014). Mag
netic resonance imaging (MRI) is the most widespread neuroimaging 
method owing to its full brain coverage, spatial resolution, and non- 
invasiveness. Furthermore, functional MRI (fMRI) gives a window into 
the temporal dynamics of brain activity through the blood-oxygen level 
dependent (BOLD) signal. With MRI, structural differences of both grey 
and white matter, regional activation in response to stimuli or task, or 
regional correspondence of spontaneous brain activity can provide a 
window into the neurobiological differences that influence depression 
treatment response. 

This naturalistic review aims to assemble and contextualize the most 
relevant and recent literature using structural and functional MRI to 
predict antidepressant treatment outcome. We briefly describe our 
search constraints and methods and then summarize the literature of 
three major structural predictors: volumetric analysis, white matter 
hyperintensity (WHM) burden, and white matter integrity; and two 
major functional predictors: resting state functional connectivity (FC) 
and task activation. We conclude with a discussion of future directions 
in prediction science. 

2. Methods 

The focus of this review is on imaging studies of pharmacotherapy 
response in non-psychotic MDD (including adult and geriatric, but not 
adolescent populations). Primary treatment must have been by phar
macotherapy with FDA-approved antidepressants as this is the most 
common treatment approach (Practice guideline for the treatment of 
patients with major depressive disorder (revision), 2000). Ketamine and 
other less common or investigational drugs are not included. Studies 
that employ a naturalistic treatment paradigm are included. Psycho
therapy is a common and effective alternative to antidepressant treat
ment. However, given the more direct biological pathway of 
antidepressants and emerging evidence of differences in neurobiological 
mechanisms between antidepressants and psychotherapy (Treatment 
outcomes and neural mechanisms, 2008), we restrict our focus to studies 
of antidepressant treatment. For all the reviewed studies, at minimum, a 
baseline pre-treatment MRI scan must have been performed. Finally, for 
MRI, we include all structural and functional modalities. MR spectros
copy is not considered in this review. 

This review considers both outcome prediction from baseline MRI 

measures alone and prediction from longitudinal changes in MRI mea
sures during treatment. Both have clinical utility and provide insights 
into neurobiological mechanisms, though they differ in subtle, but 
important ways. Given equal predictive capacity, baseline prediction is 
clinically preferable as it does not require additional visits or a time 
delay in guiding treatment selection. However, the biomarkers are more 
associative in nature and therefore do not provide information about the 
neurobiological changes associated with the dynamic clinical course. 
Longitudinal studies, in contrast, examine MRI-measurable changes that 
take place over the course of treatment. This approach provides valuable 
insight about changes in the neurobiological processes associated with 
successful treatment. However, they are less practical for acute clinical 
prediction of treatment outcome since they require multiple scans. 
Throughout this review, we use increase/decrease to specifically imply 
longitudinal changes. 

One primary challenge is the heterogeneity of study designs. While 
an impediment to data synthesis, it can also provide valuable explana
tions for seemingly contradictory results. For this reason, we restrict 
ourselves to a review rather than a meta-analysis. However, we do 
provide a subjective classification of evidence for specific findings in the 
literature as none, weak, moderate or strong based off the number, size, 
and quality of studies reporting 1) an effect, 2) a null finding, and 3) an 
effect in the opposite direction. One primary source of heterogeneity is 
in the treatment outcome definition. Many of the studies define remis
sion as achieving a Hamilton Depression Rating Scale (HDRS) score less 
than or equal to 7 or Montogmery-Asberg Depression Rating Scale 
(MADRS) score less than 10. This is often accompanied by the require
ment that it must remain below those cutoffs for at least 2 weeks. 
Response is usually defined as at least a 50% reduction in the HDRS or 
MADRS. As a continuous measure, change in HDRS or MADRS (relative 
or absolute) is also frequently analyzed and will be referred to as 
symptomatic improvement. Still other studies report group-level effects 
for the whole cohort, regardless of clinical outcome. These findings in 
particular are difficult to interpret. Time to achieve response/remission 
is yet another source of heterogeneity, with trials of 6 to 12 weeks being 
the most common. Remission and response will be used without further 
clarification in this paper if they fall within these guidelines. Further
more, ‘treatment outcome’ will be used as an umbrella term for remis
sion, response, and symptomatic improvement. Most of the studies 
included in this review are open-label, so treatment outcome is generally 
susceptible to placebo effects. As a final nomenclature note, we specif
ically label studies as small or large if the number of depressed partici
pants does not exceed 20 or is at least 100, respectively. A lack of remark 
on the study size implies the sample size lies somewhere between these 
bounds (20< n <100). 

The literature search was conducted on MEDLINE with the following 
queries: 

((depression[Abstract] OR depressed[Abstract]) NOT bipolar[Ab
stract]) AND 

(MRI[Abstract] OR volume[Abstract] OR structure[Abstract] OR 
structural[Abstract]) AND. 

treatment[Abstract] NOT 
(adolescent[Abstract] OR adolescence[Abstract]). 
((depression[Abstract] OR depressed[Abstract]) NOT bipolar[Ab

stract]) AND 
(diffusion[Abstract] OR DTI[Abstract]) AND 
treatment[Abstract] NOT 
(adolescent[Abstract] OR adolescence[Abstract]). 
((depression[Abstract] OR depressed[Abstract]) NOT bipolar[Ab

stract] AND 
(fMRI[Abstract] OR functional magnetic resonance[Abstract] OR 

functional MRI[Abstract]) AND 
treatment[Abstract] NOT 
(adolescent[Abstract] OR adolescence[Abstract]). 
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3. Structural predictors 

Structural MRI is particularly appealing for clinical implementation 
owing to the simplicity of acquisition and (often) ease of interpretation. 
The association of structural MRI measures with treatment outcome 
most commonly fall into three broad categories: (1) volumetric analysis, 
(2) WMH burden, and (3) regional or tract-based white matter integrity. 

3.1. Volumetric analysis 

Volumetric analysis is the most frequently reported structural mea
sure for predicting treatment outcome. Early approaches typically relied 
upon manual segmentation of a small number of structures, most often 
the hippocampus. The focus on the hippocampus is owed to the stress- 
toxicity hypothesis of depression, which posits that depression-related 
chronic hypercortisolemia may decrease the hippocampal volume over 
time (McEwen, 1992). Methodological advances, primarily voxel-based 
morphometry (VBM), allowed for whole-brain volumetric analysis 
without manual segmentation (Ashburner and Friston, 2000). Machine 
learning methods have provided yet another avenue for prediction from 
structural images without pre-defining the features of interest. All re
ported volumes are baseline measures before commencing antidepres
sant treatment unless otherwise noted. Results are summarized in 
Table 1 and Fig. 1. 

3.1.1. Hypothesis-driven volumetric results 
We found fourteen studies examining hippocampal volume as a 

predictor of treatment outcome. The finding that greater baseline hip
pocampal volume is associated with better outcome has been highly 
replicated, with only four studies (two large recent studies in mid-life 
(Bartlett et al., 2018) and LLD (Ahmed et al., 2022), a another LLD 
study (Khalaf et al., 2015), and a small mid-life study(Toki et al., 2014)) 
failing to find such an effect, all in the context of wider biomarker 
investigation. The specifics, however, differ across the studies. A large 
LLD study reported larger hippocampal volume was associated with 
remission, as well faster treatment response (Sheline, 2012). The pre
dictive value of hippocampal volume for remission has been localized to 
the hippocampal body and tail, but not head (MacQueen et al., 2008). 
More recently, the hippocampal tail finding has been replicated with 
increasingly finer parcellations of the hippocampus in large samples 
(Maller, 2018; Nogovitsyn et al., 2020). A recent naturalistic study 
found both left and right hippocampal volume predicted remission in a 

treatment-naïve cohort, which removes the confound of antidepressant 
history (Zarate-Garza, 2021). Hippocampal volume has been examined 
with and without normalization by the whole-brain volume. Two studies 
compared normalized and unnormalized hippocampal volumes directly 
and found that normalization strengthened the differentiation between 
remitters and non-remitters (Vakili, 2000), (Hsieh, 2002). Interestingly, 
these are the same two studies that noted a stronger association of right 
hippocampal volume to remission. In fact, one of the studies found only 
the right hippocampal volume predicted remission, an effect which was 
limited to women (Vakili, 2000). The other study, consisting of a geri
atric cohort, found both total and right, but not left, hippocampal vol
ume was positively associated with treatment response (Hsieh, 2002). 
Furthermore, this finding was only for the upper and lower quartiles, 
indicating that the predictive power of hippocampal volume may be 
concentrated at the ends of the spectrum. 

Longitudinal studies that have examined volumetric changes in 
depressed participants have reported mixed results. Two studies failed 
to find an association between remission status and changes in hippo
campal volume: one twelve week trial in LLD did, however, report 
nearly significant increases in hippocampal volume for remitters and 
decreases for non-remitters (Khalaf et al., 2015) and one year-long trial 
in mid-life (Frodl, 2004). Three other studies did report such an asso
ciation, all implicating the left hippocampus. In one study following 
depressed patients over a three year period, only the left hippocampus 
showed a significant increase in a subgroup of patients who remained on 
antidepressant throughout the trial, regardless of remission status 
(Frodl, 2008). Similarly, a study integrating predictors from structural 
and functional MRI found that an increase in left hippocampal volume 
one week after treatment onset predicted remission (Fu et al., 2015). 
Another study in LLD found that the only significant change in left and 
total (but not right) hippocampal volume over two years was a decrease 
in the nonremitters (Taylor, 2014). 

Volumetric analysis for predicting treatment outcome has also tar
geted the amygdala, anterior cingulate cortex (ACC), cerebral spinal 
fluid (CSF), as well as the whole brain. None of the studies we reviewed 
found an association between amygdala volume and remission (Frodl, 
2004; Frodl, 2008; Fu et al., 2015). This should not be interpreted as an 
indictment of the amygdala’s role in treatment response (see Functional 
Predictors section), but merely an indication that functional and struc
tural markers may reflect different pathophysiological features of MDD. 
Similarly, ACC volume and cortical thickness have been investigated as 
biomarkers of treatment outcome owing to the region’s key role in 
emotion regulation (Handbook of emotion regulation, 2014). Two LLD 
studies focused specifically on ACC volume reported that larger dorsal 
and rostral (but not subgenual) ACC volumes were associated with 
remission (Gunning-Dixon, 2009) and larger posterior subgenual ACC 

Table 1 
Summary of volumetric predictors of treatment outcome.  

Region Baseline Longitudinal Changes 

Hippocampus Strong evidence for 
association between larger 
hippocampal volume and 
positive treatment outcome, 
effect localized to body/tail, 
mixed results for lateralization 

Moderate evidence for 
association between increases 
in hippocampal volume and 
positive treatment outcome, 
left lateralization, various time 
scales. 

Amygdala None reported despite 
targeted investigations 

None reported 

ACC Moderate evidence for 
association between larger 
ACC volume and positive 
treatment outcome 

None reported 

CSF Weak evidence for association 
between smaller CSF volume 
and positive treatment 
outcome 

None reported 

Middle frontal 
gyrus 

Weak evidence for association 
between larger hippocampal 
volume and positive treatment 
outcome 

None reported 

Whole-brain No association with treatment 
outcome 

None reported  

Fig. 1. Brain map of volumetric predictors of treatment outcome with subjec
tive scale. ACC = anterior cingulate cortex, CSF = cerebral spinal fluid, MFG =
middle frontal gyrus. Created with BrainNet Viewer (Botvinik-Nezer 
et al., 2020). 
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volume was associated with improvement of apathy (Yuen, 2014). 
However, a recent large study in mid-life depression found no baseline 
difference in rostral or caudal ACC volume between remitters and non- 
remitters (Bartlett et al., 2018). With enlarged CSF spaces representing a 
potential marker of brain atrophy, CSF volume has also been explored as 
a predictor of treatment outcome. A large study reported that greater 
volume of the third ventricle is associated with non-remission/response 
(Nogovitsyn et al., 2020), while another study in late-onset depression 
noted a trend of greater hemispheric and total CSF volume in non- 
responders that did not rise to the level of statistical significance 
(Baldwin, 2004). Remission status does not appear to be associated with 
whole-brain volume (Nogovitsyn et al., 2020) or cortical thickness (Suh, 
2020) in mid-life or whole-brain volume in late-life (Khalaf et al., 2015), 
(Hsieh, 2002), though one study on treatment-resistant depression did 
find that an increase in whole-brain volume over a 6-month course of 
treatment was associated with remission (Phillips et al., 2012). 

3.1.2. Data-driven volumetric results 
A more general approach to identify neuroimaging predictors of 

treatment outcome is to analyze structural MRI without a predefined 
region of interest. This avoids the pitfalls associated with the streetlight 
effect, but presents a more challenging problem, particularly with 
respect to controlling false positives. One early study employed 
thresholding and permutation testing to voxel-wise regression and found 
that faster symptomatic improvement was correlated with larger grey 
matter volumes in the ACC, insula, and right temporo-parietal cortex in 
a small sample (Chen, 2007). A study using whole-brain principal 
component analysis for data-reduction and penalized regression for 
feature selection found greater cortical thickness in the inferior and 
middle frontal gyrus predicted remission at 16 weeks (Motter, 2021). 
Most whole-brain searches, however, have relied upon VBM, which in
corporates multiple comparisons corrections via random field theory 
directly into the methodology (Ashburner and Friston, 2000). The 
resulting spatial maps have been used in a plethora of ways to predict 
treatment outcome. Two studies reported that larger right ACC volumes 
were indicative of clinical remission (Costafreda et al., 2009), (Serra- 
Blasco, 2016). Higher volume of the left middle frontal gyrus has been 
associated with remission in small (Costafreda et al., 2009) and large 
studies (Korgaonkar et al., 2015), whereas lower volume of the right 
angular gyrus was associated with remission. Of note, a large study 
found that larger bilateral posterior cingulate cortex (PCC) and left 
hippocampal volumes and smaller right middle and superior temporal 
gyrus (STG) volumes predicted faster treatment response (Sämann, 
2013). Smaller right inferior and middle temporal gyrus (IFG/MFG) 
volumes at baseline, as well as decreases in left dorsolateral prefrontal 
cortex (dlPFC) volume, have also been associated with remission (Li 
et al., 2010). This latter finding stands in contrast to a small longitudinal 
study that found increasing dlPFC volume correlated with a reduction in 
Beck’s Depression Inventory (BDI) scores over the course of antide
pressant treatment (Smith et al., 2013). Unfortunately, most other re
sults from the seven VBM studies have not been replicated. 

3.2. White matter hyperintensity burden 

Vascular depression has been proposed as a subtype of depression 
(Krishnan et al., 1997) under the hypothesis that “cerebrovascular dis
ease may predispose, precipitate, or perpetuate some geriatric depres
sive syndromes.” (Alexopoulos, 1997) WMH are a key component of the 
vascular depression hypothesis for LLD (Taylor et al., 2013) as they are 
considered a marker of cerebral vasculopathy. However, the pathology 
associated with WMH is mixed, consisting of microinfarcts, gliosis, 
increased perivascular spaces, and inflammation (Merino, 2019). Before 
an automated method quantifying and localizing WMH with T2- 
weighted FLAIR images was developed (Wu, 2006), analysis required 
hand-scoring of WMH burden by neuroradiologists. Most studies have 
found greater regional WMH to be significantly associated with poor 

outcome, while none have reported greater WMH to be associated with 
better outcome. Global WMH studies were inconclusive, with two 
studies reporting higher WMH predicted remission(Gunning-Dixon, 
2010; Sneed, 2011) and three reporting no association between global 
WMH burden and remission (Khalaf et al., 2015), (Iosifescu, 2006; 
Karim, 2017), one of which was the only WMH study to focus on mid-life 
depression (Iosifescu, 2006). Two other studies, one large, failed to find 
an association between global measures of WMH and symptomatic 
improvement(Salloway et al., 2002; Sneed, 2007), while another large 
study reported that global WMH burden predicted symptomatic 
improvement, but not after controlling for baseline depression severity 
(Sheline, 2010). On the other hand, four studies reported a significant 
association with poor treatment outcome and deep WMH (Sneed, 2011), 
(Patankar, 2007; O’Brien et al., 1998; Bella et al., 2010) (generally 
defined as WMH away from ventricular structures), two others reported 
an association that was not significant after controlling for age (Baldwin, 
2004), (Iosifescu, 2006), and one study found no such association 
(Motter, 2021). Similarly three studies reported a significant association 
between periventricular WMH and poor treatment outcome (Baldwin, 
2004), (Sneed, 2011; Patankar, 2007), one reported an association that 
was not significant after controlling for age, and two studies found no 
such association (Motter, 2021), (O’Brien et al., 1998). The only study 
we found examining longitudinal changes in WMH reported a significant 
increase in global WMH in non-remitters, but not in remitters (Khalaf 
et al., 2015). Results are summarized in Table 2. 

3.3. White matter integrity 

Diffusion-weighted MRI quantifies directional coherence of fluid 
flow that can be used to quantify white matter integrity, most frequently 
measured in fractional anisotropy (FA). Diffusivity measures may offer 
complementary information (Alexander et al., 2007), though they have 
been infrequently investigated in depression treatment response. Early 
studies tended to examine FA based on regional definitions (e.g., prox
imity to ACC), which may lack a clear interpretation when the regions 
are generally defined by grey matter. More recent studies tend to target 
predefined white matter tracts (e.g., cingulum). Results are summarized 
in Table 3 and Fig. 2. 

In a series of LLD studies, remission was shown to be associated with 
higher FA in frontal white matter 15 mm above the anterior commissure- 
posterior commissure plane (small study) (Alexopoulos et al., 2002), 
higher FA in the dlPFC (Alexopoulos, 2008), and lower FA in the su
perior frontal gyrus (Taylor et al., 2008). Another study found that 
higher FA of the bilateral inferior fronto-occipital fasciculus, right su
perior fronto-occipital fasciculus, and internal capsule was associated 
with greater reduction in HDRS after 6 months of augmentation therapy 
but not placebo (Krause-Sorio et al., 2020). A longitudinal study of LLD 
did not find any changes over one year in frontal white matter FA 
associated with remission, but did report that decreases in FA of the ACC 
were associated with remission (Taylor, 2011). Higher baseline FA of the 

Table 2 
Summary of WMH predictors of treatment outcome.  

Region Baseline Association Treatment Longitudinal Changes 
with Treatment 

Deep Strong evidence for association 
between lower deep WMH burden 
and positive treatment outcome in 
LLD, age effects may be important 

None reported. 

Periventricular Moderate evidence for association 
between lower deep WMH burden 
and positive treatment outcome in 
LLD 

None reported. 

Whole-brain Weak evidence for association 
between lower global WMH burden 
and positive treatment outcome in 
LLD, most studies report none 

Weak evidence for 
increases in non- 
responders in LLD.  
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ACC has been reported to have both positive (Alexopoulos, 2008) and 
negative (Taylor et al., 2008) associations with remission status as well 
as a negative association with residual negative self-referential thinking 
in a small LLD study (Victoria, 2019). This latter study further reported 
reduced negative self-referential thinking associated with higher base
line FA of uncinate fasciculus (Victoria, 2019). Changes in whole-brain 
FA do not appear to differentiate between remitters and non-remitters in 
LLD (Khalaf et al., 2015). 

In mid-life depression, one large study (iSPOT-DWilliams et al. 
(2011)) identified the cingulum as the primary predictor of remission 
through a series of analyses. Using half the sample for testing, decision 
trees applied to 46 major white matter tracts showed that larger left 
cingulum FA was the primary predictor of remission, though lower FA of 
the right superior fronto-occipital fasciculus and higher FA of the right 
superior longitudinal fasciculus also predicted remission (Korgaonkar 
et al., 2015). A more focused study on ACC-limbic tracts found that 
remission status was positively associated with FA in the cingulum and 
negatively associated with FA in the stria terminalis (Korgaonkar et al., 
2014), then followed this up by showing that the ratio of FA in the stria 
terminalis and cingulum predicts nonremission in another sample 
(Grieve et al., 2016). A large study examining mean, axial, and radial 
diffusivity as well as FA found that higher axial diffusivity of the left 
external capsule, FA of the right superior corona radiata, and FA of the 
peripheral skeleton were significantly associated with treatment 
response (Davis, 2019). FA of specific hippocampal white matter tracts 
linking to the PCC (Korgaonkar et al., 2014) and raphe nuclei (DeLor
enzo et al., 2013), (Pillai, 2019) were not associated with treatment 
response. One of these studies did find higher FA of white matter be
tween the amygdala and raphe nuclei predicted remission status 
(DeLorenzo et al., 2013), but a replication study in a much larger cohort 
by the same group found the opposite effect, which was even greater in 
the placebo group (Pillai, 2019). Longitudinal studies have found that 
increases in FA (and associated decreases in radial diffusivity) of the 
forceps minor and superior longitudinal fasciculus were associated with 

treatment response over 12 weeks (Vieira, 2021) and increases in FA of 
the right cingulum bundle were associated with symptomatic improve
ment (Bracht et al., 2015). 

4. Functional predictors 

Functional MRI adds a temporal layer of variability over structural 
MRI by examining the blood-oxygen-level-dependent signal as a proxy 
for neuronal activity. While this increases the complexity of acquisition 
and analysis, it adds a very informative dimension to the data. fMRI 
acquisition may be unconstrained, as in resting state, or task-oriented to 
target specific brain functions and associated regions/networks. This 
allows a more targeted probing of specific neural circuitry expected to 
underlie treatment response. We focus on papers published from 2010 
onward, after the infamous dead salmon paper shined a very bright (and 
refreshingly lighthearted) spotlight on the multiple comparisons prob
lem in neuroimaging (Bennett et al., n.d.). Studies from prior to 2010 are 
discussed if they made a reasonable attempt to control for false positive 
errors and the findings have since been replicated. 

4.1. Resting state fMRI 

Resting state fMRI has been a particularly fruitful tool for exploring 
the intrinsic functional organization of the brain (Smith, 2009), despite 
challenges regarding reproducibility (Botvinik-Nezer et al., 2020). We 
broadly divide resting state analysis into two major classes: seed-based 
and network-based. The results of seed-based analysis are easily inter
pretable, though if the number of regions is large, multiple comparisons 
corrections can limit the power of detection. Network-based analysis 
relies on various data reduction techniques, most popularly independent 
component analysis (ICA) (McKeown et al., 2003) and graph theory 
approaches (Wang et al., 2010). These approaches typically limit the 
number of statistical tests, circumventing the multiple comparisons 
problem. However, interpretation of the results requires more nuance. It 
is important to note that intrinsic brain networks are not concretely 
defined. Nomenclature varies across the literature with significant 
overlap. While the default mode network (DMN) as a construct is 
ubiquitous in the literature, other networks have competing nomen
clature. Of particular relevance to depression are the other two networks 
that, with the DMN, comprise the triple network model (Menon, 2011): 
the executive control network (ECN) and salience network (SN). There is 
considerable overlap both spatially and functionally of the ECN with the 
central executive network (CEN), cognitive control network, and fronto- 
parietal network (FPN) and also of the SN with the cingulo-opercular 
network (C-ON) and ventral attention network (VAN) (Uddin et al., 
2019). Results are summarized in Table 4 and Fig. 3. 

Table 3 
Summary of white matter integrity predictors of treatment outcome.  

Region Baseline Association Treatment Longitudinal Changes 
with Treatment 

Frontal Moderate evidence for association between 
higher FA of various frontal white matter 
tracts and positive treatment outcome, may 
be specific to LLD 

None reported 

Cingulate Moderate evidence for association between 
higher FA of cingulum and positive 
treatment outcome 

None reported 

Whole- 
brain 

None reported None reported  

Fig. 2. Brain map of white matter tract predictors of treatment outcome. Higher FA of both the cingulum (left) and frontal (right) white matter tracts are associated 
with better treatment outcome. Created with DSI Studio (https://dsi-studio.labsolver.org/). 
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4.1.1. Seed-based resting state results 
Posterior Cingulate Cortex. All studies but four investigating seed- 

based resting state biomarkers for treatment outcome included a seed 
in the PCC, a central DMN hub. Unfortunately, there is little consistency 
in the results. Lower baseline FC between the PCC and the striatum in 
LLD (Andreescu et al., 2013); pregenual ACC and medial prefrontal 
cortex (mPFC) (Goldstein-Piekarski et al., 2018), and right STG in a 
large study (van der Wijk et al., 2022) predicted remission, as did greater 
FC between the PCC and the precuneus, cerebellum, STG, orbital frontal 
cortex (OFC), dorsal and pregenual ACC, and left fusiform gyrus (van der 
Wijk et al., 2022). Lower FC between the PCC and the subcallosal cortex 
has also corresponded to symptomatic improvement in a small study 
(Kozel et al., 2011). Longitudinal studies in LLD have found remission 
status is associated with increasing FC between the PCC and subgenual 
ACC/dorsomedial prefrontal cortex (dmPFC) (small study) (Wu et al., 
2011) and bilateral ITG/MTG/fusiform gyrus (Karim, 2017) as well as 
decreasing FC between the PCC and right inferior frontal and middle 
gyrus, and right supramarginal gyrus (Karim, 2017). Additionally, a 
mid-life study reported decreasing FC between the PCC and the right 
lateral parietal lobe and right ITG with antidepressant treatment but not 
placebo, regardless of clinical outcome (Posner et al., 2013). These 
heterogeneous findings may reflect the instability of finding in small 
samples, the challenges in mapping a highly heterogenous clinical 
construct on a region, or the multiple functions supported by PCC 
beyond its role as a hub of the DMN. 

Dorsolateral Prefrontal Cortex. As a central hub of the ECN, FC of the 
dlPFC has also been explored, though far less extensively than the PCC. 
One LLD study reported greater connectivity between the dlPFC and the 
dorsal ACC and inferior parietal lobe predicted remission (Alexopoulos, 
2012), while another large study in mid-life found no significant asso
ciation between the dlPFC FC and remission (van der Wijk et al., 2022). 
A longitudinal study in LLD, however, did find that increasing FC be
tween the dlPFC and the right pre- and postcentral gyrus and decreasing 
FC between the dlPFC and right MTG and occipital gyrus were associ
ated with remission (Karim, 2017). 

Anterior Cingulate Cortex. Given that the ACC has been heavily 
implicated in task-based indicators of treatment outcome, it is surprising 
that it has not received as much attention as the PCC in the resting state 
literature. Complicating matters, the ACC has a particularly diverse set 
of functions and connections within the brain (Rolls, 2019), requiring 
finer subdivisions. For example, the dorsal ACC is considered a primary 
hub of the SN (Menon and Uddin, 2010), while the pregenual and 
subgenual ACC are strongly affiliated with the DMN (Greicius, 2007), 
and the posterior ACC is considered to be a minor region of the ECN 
(Uddin et al., 2019). Successful treatment has been associated with 
lower baseline connectivity between the subgenual ACC and the dorsal 
ACC (small study) (Kozel et al., 2011), ventromedial PFC (large study) 
(Dunlop, 2017), and PCC (Goldstein-Piekarski et al., 2018). One large 
study found that higher connectivity between the pregenual ACC and 
the cerebellum, PCC, and right occipital cortex and lower connectivity to 
the dlPFC, anterior medial PFC, right subgenual ACC, right caudate 
nucleus, right STG, left insula, and right extrastriate cortex differentiates 
early remitters from late remitters (van der Wijk et al., 2022). Another 
study reported deficits in subgenual ACC to dlPFC and dorsal ACC to 
right amygdala connectivity between depressed participants and 
healthy controls that normalized with treatment, but did not directly 
relate this to remission or response status (Zhang, 2021). Finally, ex
amination of dynamic FC in a large first-episode study reported that the 
pregenual ACC maintains a more stable connectivity pattern in re
sponders than non-responders (Tian, 2019). 

Limbic Regions. Connectivity of the limbic regions has also been 
investigated for prediction of treatment outcome. FC between the insula, 
a hub of the SN, and cerebellum, extrastriate cortex, and right opercu
lum was negatively associated with remission status, while connectivity 
to the left angular gyrus, putamen, mPFC, and parahippocampal gyrus 
was positively associated in a large study (van der Wijk et al., 2022). 
Additionally, a study in LLD reported higher baseline FC between the 
insula and left inferior/middle frontal gyrus was associated with 
remission (Karim, 2017). A study focused on reward circuitry reported a 
normalizing (compared to healthy controls) decrease of FC between the 
right striatum and left superior frontal gyrus, right caudate nucleus and 
left precuneus, and right superior ventral striatum (VS) and left inferior 
parietal lobe, as well as a normalizing increase of FC between the right 
inferior VS and left cerebellum after treatment, regardless of treatment 
outcome (Wang, 2019). Finally, one study focused solely on hippo
campal connectivity reported FC between the left hippocampus and left 

Table 4 
Summary of resting state predictors of treatment outcome.  

Region Baseline Association Treatment Longitudinal Changes with Treatment 

DMN 
(PCC) 

Mixed evidence for association between both higher and lower DMN FC and 
positive treatment outcome, heavily investigated 

Mixed evidence for association between both increased and decreased FC and 
positive treatment outcome, heavily investigated 

SN (ACC) None reported None reported 
ECN 

(dlPFC) 
Weak evidence for association between higher ECN FC and positive treatment 
outcome 

None reported 

DMN – 
ECN 

Moderate evidence for association between higher DMN-ECN FC and positive 
treatment outcome, consistent results but few studies 

Moderate evidence for association between decreased DMN-ECN FC and positive 
treatment outcome, consistent results but few studies 

ECN – SN Weak evidence for association between higher ECN-SN FC and positive treatment 
outcome, LLD specific 

None reported 

SN – DMN Moderate evidence for association between higher SN-DMN FC and positive 
treatment outcome 

None reported  

Fig. 3. Resting state network fMRI predictors of treatment outcome with sub
jective scale. Within network connectivity is indicated by the network maps, 
between network connectivity is indicated by arrows. DMN = default mode 
network, ECN = executive control network, SN = salience network. Created 
with itk-SNAP (Yushkevich et al., 2006). 
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inferior frontal gyrus and precuneus was associated with response after 
two weeks (Xiao, 2021). 

4.1.2. Network-based resting state results 
ICA offers a fundamentally different approach to FC, focusing on 

data-driven networks rather than region-wise connectivity. One study 
identified higher baseline FC in anterior and posterior DMN in depressed 
compared to healthy controls; regardless of outcome, antidepressant 
treatment normalized the connectivity in the posterior, but not in the 
anterior DMN (Li, 2013). Another study found that lower baseline FC of 
a subgenual ACC/orbitofrontal DMN subnetwork was associated with 
greater symptomatic improvement. Further, this study reported an 
overall decrease in connectivity between the DMN and bilateral pre
frontal regions, auditory processing cortex, and visual/extrastriate cor
tex as well as increasing connectivity with the rostral ACC, frontal pole, 
right hippocampus, parahippocampus, angular gyrus, and middle oc
cipital gyrus (Fu et al., 2015), irrespective of outcome. The ECN also 
differentiated treatment response, with higher FC to the posterior DMN, 
somatomotor network (SMN), and somatosensory association cortex 
indicating better response (Martens et al., 2021). Finally, a study on 
placebo effects found that SN connectivity in the rostral ACC predicted 
symptomatic improvement, though the effect was demonstrated to be 
primarily due to the placebo lead-in (Sikora, 2016). 

The network-based statistic (NBS) (Zalesky et al., 2010), a graph- 
based approach to control the family-wise error rate for testing the 
connectome conceptually similar to cluster thresholding, has become an 
increasingly popular tool for discriminating important connections. A 
large study employing NBS found the DMN was the primary dis
tinguisher between remitters and non-remitters with the following 
associated with remission: greater within DMN connectivity, greater 
connectivity between the DMN, FPN, and SMN, greater connectivity 
between the DMN and visual, limbic, auditory and VAN, and greater 
connectivity between the FPN/SMN and C-ON/dorsal attention network 
(Korgaonkar et al., 2020). Another study employing NBS noted that the 
DMN, VAN, and FPN were the primary predictors remission and 
response, though the method precluded an overall directionality of the 
effect (Klöbl, 2020). A large study investigating intra- and inter-network 
connectivity strength reported that greater internal DMN connectivity 
and lower external ECN connectivity predicted symptom improvement 
(Fan et al., 2020). In the same large cohort, one week decreases in DMN 
connectivity, increases in CEN to SMN connectivity, increases in the 
global connectivity of the bilateral caudate nucleus and right rostral 
ACC, and decreases in the global connectivity of the left SMN were 
associated with treatment response compared to placebo (Nemati et al., 
2020). A few studies have used other traditional graph theoretic sum
mary measures. A study in LLD reported that whole-brain eigenvector 
centrality, a measure of a region’s influence/degree of connectivity in a 
given network, was positively associated with remission in the left 
inferior frontal gyrus and negatively associated in the right para
hippocampus, right fusiform gyrus, and left caudate nucleus (Karim, 
2018). It has also been reported that degree centrality, a measure of total 
FC strength, increases in the hippocampus and decreases in the dmPFC 
over the course of treatment are associated with symptomatic 
improvement (Wang, 2015) and that global characteristic path length, a 
measure of network efficiency, is negatively associated with reduction in 
depressive symptoms (large study) (Zhang, 2021). Finally, a study 
investigating longitudinal changes in DMN subsystems reported that 
average connectivity within the core DMN network increased with 
treatment (normalized relative to healthy controls) without regard to 
treatment outcome (Cui et al., 2021). 

4.1.3. Miscellaneous resting state results 
We found five studies that do not fit into the above methodological 

categories. A large study examining pair-wise FC as a moderator be
tween treatment and placebo arms found that higher connectivity 
within the DMN and between the DMN and ECN was predictive of 

symptomatic improvement (Chin Fatt, 2020). Normalized amplitude of 
low frequency fluctuations (ALFF), a measure of regional activity 
strength in the canonical resting state frequency range, in the right 
lingual gyrus was reported to be positively associated with symptomatic 
improvement, while cerebellar ALFF showed a negative association 
(Wang et al., 2014). Another study in LLD employing ALFF reported that 
responders had greater ALFF in the dmPFC and lower ALFF in the 
ventromedial PFC and subgenual ACC compared to non-responders 
(Emam et al., 2019). Baseline functional stability, a measure of the 
consistency of FC over time, of the ACC, calcarine sulcus, and middle 
occipital gyrus was reported to be associated with remission status in a 
large study (Li et al., 2021). Finally, voxel-mirrored homotopic con
nectivity, a measure of inter-hemispheric coordination, was employed to 
find a positive association between higher inter-hemispheric coordina
tion in the precuneus and ITG and remission status and a negative as
sociation in the middle frontal gyrus and caudate nucleus (Hou et al., 
2016). 

4.2. Task-based fMRI 

Task-based imaging putatively engages specific neural processes of 
interest, eliciting a more targeted neural response. In depression, tasks 
typically invoke emotion reactivity and regulation, cognitive control, 
and reward processing. Analysis can focus either on activation 
(increased BOLD signal) during a particular aspect of the task or on 
identifying contrasts between different portions of the task. Resulting 
activation or contrast maps are typically fed into a general linear model 
to identify associations with variables of interest, such as treatment 
outcome. Results are summarized in Table 5 and Fig. 4. 

4.2.1. Emotion-regulation task results 
Tasks targeting the emotion regulation circuitry have been employed 

most frequently to identify depression treatment biomarkers. 

Table 5 
Summary of task activation predictors of treatment outcome.  

Region Baseline Association Treatment Longitudinal Changes with 
Treatment 

Amygdala Strong evidence for association 
between lower amygdala 
activation and positive 
treatment outcome in emotional 
tasks with negative stimuli 

Moderate evidence for 
association between decreased 
amygdala activation and positive 
treatment outcome in emotional 
tasks with negative stimuli 

subgenual 
ACC 

Weak evidence for association 
between higher sgACC 
activation and positive 
treatment outcome in emotional 
tasks with negative stimuli 

None reported 

pregenual 
ACC 

Moderate evidence for 
association between higher 
pgACC activation and positive 
treatment outcome in emotional 
tasks with negative stimuli and 
cognitive tasks 

None reported 

dorsal ACC Weak evidence for association 
between lower dACC activation 
and positive treatment outcome 
in emotional tasks with negative 
stimuli 

Mixed evidence for association 
between increased and decreased 
dACC activation and positive 
treatment outcome in emotional 
tasks with negative stimuli 

PCC Weak evidence for association 
between higher PCC activation 
and positive treatment outcome 
in emotional tasks with negative 
stimuli 

Weak evidence for association 
between decreased PCC 
activation and positive treatment 
outcome in emotional tasks with 
negative stimuli 

dlPFC Weak evidence for association 
between higher dlPFC 
activation and positive 
treatment outcome in cognitive 
tasks 

Weak evidence for association 
between decreased dlPFC 
activation and positive treatment 
outcome in cognitive tasks 

Insula None reported None reported  
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Amygdala. Two studies associated response with lower amygdala 
activation when viewing negative emotional faces (Ruhé et al., 2011) 
and subliminal happy and threatening faces (Williams, 2015). The latter 
study also reported that lower amygdala activation while viewing sub
liminal sad faces was associated with response to venlafaxine, but not 
escitalopram or sertraline, while noting that these associations were 
only present for response, not remission (Williams, 2015). A small study 
invoking a word relevance task did not find a significant difference 
between responders and non-responders at baseline, but did report 
amygdala activity increased for positive words and decreased for 
negative words compared to non-responders after treatment (Young, 
2020). Other longitudinal studies have found decreases in right amyg
dala activation to masked sad faces and increases in left amygdala 
activation to masked happy faces in a small study regardless of clinical 
outcome (Victor et al., 2010), similarly outcome-agnostic decreases in 
amygdala activation to sad but not fearful faces (Arnone, 2012), in
creases in amygdala activation to subliminal happy and threatening 
faces for responders and decreases in amygdala activation to subliminal 
sad faces for non-responders (Williams, 2015), and outcome-agnostic 
decreases in response to fearful vs. happy faces after one week of anti
depressant treatment (Godlewska et al., 2016). This trend is also sup
ported by numerous small studies from before 2010 that found bilateral 
decreases in amygdala activation to masked fearful faces after treatment 
(Sheline, 2001), decreases in left amygdala activation during a sad facial 
recognition task (Fu, 2004), and bilateral decreases amygdala activation 
to negative versus neutral emotional stimuli (Anand et al., 2007). In all 
three of the aforementioned studies, the trends were observed in the 
entire depressed cohort regardless of remission/response status, though 
it is worth noting that all three report a significant group decrease in 
HDRS across the studies. Still, another study noted changes in amygdala 
activation while viewing emotional faces were not associated with 
treatment response (Ruhé et al., 2011). Overall, high baseline amygdala 
activation and post-treatment decreases in amygdala activation to 
negative or sad stimuli seems be robustly associated with positive 
treatment outcome, suggesting a potentially reliable biomarker. 

Anterior Cingulate Cortex. Improved treatment outcomes have been 
associated with higher activation of the subgenual ACC in a small study 
employing a gender discrimination task of sad faces (Keedwell, 2010), 
higher activation of the pregenual ACC for sad vs. happy faces in a 
backward masking paradigm (Godlewska, 2018), higher activation of 
the pregenual ACC to negative pictures (Preuss et al., 2020), and lower 
activation in the dorsal ACC during negative word processing (small 
study) (Miller, 2013). Additionally, activation decreases of the dorsal 
ACC while viewing fearful compared to happy faces one week after 
starting treatment predicted treatment response (Godlewska et al., 

2016). Small studies from before 2010 also found treatment response 
was associated with activation increases in negative versus neutral 
contrasts of affective picture viewing in an unspecified portion of the 
ACC (Davidson et al., 2003), higher baseline pregenual and subgenual 
ACC activation in negative versus neutral contrasts of emotional face 
viewing (Chen, 2007), and decreases in right subgenual ACC activation 
during sad face viewing (Keedwell, 2009). Lower activation of the 
bilateral mid-cingulate during emotion regulation was associated with 
remission in LLD, as was activation increases of the mid-cingulate during 
emotion regulation after a first dose of medication (Karim, 2018). 

Posterior Cingulate Cortex. Higher activation of the PCC while 
viewing negative faces (Samson, 2011), more general negative images 
(Rizvi, 2013; Preuss et al., 2020), and general positive images (Preuss 
et al., 2020) was associated with response/symptomatic improvement, 
as was lower PCC activation in an emotion discrimination task, but only 
at two weeks and not four (Spies et al., 2017). Irrespective of treatment 
outcome, longitudinal studies have reported increases in PCC activation 
during emotion regulation in LLD (Khalaf, 2016), increases of PCC 
activation (normalizing relative to healthy controls) while viewing 
medium and high-intensity facial expressions (Fu et al., 2015), and de
creases in PCC activation for the negative minus neutral contrast in the 
emotional Stroop task (Fu et al., 2015). 

Frontal regions. Findings are generally limited to tasks that require 
active participation from the participants. In two small studies, symp
tomatic improvement was reported to be associated with lower 
ventrolateral PFC activation to sad or happy faces during a gender 
discrimination task (Keedwell, 2010) and lower dlPFC activation during 
negative word processing (Miller, 2013). Further, greater activation of 
the left middle frontal gyrus and lateral OFC during a faces/shapes task 
were negatively associated with remission in LLD (Karim, 2018). On the 
other hand, dmPFC and superior frontal gyrus activation while viewing 
negative faces (Samson, 2011), right dlPFC activation while viewing all 
emotional faces (Ruhé et al., 2011), and left superior and middle frontal 
gyrus activation while engaging in emotion regulation (Karim, 2018) 
were positively associated with treatment outcome. Further, one day 
increases in bilateral inferior frontal gyrus, left middle frontal gyrus, and 
left rectus gyrus activation during a faces/shapes task after a first dose of 
medication were indicative of remission in LLD (Karim, 2018). 

Insula. One study found that higher activation during negative face 
viewing compared to neutral face viewing was associated with treat
ment response at baseline (Samson, 2011) and one week (Williams et al., 
2021), while another found that lower activation while viewing nega
tive images predicted remission (Rizvi, 2013). Decreased activation of 
the insula while viewing fearful compared to happy faces one week after 
starting treatment predicted treatment response (Godlewska et al., 
2016). 

Other subcortical regions. Lower activation of the thalamus during 
negative word processing in a small study (Miller, 2013) and higher 
activation during positive picture viewing (Preuss et al., 2020) was 
associated with treatment outcome. Three longitudinal studies reported 
decreased thalamic activity was associated with remission in LLD after 
one day in an emotion regulation task (Karim, 2018) and response after 
one week when viewing fearful versus happy faces (Godlewska et al., 
2016). Decreased thalamic activity was reported during an explicit sad/ 
angry face matching task after four weeks on venlafaxine but not mir
tazapine, regardless of outcome (Frodl, 2011). A small study from 2007 
also found an outcome-agnostic decrease in thalamic activity when 
viewing negative versus neutral emotional stimuli (Anand et al., 2007). 
The caudate nucleus has also been associated with treatment outcome 
with inconclusive results. Activation of the caudate nucleus when 
viewing negative faces has been reported to have a positive association 
with treatment response (Samson, 2011) and negative association with 
remission in LLD (Karim, 2018), and lower activation during negative 
word processing was associated with symptomatic improvement in a 
small study (Miller, 2013). 

Fig. 4. Brain map of task fMRI predictors of treatment outcome. Strength of 
effect is indicated by both color and size; color also indicates direction of effect. 
Created with BrainNet Viewer (Xia et al., 2013). 
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4.2.2. Cognitive task results 
Studies of depression treatment have also focused on tasks that 

engage cognitive control as this may be an important process to engage 
for treatment response. We report six such studies. 

Dorsolateral prefrontal cortex. As the main hub of the cognitive 
control network, many of these studies predefine the dlPFC as a region of 
interest. One study employing the go/no-go paradigm reported that 
remission was associated with right dlPFC activation during the inhib
itory no-go condition, as well as right inferior parietal lobe activation for 
SSRI but not SNRI (Gyurak, 2016). A continuous performance test task 
also implicated higher dlPFC activation with remission, though only in 
participants without childhood maltreatment (Miller, 2015). Another 
study employing the n-back task found dlPFC activation and low con
nectivity between dlPFC and the anterior mPFC, PCC, and parietal lobe, 
as well as deactivation of the anterior mPFC, correlated with symptom 
improvement (Meyer et al., 2019). Further, two studies from 2009 re
ported post-treatment increases in activity of the dlPFC during an 
emotional interference task (Fales, 2009) and a preparing to overcome 
potency task in a small LLD cohort (Aizenstein, 2009), regardless of 
treatment outcome. 

Other regions. Among its many functions, the ACC is noted for its 
role in the conflict monitoring/resolution process, which may be 
important for depression treatment response (Pizzagalli, 2011). A study 
employing the go/no-go task noted greater activation in the rostral and 
dorsal ACC, mid-cingulate, dmPFC, and lateral OFC during commission 
errors predicted symptomatic improvement (Crane et al., 2017). Two 
small studies from before 2010 also reported that treatment response 
was associated with higher rostral ACC activity during commission er
rors in the parametric go/no-go task (Langenecker, 2007) and higher 
ACC activity during an n-back task (Marquand et al., 2008). Another 
important region probed by cognitive tasks is the hippocampus, which 
has a vital role in memory and learning and is highly susceptible to 
neurodegeneration in depression (Sapolsky, 2001), as reviewed in Sec
tion 3.1 (Volumetric Analysis). A small longitudinal study using the 
Stroop color-word test reported symptomatic improvement associated 
with decreases in activation of the right amygdala and hippocampus for 
citalopram, but not reboxetine, and decreases of the left medial temporal 
lobe, right inferior parietal lobe, right ventrolateral PFC, and bilateral 
superior parietal lobe for both medications (Wagner et al., 2010). 
Finally, a small study employing a word pair memory-encoding task 
focused on the hippocampus and found that lower activation of the left 
hippocampus while encoding positive words was associated with a poor 
treatment response, while the right hippocampus did not show an as
sociation with response (Toki et al., 2014). 

4.2.3. Reward task results 
Despite an explosion of studies focused on reward paradigm, only 

four of these studies have investigated treatment outcome prediction, all 
focusing on the ventral striatum. One large study included a balanced 
placebo arm and used a monetary reward, surprisingly finding that VS 
activity at odds with reinforcement learning predictions is associated 
with symptomatic improvement to sertraline treatment versus placebo 
(Greenberg, 2020). A study employing the monetary incentive delay 
task used generalized psychophysiological interaction to investigate VS 
connectivity during the task, reported that VS activity during anticipa
tion, but not consumption, of reward and frontostriatal connectivity was 
associated with symptomatic improvement (Dunlop, 2020). Another 
small study using the monetary incentive delay task found that symp
tomatic improvement was associated with a normalizing increase in the 
left VS activity during loss anticipation (Stoy, 2012). However, a study 
focused on the striatum, mPFC, and anterior insula activation during a 
card guessing task failed to find any association with treatment response 
(Brandt et al., 2021). 

5. Discussion 

A substantial body of work has examined structural and functional 
MRI-derived biomarkers of response to pharmacological treatment of 
depression. While the results are informative, the overall lack of repli
cability and discriminatory power have so far been insufficient for 
clinical application. Larger hippocampal volume, lower WMH burden in 
LLD, lower amygdala activation and higher ACC activation to negative 
emotional stimuli, and higher dlPFC activation during cognitive tasks 
have all been associated with improved treatment outcome, yet each 
possesses its own limitations. While hippocampal volume as a predictor 
of treatment outcome has been replicated in numerous studies, a fair 
number have failed to do so. This may be the result of considering 
overall volume instead of just the body/tail, which seems to carry more 
predictive power, or a lateralization effect, on which mixed findings 
have been reported. Similarly, greater WMH burden has been consis
tently associated with poor treatment outcome, but it is unclear how this 
result may influence clinical practice, particularly considering the lack 
of regional specificity in most WMH studies. Amygdala, ACC, and dlPFC 
activation are all task-dependent, which introduces yet another chal
lenge for clinical translation. Notably absent from this list are white 
matter integrity and functional connectivity biomarkers. FA of cingulate 
and frontal white matter tracts, and DMN and ECN functional connec
tivity show potential as predictors of treatment outcome but require 
further investigation to demonstrate their utility. As of now it is unclear 
if the inconsistency of these findings is due to very small effect size, 
methodological heterogeneity, or other factors. 

The need for larger study sizes, increased replicability, placebo- 
controlled randomized trials, open data, shared models, multimodal 
measures, and even things as simple as consistent terminology have 
been repeatedly addressed in other reviews (Gillett et al., 2020; Fu et al., 
2013; Fonseka et al., 2018). We endorse these recommendations but will 
not recapitulate them here, instead focusing on the role of methodo
logical choices, broadly. One major challenge is that most studies are 
associative in nature rather than predictive. Participants are typically 
sorted based on a predefined clinical response (e.g., remitters vs. non- 
remitters, responders vs. non-responders, or decrease in symptom 
severity) and then neuroimaging differences between the groups or 
along the axis of interest are reported. Measures that differ meaningfully 
at the group level may not always provide useful predictors of clinical 
outcomes at the individual level(Shmueli, 2010; Calhoun et al., 2017). 
While more recent studies have increasingly addressed this concern by 
explicitly focusing on predictive models, feature selection, model spec
ification, and external validation all demand significantly more data 
(Scheinost et al., 2019). The trade-off between predictive power and 
generalizability only further exacerbates this demand. 

The inherent high-dimensional nature of establishing MRI-based 
biomarkers for prediction of treatment outcome is wrought with chal
lenges. Foremost among them is the heterogeneity of MDD, which is 
defined based on a broad collection of symptoms, not some defining 
pathophysiology. As such, many neural paths may lead to depression or 
may capture downstream effects associated with the illness. Focusing on 
a single predictor may be akin to trying to summarize a road map with a 
single direction. While such an approach may never provide a highly 
discriminative biomarker for treatment outcome, the “summary direc
tion” may still reveal valuable insights into the neurobiology of 
depression and its treatment course. 

Another challenge is the rapid progress in the field of neuroimaging. 
On the hardware side, the standard has shifted from 1.5T MRI to 3T MRI 
and is currently moving to 7T. With respect to study design, early fMRI 
studies rarely had more than 20 participants. Recent studies have 
generally analyzed more appropriate sample sizes, but this puts a larger 
onus on recruitment and typically involves multiple sites. While multi- 
site studies offer clear benefits for generalizability, they raise further 
complications for data harmonization (Fortin et al., 2018). Processing 
methods are constantly evolving, leaving a myriad of choices (Botvinik- 
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Nezer et al., 2020), (Carp, 2012) with little normative guidance 
(Bowring et al., 2019). As previously mentioned, prior to ~2010, mul
tiple comparisons were often improperly accounted for (Bennett et al., 
2009). Thus, one of the most widely employed methods, cluster 
thresholding, was shown to have inflated false positive rates (Eklund 
et al., 2016). Non-parametric permutation testing has now become the 
gold standard for calculating P values (Nichols and Holmes, 2002). All of 
this adds up to a (swiftly) moving target where every advance calls into 
question previously hard-won ground. 

This moving-target problem also manifests in the choice of analytic 
methods. The field of neuroimaging is still relatively young. Before 
neuroimaging, lesion studies were used primarily to localize brain 
function and behavior. Early fMRI studies mostly took a similar 
approach, focusing on localization. While this has provided myriad in
sights, it is very limited when addressing processes like emotion that 
most likely involve complex interactions across multiple brain regions. 
The discovery of coherent functional networks (Biswal et al., 1995) 
shifted much of the field toward a systems perspective that may better 
capture these higher order processes. However, the quantification of a 
network is inherently more complex than that of region of interest 
activation, which manifests as a drastic increase in the methodological 
degrees of freedom. Compounding this, we have very little in the way of 
ground truth to guide our analytic choices. As a result, there is very little 
true replication in the field; almost every study differs from others in 
some meaningful way. It can be argued that these differences carry 
advantages—each study offers a (perhaps slightly) different angle from 
which to view the underlying question, revealing subtleties that might 
be hidden from a single vantage point. However, it also makes it 
exceedingly difficult to develop any unifying models. With so little 
replication, it is unclear which studies provide meaningful constraints 
for such models. Meta-analyses make a valiant attempt to fill this gap but 
are faced with the unenviable task of post hoc data synthesis (Wager 
et al., 2007). So far, the pace of methodological advances for neuro
imaging has far outpaced our ability to consolidate the information 
gained from them. 

A final limitation from these studies is that they do not prescribe a 
course of action based on the predictions. If a patient is unlikely to remit, 
what is the best course of action? Fortunately, large multi-site studies 
are beginning to answer these questions (Cristancho, 2019). Another 
promising approach is investigating differential biomarkers that may 
predict which type of treatment (antidepressant class, pharmacotherapy 
vs. psychotherapy, etc.) is most likely to result in improvement of 
depressive symptoms (Fonseka et al., 2018). Such biomarkers have 
tremendous capacity to improve clinical outcomes in line with the 
“precision psychiatry” approach (Williams, 2016) while also shedding 
light on possible mechanistic pathways that facilitate further discovery. 

The rapid advances of the field mentioned as challenges above also 
provide reason for optimism. However, more targeted hypotheses may 
be required. For example, consider a typical hypothesis of the form 
“increased functional connectivity of the ECN will predict remission.” 
Functional connectivity of the ECN is a construct requiring additional 
clarifications. For instance, how is the ECN defined? Does the hypothesis 
benefit from a predefined network definition (if so, which one?) or 
would a data-driven approach (e.g. ICA) be more appropriate? How will 
functional connectivity of a network be quantified? While broad mea
sures can capture network-wide changes, they can also be subject to 
cancellation effects (e.g. increased connectivity between some regions 
and decreased connectivity between other regions leads to no effect at 
the network level) that obscure real differences (Gerlach et al., 2021). 
These analytic choices have different neurobiological ramifications (e. 
g., fractional anisotropy of the cingulum is a more robust, but less spe
cific measure than fiber tract count between the anterior and posterior 
cingulate). The answers to these questions and the resulting implications 
should be carefully considered and tailored to a neurobiological model. 
We believe that precise selection and application of the available ana
lytic tools is a key component in advancing the field. Evermore specific 

probes enabled by methodological advancements may allow us to un
tangle the complex neural circuitry one piece of the puzzle at a time, 
providing a more holistic view of pathophysiology of depression and 
correlates of treatment outcome. 
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