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1. Introduction

The ultimate goal of designing drug delivery systems is to achieve
better therapeutic outcomes with lower side effects. Current
approaches include improving the physicochemical properties of
formulations and/or addressing the complex fates of drugs
following in vivo delivery'™®. With the rapid developments in
nanotechnology and carrier materials, nanoparticulate drug deliv-
ery systems (nano-DDS) show great progress in drug delivery over
the past few decades®™. Drug molecules encapsulated in nano-
carriers usually demonstrate totally different delivery character-
istics instead of their intrinsic properties, due to the shielding effect
of nano-DDS™'’. This permits development of more versatile drug
delivery strategies as compared with only changing the physico-
chemical properties of compounds'’. Therefore, rationally design-
ing various nanocarriers and making specific modifications on the
nano-DDS can achieve more effective drug delivery’.

Among the various delivery strategies in the field of nano-DDS,
developing smart targeted nanocarriers has long been a research
focus for pharmaceutical scientists'""'?. The ideal drug delivery
outcome must be precisely delivering the therapeutic agents to
their sites of action, especially for anticancer drug delivery'*~'*.
Since most chemotherapeutic agents are cytotoxic compounds,
which inevitably impose toxicity to the normal tissues'®, rational
design of advanced nano-DDS with high efficiency and low
toxicity is crucially important for anticancer drug delivery'>. There
is also encouraging results for the prospects of nano-DDS targeting
to the intestinal absorption site or specific organs (e.g., brain).
These can significantly facilitate oral absorption or drug permea-
tion of the blood—brain barriers (BBB)'®'°.

Traditional targeting strategies have mainly focused on modify-
ing ligands on the surface of nano-DDS to recognize and interact
with the specific receptors on cell membrane™. So far, the strategy
seems to be working, but the targeting efficacy has been greatly
limited by the variability and heterogeneity of membrane recep-
tors”'~>. Different patients with same disease may have different
expression levels of receptors, and different receptors levels may
also be found at different stages of the disease even for the same
patient™. Therefore, receptor-based targeting strategies have not
been brought to clinics, and it is necessary to seek for new target
sites to develop targeted nanocarriers. Recently, membrane trans-
porters have become emerging target sites for efficient drug
delivery>*?’. Transporters for glucose, amino acids, vitamins
and ions are essential for cell nutrition”’. In addition to these
essential nutrients, transporters could also interact with a variety of
drugs, thereby affecting the efficacy and safety of drugs®’. Due to
the important roles for cell nutrition, the expression levels of
transporters are less variable than those of receptors”®*’. In some
specific cases, such as in tumors, the expression level transporters
are usually upregulated to meet the enormous nutrition demand for
uncontrolled growth of tumor cells®”. Thus, transporters are an
emerging target for designing tumor-targeting nano-DDS.

In the latest decades, the application of membrane transporters was
not restricted to cancer therapy. Transporter-based drug delivery
strategies have also been widely investigated in oral drug delivery
and brain-targeting therapy”*~’. Transporter-targeted prodrug strategies
have been widely investigated, and several excellent relevant reviews
have been published. Herein, we outline the recent advances in
transporter-targeted nano-DDS (Fig. 1), including (i) emerging
transporter-targeted nano-DDS developed to facilitate oral drug deliv-
ery; (ii) recent advances in transporter-assisted brain-targeting nano-
DDS; (iii) recent developments in transporter-mediated tumor-targeting
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Figure 1 Emerging trends in the fields of transporter-targeted
nano-DDS.

drug delivery; and (iv) possible transport mechanisms involved in
transporter-mediated endocytosis.

2. Transporter-targeted nano-DDS to improve oral
absorption

Oral drug delivery has long been considered a natural and safe
administration route, due to its good compliance'®**~°. However,
a wide range of drugs cannot be administrated orally'®, since
multiple barriers may be encountered during oral absorption
process. These include water insolubility, inferior stability, poor
drug permeability, and complex gastroenteric environments (e.g.,
pH and metabolic enzymes)'®. For example, the successful oral
delivery of insulin would be profoundly important for diabetic
patients, but orally-administered insulin has poor stability, result-
ing in inefficient oral absorption®'. Furthermore, developing new
strategies to facilitate the intravenous-to-oral switch in cancer
chemotherapy has also attracted increasing attention'®. In recent
years, great progress has been made in designing transporter-
targeted nano-DDS to improve oral absorption of peptide drugs
and anticancer drugs'®**.

2.1.  Improving oral absorption of protein and peptide drugs

Oral delivery of large-molecule proteins and peptide drugs has
long been a great challenge, due to their poor oral absorption
caused by inferior stability and low permeability’***. More
recently, nano-DDS seems to be a viable approach by encapsulat-
ing proteins or peptides into nanocarriers’~’. Although nano-
DDS could significantly improve the stability of proteins and
peptides via a shielding effect, the oral absorption is still limited by
the unsatisfactory permeability capability across the intestinal
wall”’. Various types of gastrointestinal transporters have been
found to play important roles in essential nutrient uptake, and these
transporters exist as natural targets for the efficient oral delivery of
proteins and peptide drugs®**'.

Bile acid transporters are widely expressed throughout the
intestinal tract and have been investigated for oral delivery of
proteins and peptide drugs, such as insulin®*~*'. For instance, Dr.
Gan's research group developed deoxycholic acid-modified nano-
particles (DNPs) to overcome multiple intestinal barriers for oral
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Figure 2 Schematic illustration of transepithelial transport of insulin from DNPs to overcome multiple barriers of the intestinal epithelium by
exploiting the bile acid pathway. Reprinted with the permission from Ref. 39. Copyright © 2017 Elsevier Ltd. DNPs, deoxycholic acid-modified

nanoparticles; ASBT, apical sodium-dependent bile acid transporter.

insulin delivery (Fig. 2)*°. Deoxycholic acid-conjugated chitosan
was designed and synthesized as the transporter-targeted carrier
material into which insulin was encapsulated as DNPs*°. Insulin-
loaded DNPs were effectively internalized through apical sodium-
dependent bile acid transporter-mediated endocytosis, thus
surmounting multiple barriers of the intestinal epithelium®. More
importantly, the stability of insulin in the epithelium was sig-
nificantly improved due to the endosomal escape of DNPs*.
Intracellular trafficking and basolateral release of insulin also
occurred by interactions with a cytosolic ileal bile acid-binding
protein®. As a result, the oral bioavailability of insulin was
improved to 15.9% in type I diabetic rats after loading the
lyophilized powder of DNPs into enteric capsules’. These results
suggest that bile acid transporter-mediated endocytosis could play
key roles in oral delivery of insulin by addressing the multiple
barriers across the intestinal epithelium.

Amino acid transporters have also been used for targeting insulin
delivery”'. Specific transporters expressed in the small intestine are
known to transport L-amino acids against a concentration gradient”’
Based on this rationale, L-valine-conjugated polylactic-co-glycolic
acid (PLGA) nanoparticles were developed for oral delivery of
insulin®'. Cellular uptake experiments demonstrated that r-valine-
conjugated PLGA nanoparticles showed distinct advantages over
the non-modified nanoparticles*'. Furthermore, the in vivo hypo-
glycemia test in streptozotocin-induced diabetic rabbits revealed that
L-valine-conjugated PLGA nanoparticles could effectively reduce
blood glucose levels in a sustained manner with clear therapeutic
superiority vs. the non-modified nanoparticles*'. The results suggest
that L-valine-conjugated NPs are a promising nanoplatform for oral
delivery of insulin across the intestinal wall.

2.2.  Facilitating the intravenous-to-oral switch in cancer
therapy

Most anticancer drugs are administrated intravenously, leading to
poor compliance and high potential side effects'®'”. Therefore, there

is presently an intense research focus to discover methods for
facilitating the intravenous-to-oral switch in cancer chemotherapy .
The common barriers hindering oral absorption of anticancer drugs
include low water solubility, poor stability in the gastrointestinal
tract, and limited permeability across the intestinal wall'®'”. For
example, the oral delivery efficiency of the taxane drugs (paclitaxel,
docetaxel and cabazitaxel) is greatly limited by their low water-
solubility, poor stability in gastrointestinal tract and good affinity
with drug efflux pump P-glycoprotein (P-gp) transporter'®. Although
most transporters expressed in gastrointestinal tract helps to promote
the oral absorption of drugs, the P-gp efflux pump acts in the
opposite way'®. Formulating chemotherapeutic agents into nano-
DDS could significantly improve their water solubility and chemical
stability in gastrointestinal tract'®, but the permeability of noncarriers
remains unsatisfactory. Therefore, despite the promising application
prospects of nano-DDS in oral chemotherapy, there is still a long
way to further improve the permeability across the intestinal
endothelial cells.

As mentioned above, a wide range of gastrointestinal transpor-
ters have been found to play important roles in essential nutrient
uptake, and these transporters exist as natural targets for efficient
oral delivery of both large-molecule proteins and small-molecule
anticancer drugs. Among them, various types of transporters have
been utilized for oral delivery of chemotherapeutic agents, includ-
ing bile acid transporter, peptide transporter 1 (PepT1), organic
cation transporter-2 (OCTN2), and sodium-dependent vitamin C
transporter 1 (SVCT1)**™2. Dr. He's research group has made
notable contributions in the field of transported-targeted anticancer
drug delivery. Recently, they have published several research
papers. These include: (i) PepT1-tageted nano-DDS. Dipeptide-
modified PLGA nanoparticles were designed and developed to
facilitate oral docetaxel delivery**; (ii) OCTN2-targeted nano-
DDS. OCTN2 exists in small intestine as a Na™-coupled absorp-
tion transporter where it mediates L-carnitine uptake. To exploit
this, L-carnitine-modified PLGA nanoparticles containing encap-
sulated paclitaxel were shown to effectively target OCTN2 on
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enterocytes to improve the oral absorption of paclitaxel*’; and (iii)
SVCTI-targeted nano-DDS. Ascorbate-modified PLGA nanopar-
ticles were reported to target SVCT1 on epithelial cells for
efficient oral delivery of therapeutic agents, and the targeting
process and intracellular delivery fate of ascorbate-modified PLGA
nanoparticles were documented and illustrated®.

Bile acid transporter-based nano-DDS have also been used for
oral drug delivery*’~>%. For instance, taurocholic acid (TCA)-
modified nanostructured lipid carriers (NLCs) were developed to
improve oral bioavailability of curcumin by targeting bile-acid
transporter’’. In situ intestinal perfusion results showed that TCA-
modified NLCs could significantly improve the absorption rate and
permeability of curcumin®’. In vivo pharmacokinetic studies
revealed that TCA-modified NLCs showed a 15-fold higher area
under the curve (AUC) in rats when compared with the unmodified
NLCs after oral administration’’. In addition to facilitating oral
absorption of chemical compounds, TCA-modified nano-DDS was
also successfully applied to improve oral delivery of therapeutic
siRNA*®. An AuNP-siRNA-glycol chitosan-TCA nanosystem was
developed to selectively deliver Akt2 siRNA and for treatment of
colorectal liver metastases”®. The prepared TCA-modified nano-
system protected siRNA from degradation in the gastrointestinal
environment, facilitated siRNA transport across enterocytes and
enhanced accumulation of siRNA in liver*®. In vivo pharmacolo-
gical experiments showed potent therapeutic activity against
colorectal liver metastases after oral administration of Akt2
siRNA-loaded TCA-modified nanoparticles*®. These results sug-
gest that transporter-targeted nano-DDS provides a versatile plat-
form for both chemotherapeutic drugs and therapeutic genes.

3. Transporter-based brain-targeting nano-DDS

Drug delivery to the central nervous system (CNS) is still
challenging due to the blood-brain barrier (BBB)’***. The BBB
is a natural defense barrier protecting the brain from harmful
substances. Since only selected, neutral, lipophilic small molecules
can diffuse into the CNS from blood>®, most drugs have
traditionally been thought to be impermeable to the brain>.
However, smart active targeting nano-DDS makes it possible to
deliver many drugs to the brain. Approaches include receptor-and
transporter-mediated  targeting®>°.  Herein, the emerging
transporter-based brain-targeting nano-DDS is discussed, with
special attention on the latest findings of specific transporter-
based nanotechnology approaches.

3.1. Targeting to choline transporter

Choline, a polar and cationic molecule, plays key roles in
biosynthesizing several important endogenous substances, such
as lecithin.®” Choline is also important for brain development®™.
However, this charged cation does not readily diffuse across the
cell membrane. Therefore, a specific transport mechanism is
required on plasma membranes to meet the cellular needs for
choline®. Similarly, the choline transporter is also necessary to
deliver choline across the BBB from plasma to brain tissues®.
Based on this rationale, the choline transporter has been widely
investigated and applied in brain-targeted drug delivery, resulting
in development of several choline or choline derivative-modified
nanocarriers®' =%,

For instance, a choline-modified doxorubicin (DOX)-PEG

polymer conjugate was created in a micellar formulation for brain

targeting and glioma therapy®'. Micelles optimized to contain 20%
choline demonstrated favorable cellular uptake, pharmacokinetics
and biodistribution, resulting in potent in vivo antitumor activity®'.
A choline-modified nano-DDS also showed promise for brain-
targeting gene delivery and glioma MRI diagnosis®>. A choline
transporter-targeting nano-DDS was also developed for efficient
combination of gene therapy and chemotherapy®. A complex was
prepared by intercalating DOX into TNF-related apoptosis-indu-
cing ligand (TRAIL) DNA plasmid®’. This DOX-TRAIL complex
was then condensed with a choline derivative-modified nano-DDS
for BBB penetration and glioma dual-targeting drug delivery®’.
The transporter-targeting co-delivery nano-DDS showed higher
cellular uptake efficiency and cytotoxicity than unmodified nano-

particles, resulting in synergistic combination therapy®’.

3.2.  Targeting to OCTN2 transporter

The OCTN2 transporter is overexpressed on both brain capillary
endothelial cells and glioma cells®. It plays key roles in
transporting L-carnitine from blood to brain across the BBB®*%,
Long-term exposure of bovine brain capillary endothelial cells to
carnitine resulted in a high accumulation of long-chain acyl
carnitines, and acetyl-L-carnitine is of critical importance for brain
function and energy supply®”>°°. Therefore, the OCTN2 transporter
has attracted increased attention for rational design of brain-
targeting prodrugs and nano-DDS.°"°® For instance, Dr. Sun's
research group developed L-carnitine-modified nano-DDS to target
glioma cells for drug delivery across the BBB (Fig. 3)%.
L-Carnitine was conjugated to poly (lactic-co-glycolic acid)
(PLGA), and then L-carnitine-modified PLGA nanoparticles were
prepared for glioma-cell targeting.® Modification of L-carnitine
significantly improved the uptake of nano-DDS PLGA in the BBB
endothelial cell line hCMEC/D3 and in the glioma cell line
T98G®. Moreover, significant improvement of brain accumulation
of L-carnitine-modified PLGA nanoparticles was observed®®.
Therefore, OCTN2 transporter-mediated brain-targeting strategy
holds bright prospects for new drug delivery systems able to
penetrate the BBB.

Recent study suggested that more than one transporter is
involved in the brain accumulation of L-carnitine.” In addition
to OCTN2 transporter, the amino acid transporter ATB®™ also
functions in carnitine transport, and the expression of ATB®™
transporter in bovine brain capillary endothelial cells was con-
firmed by using RT-PCR technology®. These results suggest that
ATB®" could be used for brain-targeting drug delivery. Thus
L-carnitine-modified nano-DDS could be also utilized as a dual-
targeting nanoplatform by simultaneously targeting to OCTN2
transporter and ATB®™ transporter.

3.3.  Targeting to glucose transporter

Glucose transport and utilization is critically important for brain
activity®”. Although glucose is an essential nutritional substance
for brain, it cannot be synthesized by the brain®. As a result, the
glucose transporter is overexpressed on the BBB to maintain the
continuous high glucose and energy demands of the brain®. As
such, the glucose transporter could also serve as a therapeutic
target for drug delivery to the brain®. In recent years, a wide range
of glucose transporter-based targeting strategies have been devel-
oped, including glucose transporter-targeted nano-DDS®~"'.
For instance, glucose-derived cholesterols were designed and
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Figure 3 Graphic illustration of the composition of L-carnitine-conjugated nanoparticles with varied lengths of PEG spacers, and OCTN2-
mediated BBB transcytosis and glioma targeting. Reprinted with the permission from Ref. 68. Copyright © 2017 Taylor & Francis Group.

synthesized, and glucose-modified liposomes were prepared with
coumarin 6 loaded’®. The in vivo biodistribution results suggested
that glucose-modified liposomes demonstrated distinct advantages
over the unmodified liposomes in terms of specific accumulation
of coumarin 6 in brain’’. Due to the simultaneous overexpression
on both the BBB and glioma cells, the glucose transporter could be
used for dual-targeting drug delivery’'. For instance, a derivative
of glucose (2-deoxy-p-glucose)-modified nano-DDS was devel-
oped for simultaneously targeting the BBB and glioma cells,
resulting in efficient glioma treatment’’

3.4. Targeting to LATI transporter

The LAT1 transporter is also overexpressed both on the BBB and
glioma cells, which could be used for brain-targeting drug
delivery.”” For example, a glutamate-p-a-tocopherol polyethylene
glycol 1000 succinate copolymer (Glu-TPGS) was synthesized to
modify docetaxel (DTX)-loaded liposomes to enhance the BBB
penetration and glioma therapy.”> Glu-TPGS modified liposomes
demonstrated effective higher cellular uptake, cell cytotoxicity and
BBB penetration vs. unmodified formulations in vivo.”” These
results suggested that LAT1 transporter-mediated brain-targeting
strategy provides another new option in designing brain glioma-
targeting nano-DDS.

In summary, although the BBB is a major impediment to drug
delivery in brain, various types of nutrient transporters open a
window across this barrier to facilitate brain-targeting drug
delivery for treating central nervous system diseases. Of greatest
relevance may be that several important transporters (e.g., glucose
transporter and LAT1 transporter) are overexpressed on both the
BBB and glioma cells, which providing the possibility of efficient
treatment of brain glioma tumors’'~">,

4. Transporter-mediated tumor-homing drug delivery
Cancer remains an enormous challenge to human health’*’>, and
many efforts have been made to address the consequences of

malignant tumors’> ', One of the most characteristic features of

tumor cells is uncontrolled and progressive proliferation, accom-
panied by the requirements for very large amounts of nutrients to
maintain such abnormal growth””. As a result, various types of
nutrient transporters overexpressed on tumor cells. These over-
expressed membrane transporters as ideal natural targets for
tumor-homing anticancer drug delivery”>*>. Herein, the recent
trends in transporter-based tumor-targeting nano-DDS are dis-
cussed, focusing on targeting to the overexpressed membrane
transporters on tumor cells and the emerging transporter-based
dual-targeting strategies.

4.1. Targeting to the overexpressed membrane transporters on
tumor cells

Due to the wide overexpression of various transporters on tumor cell
membranes, various transporter-mediated tumor-homing nano-DDS
have been developed, including the glucose transporter>™, LAT1
transporter’>*°, OCTN2 transporter®’, amino acid transporter®>®’
SLC6A14 and ATB®™, and secreted protein acidic and rich in cysteine
(SPARC)”. Among them, glucose transporter-targeted anticancer drug
delivery strategies have been attracting increased attention, and several
nano-DDS has been developed for efficient cancer therapy, including
polymeric nanoparticles and nanomicelles®™ . For instance, redox-
responsive tumor-targeting tri-layer nanomicelles were developed for
hepatocellular carcinoma therapy (Fig. 4)*°. The nanomicelles were
modified with dehydroascorbic acid (DHAA) for specific recognition
of the glucose transporter overexpressed on hepatocarcinoma cells®
As expected, these nanomicelles demonstrated significantly improved
cellular uptake and accumulated distribution in hepatocarcinoma
tumors, resulting in enhanced anticancer efficacy®

Amino acid transporters have also been widely explored as
potential targets for cancer therapy, including SLC6A14%%*° and
ATB®*, and LAT17>%. These specific transporters were found to
be overexpressed in a wide range of tumors, including breast
cancer, lung cancer, hepatocarcinoma and glioma®*=°. A common
strategy is to modify nano-DDS with specific amino acids
recognizing and targeting the relevant transporter, thereby facil-
itating cellular uptake and tumor accumulation of nanoparticles.
For example, glutamate-modified PLGA nanoparticles could
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readily recognize and bind with LAT1, promoting tumor accumu-
lation and anticancer activity of chemotherapeutic agents*®. In
addition, lysine-modified liposomes demonstrated good targeting
ability to ATB®™, facilitating tumor-homing delivery of DTX for
hepatocarcinoma therapy®®.

4.2.  Transporter-based dual-targeting strategies

Despite the tumor-targeting ability of transporter-based nano-DDS,
tumor cells are heterogeneous in many aspects.”' >, The expres-
sion level of specific transporters may vary in different tumors or
even in different regions in the same tumor®’”’. Different
expression levels have be found at different growth stages of
one tumor® ", Therefore, rational development of dual-targeting
nano-DDS may be a solution to the challenges of tumor
heterogeneity.

Recently, several transporter-based dual-targeting drug delivery
strategies have been reported®””’. For example, the expression of
both OCTN2 and ATB®™ on colon cancer cells was greater than on
normal colon cells, leading to the development of dual-targeting
L-carnitine-modified nano-DDS to target both transporters for colon
cancer chemotherapy®’. L-Carnitine-modified nano-DDS showed
distinct improvement in cellular uptake and cytotoxicity of 5-
fluorouracil in colon cancer cells (HCT116 and HT29 cells),
resulting in enhanced antitumor efficacy in a 3D spheroid model®’.
In addition, the combination of transporter- and receptor-mediated
tumor-homing drug delivery strategies could also effectively address
the problems of tumor heterogeneity and enhance antitumor
activity””. For instance, it was found that both the colon cancer
cells and M2 macrophages overexpressed secreted protein acidic
and rich in cysteine (SPARC) and mannose receptors (MR)™°.
Therefore, mannosylated albumin nanoparticles were designed to
target both SPARC and MR, thereby acting on both cancer cells and
M2 macrophages”. The dual-targeting nanosystem significantly

improved the therapeutic outcomes’’. Therefore, transporter-based
dual-targeting nano-DDS holds promising prospects in response to
tumor heterogeneity.

5. Interactions between membrane transporters and nano-
DDS

As discussed above, there is sufficient evidence for advantages of
transporter-targeted nano-DDS for efficient drug delivery. These
nano-DDS with specific modifications could effectively recognize
and bind to the targeted transporters, and the nano-DDS could be
internalized into cells via transporter-mediated endocytosis. Such a
transporter-mediated cellular uptake mechanism of nano-DDS is
definite. In addition, the mechanisms by which nano-DDS affects
the expression levels of transporters have also attracted more
attention in recent years'>’>%"* Thus, illuminating the interac-
tions between membrane transporters and nano-DDS is important
for rational design of high-efficient transporter-based nano-DDS.

According to the recent studies’>’*%*™, two possible fates of
transporters in transporter-mediated cellular uptake were found:
(1) recycling back to the cell membrane. Once the nano-DDS
dissociates from the transporters, they can recycle back to cell
membrane, which is important for maintaining the sufficient levels
of transporters (Fig. 5y 728689 and (i) degradation within
endosome/lysosomes. If the transporter-mediated cellular uptake
is an endosome-dependent pathway, the structure of transporter
can be destroyed in endosome/lysosomes, which will decrease the
transporter levels on cell membrane. So far, recent studies
demonstrated that the two routes simultaneously exist*>’*%=8,
For instance, the LAT1 protein of tumor cells incubated with
LAT1-targeted nanoparticles were decreased at the beginning of
cellular uptake, but the membrane LAT1 transporter increased
once the nanoparticles were removed from the uptake medium,
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verifying evidence for the first situation®®. Moreover, there was
some evidence found for the degradation of transporters within
cells®’ =,

6. Conclusions and perspectives

Transporter-targeted nano-DDS has emerged as a promising
nanoplatform for efficient drug delivery. The basic strategies are
modifying nano-DDS with specific substrates of transporters,
including natural substrates (e.g., choline, glucose, carnitine,
vitamins and amino acids) and derivatives. In this paper, we
reviewed the recent developments in transporter-targeted nano-
DDS on the emerging transporter-targeted nano-DDS developed to
facilitate oral drug delivery, transporter-assisted brain-targeting
nano-DDS, transporter-mediated tumor-targeting drug delivery,
and the specific transport mechanisms involved in the
transporter-mediated endocytosis.

However, despite the rapid developments and promising
application aspects of transporter-targeted nano-DDS, several
concerns should be addressed in the future research in this field.
These include: (i) for tumor-targeting drug delivery, although
certain transporters have been found to be overexpressed on tumor
cells, transporters are also of great importance for normal cells,
and how to avoid the off-target distribution of nano-DDS in
normal cells is still a big challenge; (ii) the underlying transport
mechanisms of transporter-mediated endocytosis is still not
entirely clear, especially for the endocytosis mechanism and
definite intracellular fate of transporters; (iii) transporters have
emerged as a new topic for active targeted drug delivery, but it is
not known if transporter targeting has distinct advantages over
receptor-mediated targeting for drug delivery; (iv) despite sig-
nificant progress in animal models, how can we bridge the gap
between preclinical animal models and clinical trials? Continuous
study of the underlying mechanisms will contribute to the rational
design of improved transporter-targeted nano-DDS in the future.
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