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Triple negative breast cancer (TNBC) has negative expression of ER, PR and HER-2.

TNBC shows high histological grade and positive rate of lymph node metastasis,

easy recurrence and distant metastasis. Molecular typing based on metabolic genes

can reflect deeper characteristics of breast cancer and provide support for prognostic

evaluation and individualized treatment. Metabolic subtypes of TNBC samples based

on metabolic genes were determined by consensus clustering. CIBERSORT method

was applied to evaluate the score distribution and differential expression of 22 immune

cells in the TNBC samples. Linear discriminant analysis (LDA) established a subtype

classification feature index. Kaplan-Meier (KM) and receiver operating characteristic

(ROC) curves were generated to validate the performance of prognostic metabolic

subtypes in different datasets. Finally, we used weighted correlation network analysis

(WGCNA) to cluster the TCGA expression profile dataset and screen the co-expression

modules of metabolic genes. Consensus clustering of the TCGA cohort/dataset obtained

three metabolic subtypes (MC1, MC2, and MC3). The ROC analysis showed a high

prognostic performance of the three clusters in different datasets. Specifically, MC1 had

the optimal prognosis, MC3 had a poor prognosis, and the three metabolic subtypes

had different prognosis. Consistently, the immune characteristic index established based

on metabolic subtypes demonstrated that compared with the other two subtypes,

MC1 had a higher IFNγ score, T cell lytic activity and lower angiogenesis score, T cell

dysfunction and rejection score. TIDE analysis showed that MC1 patients were more

likely to benefit from immunotherapy. MC1 patients were more sensitive to immune

checkpoint inhibitors and traditional chemotherapy drugs Cisplatin, Paclitaxel, Embelin,

and Sorafenib. Multiclass AUC based on RNASeq andGSE datasets were 0.85 and 0.85,

respectively. Finally, based on co-expression network analysis, we screened 7 potential

gene markers related to metabolic characteristic index, of which CLCA2, REEP6, SPDEF,

and CRAT can be used to indicate breast cancer prognosis. Molecular classification

related to TNBC metabolism was of great significance for comprehensive understanding

of the molecular pathological characteristics of TNBC, contributing to the exploration of

reliable markers for early diagnosis of TNBC and predicting metastasis and recurrence,

improvement of the TNBC staging system, guiding individualized treatment.

Keywords: triple-negative breast cancer, metabolic genes, bioinformatics, molecular typing, tumor

microenvironment, immunotherapy
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INTRODUCTION

Breast cancer is the most common malignant tumor in

women, accounting for about 25% of female malignant

tumors (1) and also a leading cause of cancer deaths in

women worldwide, with a significant increase in recent years

(2). According to immunohistochemical characteristics, breast
cancer is clinically classified into four types including luminal
A type, luminal B type, human epidermal growth factor
receptor 2 (HER2) overexpression type, and triple-negative
breast cancer (TNBC). Among them, TNBC refers to a special
type of breast cancer with negative expression of estrogen
receptor, progesterone receptor and human epidermal growth
factor receptor 2, which is characterized by high mitotic rate,
easy lymphocyte infiltration, high degree of malignancy and
larger tumor size and other characteristics (3). TNBC does
not have effective endocrine therapy and targeted therapy. The
currently effective systemic treatment is mainly chemotherapy.
Some patients often develop recurrence or distant metastasis
within a short period of time after chemotherapy, and the
prognosis is poor (4). Thus, TNBC is clinically called “refractory
breast cancer”.

The occurrence, development and metastasis of breast
cancer are caused by the interaction between tumor cells
and the microenvironment of the tumor. It involves not
only tumor suppressor or oncogene mutations, but also
tumor cells themselves, immune cells, extracellular matrix
components, and tumor renewal supporting blood vessels and
other components jointly suppressing the changes in the immune
microenvironment (5). Previous studies have shown that the
TME can affect the gene expression of tumor tissues in many
ways, thereby affecting the occurrence and development of
tumors (6). For example, by using the negative regulatory
mechanism of the immune system, tumor cells can regulate
the TME. A full range of immunosuppressive states can be
used to counter the body’s antitumor immunity (7). Individual
differences in the efficacy of tumor immunotherapy are closely
related to immunosuppression in the TME (8). Stromal cells
and immune cells infiltrating tumor tissues constitute the
main components of the dynamic network of the TME.
TNBC is the subtype of breast cancer most closely related
to the tumor immune microenvironment. Its high genetic
instability and mutation burden could lead to neoantigens. It
can be easily recognized by the immune system, making it
one of the tumor types suitable for receiving immunotherapy
intervention (9).

Currently, clinical pathological staging is commonly used
to assess the prognosis of breast cancer patients. However,
triple-negative breast cancer is highly heterogeneous, which
affects the effectiveness of routine prognostic evaluation. In
recent years, more and more studies have focused on the
exploration of the biological characteristics of TNBC and
the evaluation of prognostic factors. Among them, AR, p53,
CK5/6, EGFR, and Ki-67 are more commonly used pathological
indicators (10, 11). Study has reported the important role of
these indicators alone or in combination in the progression of
breast cancer (12). Although the overall prognosis of TNBC

is poor and it is prone to visceral and central nervous
system metastasis, personalized treatment for different subtypes
of TNBC, such as the treatment of androgen receptor-
positive androgen receptors, may have a better therapeutic
effect. Body inhibitors (13), immune checkpoint inhibitors
for the treatment of immune-related subtypes (9, 14), EGFR
inhibitors based on gene expression/amplification (15, 16),
and PI3K/AKT/mTOR signals targeted therapy drugs such
as pathways (17, 18) will provide a reliable theoretical basis
for the “precision treatment” and prognosis evaluation of
TNBC. At present, the clinical further molecular classification
of TNBC has not yet been carried out, and the existing
classification is still in exploratory stage without general
consensus. Therefore, how to type TNBC at the molecular level
and better guide the treatment of TNBC still needs more in-
depth research.

With the development of gene chip and high-throughput
sequencing technology, based on the big data of the GEO
database and TCGA database, comprehensive and systematic
analysis of tumor-related genes and their regulatory mechanisms
using bioinformatics methods is an important part of the current
tumor genomics study. Research methods (19). Metabolic
disorders, as one of the essential characteristics of tumors
(20), affect a variety of tumor biological behaviors including
occurrence, development, metastasis and recurrence (21). On
one hand, carcinogenic factors disrupt metabolic balance, induce
metabolic reorganization, and cell carcinogenesis, on the other
hand, the reorganized metabolic system mediates a variety
of biological behaviors and participates in the proliferation,
invasion and metastasis of cancer cells (22). Therefore, molecular
typing based on metabolism of triple-negative breast cancer
is useful for a comprehensive understanding of the molecular
pathological characteristics of triple-negative breast cancer,
exploration of reliable markers for early diagnosis and prediction
of metastasis and recurrence of triple-negative breast cancer as
well as for perfecting the TNBC staging system. Individualized
treatment is of great significance to improve the diagnosis and
treatment of TNBC.

For this purpose, in this study, we divided TNBC into
different metabolic molecular subtypes based on metabolism-
related genes, and compared the molecular pathological
characteristics of different metabolic subtypes of TNBC
in multiple dimensions. The immune characteristics of
different metabolic molecular subtypes and their different
response modes to immunotherapy were analyzed. At the
same time, the correlation between immune checkpoints,
grouping of different metabolic molecular subtypes, and
the differences in molecular mutations were compared.
Finally, potential prognostic markers related to the metabolic
characteristic index were screened. In short, we established
a TNBC molecular typing model based on metabolic
characteristics, and developed the immune characteristic
index of each subtype based on this, so as to supplement
the current clinical staging system. Our research results
will provide research ideas and a theoretical basis for
prognostic estimation and individualized treatment of
OC patients.
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MATERIALS AND METHODS

Expression Profile Data and
Metabolism-Related Genes
We used TCGA GDC API to download TCGA-BRCA RNA-
Seq data and clinical survival and characteristic information.
The (METABRIC, Nature 2012 & Nat Commun 2016) dataset
(METABRIC dataset) (23) with TNBC sequencing data from the
cbioportal website (https://www.cbioportal.org/) was acquired.
We downloaded the GSE103091 (24) and GSE31448 (25) chip
datasets with survival time from the Gene Expression Omnibus
(GEO) database on April 07, 2021. We collected metabolic-
related gene sets from previous studies (26) after sorting out a
total of 2,752 genes.

Data Preprocessing
TCGA-BRCA’s RNA-Seq data processing: (1) Samples without
clinical follow-up information, survival time, or survival status
were removed; (2) Ensembl ID was converted to gene symbol
according to the gene transfer format (GTF) file (Release 40)
downloaded from GENCODE (https://www.gencodegenes.org/
human/); (3) The median expression values were selected for
multiple gene symbols of one gene; (4) Filtering the genes
whose expression in the sample was <0.5 and account for
more than 50%; (5) Keep samples of triple-negative breast
cancer; METABRIC dataset processing: (1) Remove normal
samples; (2) Remove the samples without survival time and
survival status. Then we combined the expression profiles of
TCGA and METABRIC datasets by using the removeBatchEffect
function in the limma package (27) to remove batch effects
between different datasets (referred to as RNASeq datasets).
The combined expression profiles named RNASeq cohort in the
following. Finally, a total of 414 samples with 235 alive and 179
dead samples remained in the RNASeq cohort.

GSE dataset processing: (1) Remove samples without clinical
follow-up information, survival time or survival status; (2) Keep
triple-negative breast cancer samples; (3) Convert probes to gene
symbol; (4) Remove the probe when corresponding to multiple
genes; (5) The median expression value was selected when there
weremultiple gene symbols of one gene; (6) CombineGSE103091
and GSE31448, and use the removeBatchEffect function of the
limma package (27) to remove batch effects between different
datasets (referred to as GSE dataset). Finally, a total of 188
samples with 134 alive and 54 dead samples remained in the
GSE dataset.

Subtype Classification of TNBC
Single-factor analysis was used to screen prognostic-
related “metabolic genes”. Through consensus clustering
(ConsensusClusterPlus) (28), 414 TNBC samples were clustered
in the RNASeq cohort, and a relatively stable clustering result
was determined according to the CDF (the optimal number
of clusters k = 3). Consistent clustering is a method based on
resampling to verify the rationality of clustering. The method of
resampling can disrupt the original dataset. Therefore, cluster
analysis was performed on each resampled sample, and then
multiple clusters were comprehensively evaluated. The result

of the analysis reflected the consistency (Consensus), the main
purpose of which was to assess the stability of clustering.

Single-Sample Gene Set Enrichment
Analysis
SsGSEA is an extension of gene set enrichment analysis (GSEA)
(29). We applied GSVA R package (30) to calculate ssGSEA
enrichment score representing the absolute enrichment degree
of genes in a specific gene set for each sample. The gene
expression values of a given sample ere sorted and normalized,
and the empirical cumulative distribution function (ECDF) of
the genes in the signature and the remaining genes was used
to generate an enrichment score. To analyze the Th1/IFNγ

expression differences inmetabolic subtypes, we used the ssGSEA
method to calculate the IFNγ score of each patient.

Features of Immune Infiltration
To study the immune characteristics between different metabolic
subtypes, we used the CIBERSORT method to evaluate the
score distribution and differential expression of 22 immune
cells in the TCGA dataset. CIBERSORT (31) is a tool for
deconvolution of the expression matrix of immune cell subtypes
based on the principle of linear support vector regression.
Through the CIBERSORT function, the tissue transcriptome
sequencing expression profile was statistically analyzed, and the
de-convolution method was employed to denoise and remove
unknown mixture content to estimate the relative proportion
of 22 immune cell subpopulations. According to the expression
profile data of each sequenced sample, we analyzed the relative
expression of specific genes to predict the proportion of 22 kinds
of immune cells.

Prediction of
Immunotherapy/Chemotherapy and
Construct Subtype Characteristic Index
To compare the similarities between different metabolic subtypes
and the GSE91061 dataset (melanoma dataset receiving anti-
PD-1 and anti-CTLA-4 treatment) (32) among immunotherapy
patients, we adopted a subclass mapping method SubMap
analysis (33). SubMap analysis allows comparison of the
similarity of the expression profiles of two independent datasets.
We applied SubMap in the GenePattern software (http://www.
broad.mit.edu/genepattern/) to analyze the similarity between
different subtypes and GSE91061 dataset. The algorithm provides
the calculation of a p-value to demonstrate the likelihood of
molecular similarity between the different subclasses. At the same
time, pRRophetic R package (34) was used to analyze the degree
of response between different subtypes and four traditional
chemotherapy drugs (Cisplatin, Paclitaxel, Embelin, Sorafenib).

In order to better quantify the immune characteristics of
patients in different sample cohorts, linear discriminant analysis
(LDA) (35) was employed to establish a subtype classification
feature index. LDA is a linear method to fisher the induction
of identification methods, the application of statistics, pattern
recognition and machine learning methods, and to find a linear
combination of the characteristics of two types of objects or
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events could help characterize or distinguish them. The resulting
combination can serve as a linear classifier for dimensionality
reduction processing for subsequent classification. Based on the
LDA model, we calculated the subtype feature index of each
patient in the TCGA dataset, and we can observe the feature
index of different subtypes. Prognostic-related features in the
TCGA dataset was used. First, we performed z-transformation
on each feature and used Fisher’s LDA optimization standard
stipulated that the centroids of each group should be as
dispersed as possible, and a linear combination A was found to
maximize the between-class variance of A relative to the within-
class variance. The characteristics of the model can distinguish
samples of different subtypes for analysis.

Weighted Correlation Network Analysis
The TCGA expression profile dataset (selecting MAD >50%)
was selected. We used the R software package WGCNA (36)
to cluster the samples, and screened the co-expression modules
of metabolic genes (soft threshold = 4). Research showed
that the co-expression network conformed to the scale-free
network (log(k) and log(P(k)) were negatively correlated, and the
correlation coefficient should be > 0.85. The expression matrix
was further transformed into an adjacency matrix, and then the
adjacency matrix was transformed into a topological overlap
matrix (TOM). Based on TOM, we used the average-linkage
hierarchical clustering method to cluster genes following the
standard of hybrid dynamic shearing tree, and set the minimum
number of genes for each gene network module to 100. When
using dynamic shearing method, we determined the gene after
the module, calculated the eigengenes of each module in turn,
then performed cluster analysis on the modules, and merged the
modules closer to each other into a new module (height=0.25,
deepSplit= 2, minModuleSize= 100).

Statistical Analysis
Statistical analysis was performed using R software (v3.6). For
comparison of measurement data between groups, one-way
analysis of variance or t-test was used for data conforming to
normal distribution, Kruskal-Wallis H test or Mann-Whitney
U test was used for non-normal data; Chi-square test or
Fisher’s exact probability method was used for supCount data.
Difference analysis, test level α = 0.05; data with p < 0.05 was
selected for analysis. ns, no significance. ∗p < 0.05, ∗∗p < 0.01,
∗∗∗p < 0.001, ∗∗∗∗p < 0.0001.

RESULTS

Molecular Subtyping Based on Metabolic
Gene Construction
The workflow of this study was shown in Figure 1. Principle
component analysis (PCA) plots before and after data collection
and elimination of batch effects (Supplementary Figure 1). After
the two groups of data were preprocessed, 414 TCGA samples
and 188 GSE samples were obtained.

We first calculated the univariate analysis of metabolic genes
from the two datasets. The univariate Cox regression analysis
showed that a total of 165 genes and 345 genes were related

to prognosis in the TCGA and GSE cohorts, respectively. The
intersection number of genes between them was 42 (Figure 2A;
Supplementary Table 1), which indicated that the consistency of
metabolic genes was low among datasets of different platforms,
and a single metabolic gene was quite different in different
cohorts. Therefore, 42 metabolic genes were determined as
prognostic-related genes for subsequent analysis (p < 0.05).

In the TCGA cohort, 414 TNBC samples were clustered by
consensus clustering (ConsensusClusterPlus), and the optimal
number of clusters was determined according to the CDF. By
observing the CDF Delta area curve, it can be seen when the
Cluster was selected as 3, there was a relatively stable clustering
result (Figure 2B), and finally k = 3 was determined to obtain
three metabolic subtypes (Metabolism Cluster, MC) (Figure 2C).
Further analysis on the prognostic characteristics of these three
metabolic subtypes showed that MC3 had a poor prognosis and
MC1 had a better prognosis (Figure 2D, p = 0.0025). We used
the same method in the GSE queue and obtained the same
result (Figure 2E, p < 0.0001). The results showed that the three
molecular subtypes based on metabolic genes were reproducible
in different research cohorts.

The Relationship Between
Immunophenotyping and TMB and
Common Gene Mutations
We downloaded the TCGA mutation dataset (already processed
by mutect2 software), calculated the tumor mutation burden
(TMB) of TCGA patients, and analyzed the distribution of TMB
in the three metabolic molecular subtypes (Figure 3A) and the
difference in the number of mutant genes (Figure 3B). There was
no statistical difference in the results. We further screened a total
of 331 genes with mutation frequency >3% in sample percent,
and used the chi-square test to identify genes with significant
high frequency mutations in each subtype (threshold p < 0.05).
Twenty-one genes remained and the top 15 mutated genes were
visualized (Figure 3C).

Expression of Chemokines and Immune
Checkpoint Genes in Metabolic Typing
To investigate whether there were differences in the expression
of chemokines in the three metabolic subtypes, we calculated the
differences in these genes in the TCGA cohort, and the results
showed that 29 (78.34%) of the 37 chemokines existed in the
subtypes. The significant difference (Figure 4A) indicates that the
degree of immune cell infiltration of different metabolic subtypes
may be different. In addition, we calculated and compared the
expression of chemokine receptor genes in metabolic subtypes,
and found that 12 (75%) out of the 16 chemokine receptor
genes had significant differences in the expression of metabolic
subtypes (Figure 4B).

To further study the difference in Th1/IFNγ expression
between metabolic subtypes, we extracted Th1/IFNγ gene
signatures from previous studies (37), and calculated the IFNγ

score of each patient using the ssGSEA method. The results
showed that IFNγ in each subtype, there were significant
differences in the scores. MC1 subtypes had higher IFNγ scores,
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FIGURE 1 | The workflow chart of this study.

while MC2 and MC3 subtypes had the lowest IFNγ scores
(Figure 4C).

To analyze the difference in immune T cell lysis activity
between the metabolic subtypes, according to the study of
Rooney Michael S (38), the average value of GZMA and PRF1
expression levels was used to evaluate the immune T cell lysis
activity in each patient’s tumor. There were significant differences
in these subtypes (p < 0.001). Interestingly, MC1 had the highest
immune T cell lytic activity, while MC2 and MC3 had the lowest
immune T cell cytotoxic (CYT) activity (Figure 4D).

The difference in angiogenesis scores between the metabolic
subtypes was studied. The angiogenesis-related gene set
was obtained from previous studies, and the angiogenesis
scores of each patient were evaluated. The results showed
significant differences in different subtypes. The angiogenesis
score of MC3 was significantly higher than that of MC2
(Figure 4E).

In order to study the differences in immune checkpoint-
related genes among various metabolic subtypes, we obtained

43 immune checkpoint-related genes from previous studies (37).
The data demonstrated that 37 (90.70%) genes had significant
differences. It was observed that the expression of most immune
checkpoint-related genes in MC1 was significantly higher than
that in MC3.

Immune Characteristics and Pathway
Characteristics in Different Metabolic
Subtypes
In order to study the immune characteristics between different
metabolic subtypes, we used the CIBERSORT method in the
RNASeq dataset to evaluate the scores of 22 immune cells
in each sample, and observe the distribution of immune cell
scores in the three subtypes (Figure 5A) and immune cell
scores. The difference result (Figure 5B) found that there are
significant differences in immune characteristics among the
subtypes: CD8T cells, resting memory CD4T cells, macrophages
M0, macrophages M1, macrophages M2, etc. are all significantly
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FIGURE 2 | The Metabolism Cluster in TNBC. (A) Intersection Venn diagram of metabolic genes with significant prognosis in the two cohorts; (B) CDF curve of TCGA

cohort samples and CDF Delta area curve, Delta area curve of consensus clustering, indicating the relative change in area under the cumulative distribution function

(CDF) curve for each category number k compared with k – 1. The horizontal axis represents the category number k and the vertical axis represents the relative

change in area under CDF curve; (C) consensus k =3 sample clustering heat map; (D) KM curve of the prognosis of the three subtypes in the RNASeq dataset; (E)

KM curve of the prognosis of the three subtypes in the GSE dataset.

higher in the subtypes, indicating that they may play an
important role in triple-negative breast cancer. In order to
study the characteristics of the pathways in each subtype, 10
oncogenic pathways in the previous study (39) were obtained,
and the results showed that 9 of the 10 pathways had significant
differences between the subtypes (Figure 5C). The analysis of
immune infiltration showed that MC1 had the highest immune
microenvironment infiltration, whereas MC2 and MC3 had the
lowest immune infiltration scores (Figure 5D).

The relationship between metabolic subtypes and the six

previous pan-cancer immunotypes was analyzed, and we

extracted the molecular subtype data of these samples from

previous studies for comparison. We observed significant

differences in the previous pan-cancer immunotypes
(Figure 5E; Supplementary Figure 2). There was no difference
between the survival curves of TNBC samples in pan-cancer
immunophenotyping. The analysis suggested that these three
subtypes can be used as a supplement beyond the six subtypes in
the previous study.

Analysis of the Difference of TIDE Among
Metabolic Subtypes
In order to study the differences of different metabolic molecular
subtypes in immunotherapy, we use TIDE software (http://tide.
dfci.harvard.edu/) (40) to evaluate the potential clinical effects
of immunotherapy on metabolic molecular subtypes. Higher
TIDE prediction score was correlated with a higher possibility
of immune escape, indicating that the patient was less likely
to benefit from immunotherapy. The results showed that in
the RNASeq dataset, the TIDE score of MC2 was significantly
higher than that of MC1, suggesting that MC1 can benefit
from immunotherapy more than MC2 (Figure 6A). At the same
time, we also compared the differences in the predictive T
cell dysfunction scores and T cell rejection scores of metabolic
molecular subtypes. We found that compared to MC1 and
MC3, MC2 had lower predicted T cell dysfunction scores
(Figures 6B,C). In comparing the results of predicted T cell
rejection scores, it was found that MC2 had a higher T cell
rejection score, while MC1 had a lower T cell rejection score,
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FIGURE 3 | (A) The distribution difference of TMB in the three molecular subtypes of TCGA samples; (B) The distribution difference of the number of gene mutations

in the three molecular subtypes of TCGA samples; use the rank sum test to determine the p-value, *p < 0.05; **p < 0.01; (C) The mutation characteristics of the

significantly mutated gene in each subtype sample of TCGA dataset. ns, no significance.

moreover, we also observed similar results on the GSE dataset
(Figures 6D–F).

Analysis of the Difference Between
Metabolic Subtypes and
Immunotherapy/Chemotherapy
In order to study the differences in immunotherapy and
chemotherapy of different immune molecular subtypes, we

used the method of subclass mapping to compare the three
metabolic subtypes with the GSE91061 dataset (melanoma
receiving anti-PD-1 and anti-CTLA-4 treatment). The similarity
between immunotherapy patients in the dataset was analyzed,
and we found that lower p-value was correlated with higher
similarity. The results showed that the MC1 subtype was more
sensitive to CTLA4 inhibitors than the other two subtypes
(Figures 7A,C). At the same time, we also analyzed the response
of different subtypes to the traditional chemotherapy drugs
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FIGURE 4 | (A) Differences in the expression distribution of chemokines in the RNASeq cohort; (B) Differences in the expression and distribution of chemokine

receptors in the RNASeq cohort; (C) Differences in the distribution of IFNγ scores of different subtypes in the RNASeq cohort; (D) Different subtypes Differences in

immune T cell lysis activity; (E) differences in angiogenesis scores in different subtypes; (F) differences in the expression and distribution of immune checkpoint genes

in the RNASeq cohort; the significance of which is statistically tested using analysis of variance, *p < 0.05; **p < 0.01, ***p < 0.001, ****p < 0.0001. ns, no

significance.

Cisplatin, Paclitaxel, Embelin, and Sorafenib, and found that the
MC1 subtype was more sensitive to these four drugs than other
subtypes (Figures 7B,D).

LDA and Metabolic Subtype Characteristic
Index Construction
Considering that different subtypes have different molecular
characteristics, to better quantify the immune characteristics

of patients in different cohorts, we used LDA to establish

a subtype classification feature index. LDA can be used as

a supervised dimensionality reduction technology, which is

often suitable for multiple types of problems. Specifically,

we used 42 prognostic-related genes in the RNASeq dataset,

first performed z-transformation on each feature, and then
used Fisher’s LDA optimization standard to stipulate that
the centroid of each group should be exhausted. The first
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FIGURE 5 | (A) The ratio of 22 immune cell components in samples of different subtypes. (B) Differences in 22 immune cell components of samples in different

subtypes; (C) Differences in scores of 10 pathways related to tumor abnormalities in different subtypes; (D) Differences in immune infiltration scores in different

subtypes. (E) Comparison of the three metabolic molecular subtypes with the previous six pan-cancer metabolic molecular subtypes. ns, no significance. *P < 0.05,

**P < 0.01, ***P < 0.001, ****P < 0.0001.

two features of the model can clearly distinguish samples
of different subtypes (Figure 8A). Based on the LDA model,

the subtype feature index of each patient was calculated in

the RNASeq dataset. Significant differences in the feature

index of different subtypes can be observed (Figure 8B). ROC

analysis showed the classification performance of the feature

index in different subtypes (Figure 8D), the multi-category

comprehensive forecast AUC was 0.85. Applying the metabolic

subtype feature index to the GSE dataset, we found that the
results were similar to the RNASeq dataset. There were significant
differences in the feature index of different subtypes (Figure 8C).

ROC analysis showed that the comprehensive AUC was 0.85
(Figure 8E).

Identification of Metabolic Characteristic
Index Co-expressed Gene Modules
In order to identify the co-expression modules of these genes,
we selected the RNASeq expression profile dataset, and used the
R software package WGCNA to cluster the samples to screen
the co-expression modules (soft threshold = 4, Figure 9A).
Research showed that the co-expression network conforms to
the scale-free network [log(k) was negatively correlated with
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FIGURE 6 | (A) TIDE score difference of different metabolic subtypes of RNASeq; (B) T cell dysfunction score difference of different metabolic subtypes of RNASeq;

(C) T cell rejection score difference of different metabolic subtypes of RNASeq; (D) Different metabolic subtypes of GSE TIDE score difference; (E) HCCDB18 different

metabolic subtypes of T cell dysfunction score difference; (F) GSE different metabolic subtypes of T cell rejection score difference. ns, no significance. *P < 0.05, **P <

0.01, ***P < 0.001, ****P < 0.0001.

log(P(k)], and the correlation coefficient was >0.85). β = 4 was
set to ensure that the network was scale-free (Figures 9B,C).
Next, the expression matrix was converted into an adjacency
matrix, and then the adjacency matrix was converted into a
topological matrix. Based on TOM, we used the average-linkage
hierarchical clustering method to cluster genes, according to
the standard of hybrid dynamic shearing tree, and set each
the minimum number of genes in a gene network module
to be 100. After determining the gene modules using the
dynamic shearing method, we calculated the eigengenes of
each module in turn, then performed cluster analysis on the
modules, and merged the modules close to each other into a
new module (height=0.25, deepSplit = 2, minModuleSize =

100). Here, a total of 17 modules were obtained, of which
the gray module was a gene module that cannot be allocated
(Figures 9D,E). We analyzed the correlation between each
module andMC1,MC2, andMC3 (Figure 9F). Among them, the
correlation between turquoise and black modules and MC1 and
MC3 was >0.6.

Identification of Metabolic Characteristic
Index Co-expressed Gene Modules and
Prognostic Analysis
We, respectively, calculated the correlation between the feature

vector of these 17modules and themetabolic feature index, and it

can be seen that there were 17 modules significantly related to the

metabolic feature index (Figure 10A). Furthermore, we selected

modules significantly related to the metabolic characteristic

index for prognostic analysis. According to the relationship

between the module and the metabolic molecular subtype and

the relationship between the module and the prognosis, we

further screened the black module (Figure 10B), according to
the correlation coefficient of the module feature vector > genes
with 0.7. Significant prognosis were used as the hub-genes
(threshold p < 0.05), and finally seven key genes (CLCA2, HGD,

REEP6, SPDEF, ABCC11, SPINK8, CRAT) were identified
in the black module. These seven genes were found to be
differentially expressed in three subtypes, and MC3 had the
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FIGURE 7 | (A) RNASeq, Submap analysis manifested that MC1 could be more sensitive to CTLA4 (Bonferroni-corrected P < 0.05); (B) RNASeq, The box plots of

the estimated IC50; (C) GSE, Submap analysis manifested that MC1 could be more sensitive to CTLA4 (Bonferroni-corrected P < 0.05); (D) GSE, The box plots of

the estimated IC50. *P < 0.05, **P < 0.01, ****P < 0.0001.

highest expression of all seven genes than MC1 and MC2 (P <

0.0001, Supplementary Figure 3), which further demonstrated
that the seven key genes may be closely involved in the TNBC
development. In addition, protein-protein interaction (PPI)
analysis using STRING showed that five of seven genes (HGD,
REEP6, SPDEF, ABCC11, and CRAT) interacted with at least two
other genes (Supplementary Figure 4). CRAT had the greatest
number of interacted genes closely involved in metabolism-
related pathways such as fatty acid metabolism and fatty acid
degradation (Supplementary Table 2).

In order to analyze whether there was a difference in
prognosis between high and low gene expression groups,
we divided patients into high and low expression groups
according to gene expression. The results demonstrated that the
survival curves of genes CLCA2, REEP6, SPDEF, and CRAT

were significantly different (Supplementary Figure 5). However,
in other breast cancer subtypes of basal, her2, luminal A,
luminal B and normal, we observed that the overall survival
of groups of with high and low expression of the seven
genes was less significantly different (Supplementary Figure 6),
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FIGURE 8 | (A) The relationship between the first two features in the RNASeq metabolic feature index and the metabolic subtypes, (B) The difference in the metabolic

feature index of different subtypes in the RNASeq dataset; (C) The difference in the metabolic feature index of different subtypes in the GSE dataset; (D) ROC curve of

metabolic feature index in RNASeq dataset; (E) ROC curve of metabolic feature index in GSE dataset. **P < 0.01, ****P < 0.0001.

suggesting that these seven genes could be more specifically
applied to the TNBC patients. Next, we used the clusterProfiler
package (41) to enrich the genes of the black module
(Figures 10C–F). It can be observed that the black module
was closely related to metabolic processes such as Tyrosine
metabolism, Fatty acidmetabolism, PPAR signaling pathway, and
Glutathione metabolism.

DISCUSSION

Breast cancer is a common malignant tumor in women. In 2020,
there were ∼2.3 million newly diagnosed breast cancer cases
worldwide, accounting for 11.7% of all new cancer cases and
mortality rate of 6.9%. It is one of the main causes of female
cancer deaths (42). Breast cancer is increasingly recognized
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FIGURE 9 | (A) Clustering tree of each sample; (B) Analysis of the scale-free fit index for various soft-thresholding powers (β). (C) Analysis of the mean connectivity for

various soft-thresholding powers. (D) Dendrogram of all differentially expressed genes/lncRNAs clustered based on a dissimilarity measure (1-TOM); (E) statistics of

the number of genes in each module; (F) correlation between each module and subtype.
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FIGURE 10 | (A) Correlation analysis of LDA score and metabolic characteristic index; (B) Prognostic correlation of modules related to metabolic characteristic index;

(C–F) GO and KEGG analysis of black module genes. *P < 0.05, ***P < 0.001.

Frontiers in Public Health | www.frontiersin.org 14 July 2022 | Volume 10 | Article 902378

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Zhou et al. TNBC Metabolic Gene Classification

as a highly heterogeneous disease, showing great differences
in pathological characteristics, biological behavior and gene
expression profiles (43). According to St. Gallen International
Conference on Breast Cancer in 2015 (44), based on the estrogen
receptor (ER) progesterone receptor (PR), human epidermal
growth factor receptor-2 (human epidermalgrowth factor), the
expression of receptor-2, HER2) and Ki-67 proliferation index
in tumor tissues is different, and breast cancer is divided
into 4 molecular subtypes. TNBC accounts for about 15–
20% of all breast cancer subtypes (45). Due to a lack of
expression of ER, PR and HER2, breast cancer lacks precise
molecular therapeutic targets, and surgery supplemented with
radiotherapy and chemotherapy is the main treatment method
(46). However, its heterogeneity and invasiveness are strong,
recurrence is early and the rate of visceral metastasis is high. Once
recurrence and metastasis occur, the median survival period is
generally shorter than 1 year. The prognosis of other subtypes is
worse (47).

As TNBC patients show different treatment responses and
prognosis, individualized treatment and prognostic analysis of
TNBC patients could be difficult, especially when the diagnosis
and treatment of TNBC patients depends on routine clinical
and pathological characteristics (including histological grade,
primary tumor size, lymph node metastasis and estrogen
receptor/progesterone receptor/HER2 expression). To improve
the survival and prognosis of TNBC patients, in recent years,
the exploration of the heterogeneity andmolecular characteristics
of TNBC has been gradually deepened. Deciphering the
characteristics of different subtypes of TNBC through molecular
typing can provide evidence for the early diagnosis and
prognosis of TNBC, a necessary prerequisite for individualized
targeted therapy.

In current studies on the classification of triple-negative
breast cancer, Lehmann et al. (48) identified six TNBC
subtypes based on gene expression profiles, including two basal-
like subtypes (BL-1 and BL-2), immunomodulatory subtype
(IM), mesenchymal subtype (M), mesenchymal stem cell-like
subtype (MSL), and luminal/androgen receptor subtype (LAR).
Subsequent studies conducted by Masuda et al. (49) further
confirmed the clinical significance of Lehmann classification
and added an unstable subtype (UNS). Bonsang-Kitzis et al.
(50) identified six TNBC subtypes including two immune
clusters based on a biological network-driven method. Their
matrix immune module gene signatures showed a strong
prognostic value. Burstein et al. (51) identified four stable
TNBC subtypes based on mRNA expression and DNA genome
analysis, Luminal/Androgen receptor type (LAR), mesenchymal
type (MES), basal-like immunosuppressive type (BLIS) and
Basal-like immune activation (BLIA), and determined potential
therapeutic targets for these specific subtypes. These typing
studies on TNBC lay the foundation for the exploration
of targeted therapeutic targets. However, few studies have
specifically explored the TNBC classification based on metabolic
characteristics. Therefore, exploring the TNBC classification
based on metabolic characteristics may help TNBC patients to
achieve the optimal stratification in clinical treatment to achieve
the role of precise treatment.

In the present study, we typed TNBC at the metabolic
molecular level, and found that based on 2,752 metabolic genes
to type TNBC, these samples can be divided into three metabolic
subtypes (MC1, MC2, MC3), and that the subtypes showed
significant differences in prognosis, specifically, MC1 had a better
prognosis, while MC3 had a poor prognosis (Figure 2). Different
metabolic subtypes had different immune characteristics, which
may be useful for immunotherapy. There were different response
patterns (Figures 4, 5) in different research queues, metabolic
subtypes had a high degree of reproducibility. Based on
metabolic subtypes, an immune characteristic index has been
established, which can better quantify the immunity of patients’
characteristics, reflecting different degrees of immune infiltration
of patients. Metabolic characteristic index was related to immune
checkpoint. Finally, based on the co-expression network analysis,
we screened seven potential genemarkers related to themetabolic
characteristic index. Among them, the differential expression
of 4 genes including CLCA2, REEP6, SPDEF, and CRAT had
significant significance for the prognosis of TNBC.

Recent studies have shown that a variety of tumor cells,
including triple-negative breast cancer, can affect the tumor
immune microenvironment (TIME) by stimulating cancer-
promoting inflammation, sending out immunosuppressive
signals and evading immune surveillance (52). TIME promotes
tumor progression and metastasis by promoting tumor
angiogenesis, influencing tumor biological characteristics,
screening host cells and regulating tumor stem cell activity. Its
main cell components include T lymphocytes, B lymphocytes,
macrophages, NK cells and DC cells. Among them, the T and B
cells, which circulate through the peripheral blood and exist in
tumor tissues and local microenvironment, are collectively called
tumor infiltrating lymphocytes (TIL). This type of cell group
participates in and mediates the occurrence and development of
tumors, indicating that patients may have immune response of
malignant tumors. The presence of TIL have been confirmed to
be related to favorable prognosis of TNBC and HER2-positive
breast cancer and active response to chemotherapy (53). In
our research, we found that different metabolic subtypes had
significant differences in the expression of chemokines and their
receptor genes. These differential expressions indicated that
different metabolic subtypes had different degrees of immune
cell infiltration, which may lead to tumor progression and
differences in the effectiveness of immunotherapy. At the same
time, tumor-related cytokines and chemokines can recruit
and polarize immune subpopulations and differentiate into
pro-tumor phenotypes, thereby promoting tumorigenesis.

We analyzed the infiltration of 22 types of immune cells in
triple-negative breast cancer samples, and the results showed
that T cells and various types of macrophages (M0, M1, M2)
were significantly high-expressed in each subtype. Regarding
the progression of macrophages in TNBC, Sami E [56] and
others believe that macrophages promote the aggressiveness
of breast cancer by promoting its M2 polarization, leading to
a poor prognosis. At the same time, CD8 + T cells in the
tumor microenvironment can produce IFN-γ, which in turn
stimulates the up-regulation of PD-1/PD-L1 and IDO1 gene
expression (54). Studies have shown that the up-regulation of
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PD-L1 expression in tumor cells, especially when combined
with PD-1 expressed by tumor infiltrating activated T cells, can
induce exhaustion and inhibit the anti-tumor immune activity
of these effector cells, thereby allowing tumor cells to escape
from immunity (55). The up-regulation of IDO1 expression is
positively correlated with poor prognosis and tumor progression
and metastasis (56, 57).

In our research, we calculated the IFNγ score, immune T
cell lytic activity, angiogenesis score, and immune checkpoint-
related gene expression in the three metabolic subtypes.
Based on the above results, we found that the MC1 subtype
with the optimal prognosis had higher IFNγ score and T
cell lytic activity, lower angiogenesis score and TIDE score,
indicating that this subtype had stronger immunogenicity
and better tumor microenvironment, and was more likely
to benefit from immunotherapy. In the differential analysis
of immune checkpoint expression in different subtypes, we
observed that the expression of most immune checkpoint-
related genes (LAG3, CTLA4, PDCD1, CD276, HAVCR2) in
MC1 was significantly increased, at the same time, compared
with the other two subtypes, MC1 subtype was more sensitive
to immune checkpoint inhibitors (CTLA-4) and traditional
chemotherapy drugs (Cisplatin, Paclitaxel, Embelin, Sorafenib).
This further confirmed our findings. The well-known IM
passion130 study has confirmed the effectiveness of immune
checkpoint inhibitors in the treatment of breast cancer (58).
In particular, immune checkpoint inhibitors combined with
standard chemotherapy regimens can significantly prolong the
treatment of TNBC patients compared with using standard
chemotherapy regimens alone.

Increasing evidence showed that epigenetic changes play
an important role in the pathogenesis of cancer. There are
research results reporting the epigenetic changes related to the
clinical prognosis of TNBC, which also increase the complexity
of TNBC molecular typing. Although the TNBC molecular
prognostic evaluation model has broad clinical application
prospects and related research results have been verified to
a certain extent, there is currently no unified and widely
recognized molecular prognostic evaluation model in clinical
practice. At present, there are still controversies about the
scope of application of the molecular prognostic assessment
model. All established prognostic models require large sample
verification and clinical application research, which is a huge
task at the current stage. And when a prognostic model is
not well applicable to new populations, the new data and re-
calibration should be used to adjust the model and to improve its
stability and adaptability. Only through verification-adjustment-
re-verification, the molecular prognostic model obtained may be
reliable and accurate (59).

The research on molecular typing and individualized
treatment of TNBC started late, but according to the existing
clinical evidence, molecular typing can be correlated with
individualized treatment and can become one of the effective
methods of TNBC treatment. In short, the clinical diagnosis
and treatment of TNBC in the near future will be based
on molecular prognostic model, molecular classification and
prognostic evaluation, and then individualizedmolecular therapy

will be carried out, which will significantly improve the
therapeutic effect of TNBC as well as the survival and prognosis
of patients.

This study identified seven key genes, and CLCA2, REEP6,
SPDEF, and CRAT were significantly associating with prognosis.
Calcium-activated chloride channel 2 (CLCA2) expression was
reported to be significantly downregulated in cervical squamous
cell carcinoma, andwas found to be negatively correlated with the
enrichment of immune cells, especially with B cells, macrophage
cells, and dendritic cell (60). Purrington demonstrated that
CLCA2 expression was associated with TNBC overall survival
(HR = 1.56, 95% CI = 1.31–1.86) in African American
women (61). SAM pointed domain ETS factor (SPDEF) was
considered to have both oncogenic and tumor-suppressive effects
in breast cancer (62). CRAT gene was less reported in cancer
research and immune microenvironment, but it was identified
as prognostic genes in bladder cancer (63). These four key
metabolic genes related to TNBC prognosis may serve as novel
research targets for understanding their metabolic mechanisms
in TNBC development.

In conclusion, this study established a metabolic classification
as an independent prognostic factor for TNBC, and
analyzed the differences in the characteristics of tumor
immune microenvironment between subtypes, so as to
measure the prognostic risk of TNBC patients, guide clinical
diagnosis, staging, and individualized treatment, and support
prognostic prediction.
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Supplementary Figure 2 | The survival status of immune subtypes.

Supplementary Figure 3 | The expression of seven key genes in three subtypes

in the RNASeq dataset. Kruskal-Wallis test was performed. ∗∗∗∗P < 0.0001.

Supplementary Figure 4 | The PPI results of five genes (CLCA2 and SPINK8

were not shown as no interaction networks were found).

Supplementary Figure 5 | Four genes with survival differences.

Supplementary Figure 6 | Kaplan-Meier survival curves of five subtypes of

breast cancer including basal (A), her2 (B), luminal A (C), luminal B (D), and

normal (E) grouping by high and low expression groups of the seven

key genes.

Supplementary Table 1 | The 42 co-significant genes between RNASeq and

GSE cohorts were collected.

Supplementary Table 2 | The enriched pathways of interacted genes.
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