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Abstract: Recent advances in experimental studies of nanoparticle-driven stabilization of chiral
liquid-crystalline phases are highlighted. The stabilization is achieved via the nanoparticles’ as-
sembly in the defect lattices of the soft liquid-crystalline hosts. This is of significant importance for
understanding the interactions of nanoparticles with topological defects and for envisioned techno-
logical applications. We demonstrate that blue phases are stabilized and twist-grain boundary phases
are induced by dispersing surface-functionalized CdSSe quantum dots, spherical Au nanoparticles,
as well as MoS2 nanoplatelets and reduced-graphene oxide nanosheets in chiral liquid crystals. Phase
diagrams are shown based on calorimetric and optical measurements. Our findings related to the
role of the nanoparticle core composition, size, shape, and surface coating on the stabilization effect
are presented, followed by an overview of and comparison with other related studies in the literature.
Moreover, the key points of the underlying mechanisms are summarized and prospects in the field
are briefly discussed.

Keywords: liquid crystals; nanoparticles; quantum dots; reduced-graphene oxide; calorimetry;
microscopy; blue phases; twist-grain boundary phases; disclination lines; screw dislocations

1. Introduction

Liquid crystals (LCs) are soft materials exhibiting many intermediate phases, the
so-called mesophases, with structures in between the high-symmetry disordered liquid
and the low-symmetry ordered crystal phases. Upon reducing the temperature, they
undergo several symmetry-braking phase transitions and gradually acquire orientational
and partial positional order. The first liquid-crystalline material, cholesteryl benzoate, was
experimentally discovered by the Austrian botanist F. Reinitzer towards the end of the 19th
century [1]. However, it was exactly one century ago when G. Friedel [2] contributed the
nomenclature of the first liquid-crystalline mesophases (nematic, smectic) and about half a
century ago when liquid crystals found their inroads into optical display applications [3].

LCs respond strongly to even weak perturbations due to their soft, fluid-like character.
In the past, the feature mentioned above as well as the various types of transitions occurring
between mesophases, led to the choice of LCs and nanoparticles (NPs) mixtures as model
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systems for testing the disorder and confinement effects upon phase transitions and critical
phenomena [4–10]. Surface-wetting and finite-size effects have also been investigated
experimentally and theoretically [11,12]. More recently, LCs have been exploited as soft ma-
trices for hosting regular templates of colloids [13–15] and NPs [16–19]. The anisotropy in
the optical and dielectric properties of LCs combined with the dispersion of NPs, which con-
tribute additional functionalities to the resulting soft nanocomposites, could trigger novel
applications of LCs in the fields of micro-, bio-, sensing-, and nanotechnologies [20,21].

In some chiral LCs compounds, the competition between the packing topology and
the chirality generates peculiar structures stabilized by lines of topological defects in
short temperature regimes. Typical examples of such structures are the liquid-crystalline
blue phases (BPs) and twist-grain boundary phases (TGBs). BPs are characterized by
lattices formed by disclination lines, whereas TGBs by screw dislocations. Disclinations
are defects in the orientational order; they appear in regions where the local nematic
director cannot be uniquely defined and are characterized by winding numbers 1/2 or
−1/2. Screw dislocations are defects in the translational order; in these points the smectic
order parameter is melted. The general background and the main features of BPs and TGBs
are introduced in the following section. The subsequent sections demonstrate how NPs
assemble within lattices of topological defects and increase the temperature stability range
of these phases or even induce them when they do not exist (or exist in a metastable state)
in the pure LCs.

2. Background of Liquid-Crystalline Blue Phases and Twist-Grain Boundary Phases
2.1. Blue Phases

BPs were present (albeit unknown at that time) in cholesteryl benzoate, since Reinitzer
noticed already some reflections of green and blue [1]. However, they were essentially
brought to the attention of the scientific community much later [22], and the term ‘blue
phase’ was introduced in a study of cholesteryl compounds by Coates and Gray [23]. On
the basis of elasticity, Meiboom et al. [24] introduced the free energy expression for BPs
and proposed the structure of interlaced double-twist tubes as a potential, energy-favored
configuration.

BPs are thermodynamically stable in a short (typically a couple of K) temperature
range between the isotropic and the cholesteric phases of some strongly-chiral LCs [25].
Three types of BPs have been found and characterized as blue phase III (BPIII), blue phase
II (BPII), and blue phase I (BPI) in order of decreasing temperature. Numerous studies have
focused on deciphering their structure, yielding a macroscopically amorphous network of
disclination lines for BPIII [26], changing to a three-dimensional simple cubic for BPII and
a body-centered cubic lattice for BPI [27,28]. In the case of BPIII and BPII, the disclination
lines are entangled and interconnected; on the contrary, in the case of BPI, they do not
intersect [29,30]. Between the disclination lines, there exists liquid-crystalline type of order;
the LC molecules are oriented along double-twisted cylinders as depicted in Figure 1. In
the middle of these cylinders the director of LC molecular orientation is parallel to the
cylinder axis, whereas it progressively changes from −45◦ to 45◦ at the periphery.

Until the end of the 20th century, the scientific interest in BPs was limited to funda-
mental studies, such as investigating phase diagrams as a function of chirality and the
critical behavior [31–35]. However, the ascertainment that the three-dimensional photonic
bandgap structures of BPII and BPI exhibit periodicities in visible wavelengths could open
new pathways towards applications in photonics, as pointed by Etchegoin [36]. Soon
after, Cao et al. [37] demonstrated the potential of BP structures for applications such as
tunable soft lasers. In classical cholesteric LCs, lasing is observed only along one dimen-
sion, whereas in BPs it is possible in three dimensions. Therefore, LCs could be viewed
as candidates for photonic bandgap applications. These findings evoked a major revival
of the research interest in studying and stabilizing these phases over wider temperature
ranges [38].
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Figure 1. Left panel: the structure of BPIII, BPII, and BPI is shown from the left to right. For BPs, the top images show the 
network of disclination lines, being amorphous for BPIII, simple cubic for BPII, and body-centered cubic for BPI. The 
bottom images show the shapes of the double-twist cylinders. The magnifications indicate the LC molecular orientation 
in the vicinity of a −1/2 disclination line (top) and along a cut of the double-twist cylinder (bottom). Right panel: the TGBA 
structure is depicted; screw dislocations along the grain boundaries separate slabs of layered SmA order. 
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TGBA phase have been clearly identified [44–48]. TGBA consists of slabs of SmA-type of 
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as depicted in Figure 1. This defect lattice is pinned in the case of TGBA, whereas it oscil-
lates in the case of NL* phase that exhibits a short-range TGB order [49]. Distinguishing 
the small thermal signatures and the structural differences of NL* and TGBA phases ulti-
mately requires accurate high-resolution calorimetric and small-angle X-ray measure-
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the vicinity of a −1/2 disclination line (top) and along a cut of the double-twist cylinder (bottom). Right panel: the TGBA
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2.2. Twist-Grain Boundary Phases

TGBs often appear between the cholesteric and the smectic phases of strongly chiral
LCs. Their existence was conceptualized by de Gennes [39] and the theoretical formulation
completed by Renn and Lubensky [40]. TGBs comprise the liquid-crystalline analogue of
the Shubnikov phase, characterized by Abrikosov flux vortices in type-II superconductors.
The isomorphism among LCs and superconductors’ phases reads as follows: cholesteric
(N*)—metal, twisted chiral-line (NL*)—Abrikosov vortex liquid, twist-grain boundary A
(TGBA)—Abrikosov vortex lattice, smectic A (SmA)—Meissner phase. The verification of
the existence of TGBs in pure LC compounds and LC mixtures came out in a sequence of
experimental studies by Goodby et al. [41], Lavrentovich et al. [42], and Nguyen et al. [43].
The thermal signature, the structure, and the optical textures of the TGBA phase have
been clearly identified [44–48]. TGBA consists of slabs of SmA-type of order separated
by one-dimensional lattices of screw dislocations along grain boundaries, as depicted in
Figure 1. This defect lattice is pinned in the case of TGBA, whereas it oscillates in the case
of NL* phase that exhibits a short-range TGB order [49]. Distinguishing the small thermal
signatures and the structural differences of NL* and TGBA phases ultimately requires
accurate high-resolution calorimetric and small-angle X-ray measurements [17,46]. Note
that the twist-grain boundary C or C* (TGBC, TGBC*) phases can also be observed; in this
case, smectic-C- or chiral smectic-C*-type of order exists along the slabs [43,50–53].

This review presents recent experimental efforts on stabilizing both BPs and TGBs by
dispersing either spherical or anisotropic NPs in chiral LCs. By choosing the appropriate
core composition, size, geometry, and surface chemistry of NPs, the latter can assemble
within the defect lattices and increase the stability of these phases over broader temperature
ranges. It is shown how calorimetric and optical methods are combined in order to sense
the BP and TGB stabilization when dispersing small CdSSe quantum dots, spherical Au
nanoparticles, and larger reduced-graphene oxide nanosheets in chiral LCs. The results
are obtained on two chiral LCs that exhibit all three BPs, howbeit no stable TGBA phase.
The similarities and differences in the stabilization effect are discussed with respect to
the size, shape, core composition, and surface functionalization of NPs. Afterwards, the
mechanisms that govern the stabilization are briefly addressed. Further on, we refer to the
main findings of other related studies in literature, using particles with sizes ranging from
the nano- to the microscale. Our review will be concluded by summarizing the advances in
the field and remaining open questions.
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3. Experimental Results in Blue Phase and Twist-Grain Boundary Phase Stabilization
3.1. Blue Phase Stabilization by Inclusions: From Polymers and Dopants to Nanoparticles

The first robust strategy for stabilizing BPs by inclusions was introduced by Kikuchi et al. [38]
based on bi-continuous phase separation phenomena in a polymer-doped LC mixture. BPI
was stabilized over a wide temperature range via the alleged assembly of the polymer
chains in the disclination lines. Soon after, doping of chiral LC with non-chiral bent shape
molecules has also been proposed as a means of BP stabilization by Nakata et al. [54].
NP-driven stabilization was first reported by Yoshida et al. [55], who dispersed Au NPs
with a diameter of 3.7 nm in a multi-component LC mixture. Finally, stabilization in
single LC compounds was reported by Karatairi et al. [56] and Cordoyiannis et al. [57],
by dispersing 3.5 nm CdSe quantum dots surface-functionalized with OA and TOP in
S-(+)-4-(2′-methylbutyl) phenyl-4′-n-octylbiphenyl-4 carboxylate (CE8), and in S-(+)-4-(2-
methylbutyl) phenyl-4-decyloxybenzoate (CE6), respectively. In both cases [56,57], the
CdSe quantum dots essentially broadened (almost ten-fold) the temperature range of BPIII
at the expense of BPII (gradually disappeared), whereas BPI was mildly affected. It is worth
mentioning that, despite their similar acronyms, CE6 and CE8 do not belong to the same
homologues series, thus, do not have similar chemical formulas. From these studies [55–57]
it became evident that NPs can be utilized to stabilize BPs over wider temperature ranges
with respect to pure LCs. Apart from the stabilization effect, the dispersion of proper
NPs in LCs can additionally improve the LC electro-optical performance. For example,
increased dielectric anisotropy and enhanced Kerr effect, resulting in a low-voltage and
hysteresis-free fast switching, have been demonstrated for BPI of an LC doped with BaTiO3
NPs [58].

As mentioned above, in the case of polymer-induced widening of the BPI range, the
stabilization effect has been attributed to the aggregation of polymer chains along the
disclination lines [38]. The crucial point is that the cores of defects with essentially melted
liquid-crystalline order, i.e., the disclination lines, are partially replaced by polymer chains.
The replacement of the energy-costly defect cores by polymer chains reduces the free energy
of the LC and polymer composite, leading to a more stable BP structure. This has been later
on extended in the case of NP-driven stabilization, as discussed in the following sections.

3.2. Choice of Materials and Methods for Systematically Exploring the Stabilization Effect

For the vast majority of the experimental results overviewed in the following sections,
various types of spherical and anisotropic NPs have been dispersed in CE8. The thermal
signatures of BPIII, BPII, and BPI are present in pure CE8, within a total temperature range
of ~5 K [56], making it an ideal compound for exploring the impact of inclusions on all
three BPs. In addition, calorimetric measurements indicate the existence of a metastable
TGBA phase, along the low-temperature wing of the first order N*-SmA transition, due to
the apparent proximity (of pure CE8) to a triple point of coexisting N*, TGBA, and SmA
phases [59]. Observations of optical textures confirm that this metastable TGBA order
can be stabilized when CE8 is confined between treated glass surfaces; the stabilization
depends on the glass surface-anchoring (planar, homeotropic, rubbed or untreated glass)
and the cell thickness (spacers of 10 or 20 µm) [60].

NPs of different inorganic core composition, size, shape, and surface chemistry have
been synthesized at the National Centre for Scientific Research “Demokritos” (Greece).
Thermolytic approaches have been followed in high boiling point organic solvents, under
the presence of appropriate capping agents depending on the nature of inorganic mate-
rial [61]. Experimental results on mixtures of CE8 with the following NPs are overviewed:
(a) CdSSe quantum dots with an average diameter of 3.4 nm, surface grafted by oleyl
amine (OA) and trioctyl phosphine (TOP) molecules, (b) spherical Au NPs with an average
diameter of 10 nm and OA coating, (c) MoS2 nanoplatelets with an average size of 10 nm,
consisting of two to four layers and surface-functionalized with OA, (d) reduced-graphene
oxide (r-GO) nanosheets with an average size of 50 nm and OA coating, and (e) r-GO
nanosheets with an average size of 50 nm, decorated with CoPt NPs that enhance the
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OA coverage. The concentration χ is defined in all cases as the mass of NPs over the
total sample mass. For preparing the mixtures, the LC mass is weighed on a balance with
accuracy of ±0.05 mg. Appropriate quantities of NPs solutions, after mild sonication, are
added by high-precision pipettes and the components are slowly heated and magnetically
stirred to achieve homogeneous dispersion of the NPs in the LC host.

Measurements have been performed by combining high-resolution ac calorimetry and
polarizing optical microscopy at the Jožef Stefan Institute (Slovenia) and at the University
of Athens (Greece), respectively. The combination of these two methods, providing both
the temperature dependence of heat capacity and the optical textures upon heating and
cooling, confirms the thermal stability of the observed phases and excludes the possibility of
apparent, surface-induced [60] or super-cooled [62] phases. Details regarding the standard
protocols for the mixtures’ preparation can be found in previous studies [56,57,63]. A
thorough description and technical details of ac calorimetry can be found elsewhere [64,65].

3.3. Blue Phase and Twist-Grain Boundary Phase Stabilization in Liquid Crystals CE8 and CE6
Induced by Spherical Nanoparticles

The experimental proof of NP-induced BP stabilization [55–57] has been attributed to
the assembly of the former in the defect cores. The so-called defect core replacement (DCR)
mechanism has been proposed [66], based on the initial assumptions of Kikuchi et al. [38]
and a Landau-de Gennes mesoscopic approach. The liquid-crystalline order is essentially
melted within the defect cores, resulting in high condensation free energy penalties in
BPs. These energy penalties are reduced when NPs are trapped in the defect cores, since
the highly energetic LC volume is (at least partially) replaced by the non-singular NP
volume, thus, the BP structure becomes stable over wider temperature ranges. At the same
time, several studies by means of theoretical modelling and simulations focused on the
stability of BPs under exogenic impact [67–69]. Nevertheless, up to this point, it was not
yet clear the relative importance of nanoparticle size, shape, and coating on triggering the
stabilization effect. The first systematic investigation of the NP size influence on the BP
stabilization by Dierking et al. [70] suggested that NP with sizes below 100 nm are more
efficient; above this size, the stabilization mechanism strongly deteriorates.

The first report of simultaneous stabilization of two types of defect lines, namely, discli-
nation lines in BPs and screw dislocations in TGBs, came out by Cordoyiannis et al. [17] for
OA and TOP-coated CdSe quantum dots dispersed in CE6. BPIII is present in pure CE6
and is ten-fold stabilized for CdSe concentration of χ = 0.02 [57]. TGBA phase is absent in
pure CE6 and induced by CdSe [17] as depicted by the phase sequence N*-NL*-TGBA-SmA
for χ = 0.0005 mixture in Figure 2. Apart from the experimental demonstration of the
diverse defect lattices stabilized by CdSe quantum dots [17], an extension of the DCR
mechanism [38,66] has been proposed. In particular, for enabling the DCR mechanism,
NPs should be effectively driven towards the defect cores. This is favorable only when
NPs perturb mildly the surrounding LC order; on the contrary, stronger interactions could
trigger phase separation phenomena and degrade the stabilization effect. The resulting
perturbations should enable long-range attraction forces driving the NPs towards the defect
cores. Hence, the focus of the new mechanism has been on the NPs’ adaptive character.
The latter is associated with the NPs’ surface functionalization by flexible molecules that
only weakly affect the surrounding LC ordering. This ensures that the free energy gain
from replacing the energy-costly defect cores by NPs is not wasted by the disruption of
the surrounding LC ordering. The broader mechanism is referred to as the adaptive defect
core targeting (ADCT) mechanism [17].

Indispensable additional measurements have been carried out to investigate the simul-
taneous occurrence of NP-driven BP and TGB stabilization in other soft nanocomposites, as
suggested by the ADCT mechanism [17]. In particular, CdSSe quantum dots and spherical
Au NPs have been dispersed in CE8. CdSSe quantum dots have essentially the same size
as CdSe (diameter of 3.4 nm for CdSSe versus 3.5 nm for CdSe). However, the partial
replacement of Se by S resulted in reduced core density and increased surface coverage
by OA at the expense of TOP (OA binds on both Cd and S, whereas TOP prefers to bind
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on Se). Au NPs have a larger core density, a diameter of 10 nm, and OA coating. Hence,
CE8 + CdSSe and CE8 + Au mixtures exhibit essential differences compared to CE8 + CdSe
ones used in the initial studies [17,56,57], thus, offering testing ground for the stabilization
effect and the verification of the ADCT mechanism.

Figure 2. The temperature dependence of heat capacity for pure CE6 (open circles) and its χ = 0.0005
mixture of CdSe quantum dots is shown. Pure CE6 shows a sharp, single-peak anomaly denoting a
first-order N*-SmA phase transition; on the contrary, the presence of a small concentration of CdSe
produces an essentially suppressed, multi-peak anomaly corresponding to the N*-NL*-TGBA-SmA
phase sequence. The inset shows the total range of TGB order, i.e., the NL* and TGBA phases, induced
in CE6 by CdSe quantum dots [17].

The temperature profiles of heat capacity and the optical textures have been obtained
for several mixtures of CE8 + CdSSe and CE8 + Au NPs by ac calorimetry and polarizing
optical microscopy, upon heating and cooling. In both cases, the spherical NPs induce
a mild increase of the total BP range and a substantial increase of BPIII range, at the
expense of BPII and BPI that gradually disappear [71,72]. In addition, both types of
NPs induce the NL* and TGBA phases [59,71,73]. The characteristic optical textures of
the CE8 + CdSSe χ = 0.002 mixture are shown in Figure 3a–f, accompanied by the phase
diagram in Figure 3g.

An example of the evolution of heat capacity profiles as a function of Au NPs concen-
tration upon cooling can be seen in Figure 4. Optical textures for the CE8 + Au χ = 0.002
mixture are presented in Figure 5a–d, followed by the phase diagram of the CE8 + Au
system in Figure 5e.The results on CE8 + CdSSe and CE8 + Au mixtures, indicate that
coating of NPs with flexible OA molecules reduces the NP-induced distortions of the
surrounding (chiral nematic or smectic) LC ordering, marking the robustness and general
character of the ADCT mechanism [17].
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Figure 4. The temperature profiles of heat capacity Cp for pure CE8 (c) [56], and two of its mixtures
with Au NPs, χ = 0.0005 (b) [71] and χ = 0.02 (a), are shown upon cooling from the isotropic down to
the SmA phase (rate of 0.25 Kh−1).
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3.4. Blue Phase and Twist-Grain Boundary Phase Stabilization in Liquid Crystal CE8 Induced by
Anisotropic Nanoparticles

The influence of anisotropic NPs, such as nanoplatelets and nanosheets, has been
investigated on the stability of BPs and TGBs [74–76]. CE8 was chosen as the LC host,
to directly compare the results with the ones obtained in the case of spherical NPs. The
effect of the core composition, size, and coating has been assessed by choosing 10 nm large
MoS2 nanoplatelets, as well as 50 nm large r-GO and CoPt-decorated r-GO nanosheets.
In all cases, OA has been chosen as the capping agent. The difference between r-GO and
CoPt-decorated r-GO is that the latter are heavier and have a higher coverage by OA
that binds on the surfaces of both graphene and CoPt. The higher surface coverage in
the composite materials is due to the higher affinity of the amine groups to interact with
the bimetallic CoPt NPs. Calorimetry and microscopy have been combined to precisely
determine the phase sequence and the temperature ranges.

The anisotropic NPs induce a mild increase of the total BP range of CE8. Contrary to
the case of spherical NPs and quantum dots that mostly stabilize BPIII, nanoplatelets and
nanosheets stabilize BPI [74–76]. The difference is attributed to wetting effects along the
large surface of these flat NPs that apparently induce some partial LC order at temperatures
inside the isotropic phase of CE8. Wetting effects are the reason behind the strong upshift
persistently observed for the phase transition from the isotropic to the liquid-crystalline
state (I-BPIII or I-BPI). This upshift is much stronger for large anisotropic NPs with respect
to their spherical counterparts dispersed in CE8. Substantial upshift of the isotropic to the
liquid-crystalline phase transition has also been reported in other studies of anisotropic NPs
(e.g., laponite clay nanoplatelets, graphene oxide nanosheets, carbon nanotubes) dispersed
in chiral and non-chiral LCs [77–82]. A mean-field-based interpretation has been proposed
by Gorkunov and Osipov [83]. The LC order induced in the vicinity of nanoplatelets and
nanosheets evidently favors the formation of BPI’s more regular and ordered structure
over the macroscopically amorphous BPIII. A simple schematic representation of the NPs
trapping within the amorphous and cubic lattices of disclination lines of BPIII and BPI,
respectively, can be found in Figure 6.
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Figure 6. The trapping of isotropic (spherical) and anisotropic NPs is schematically depicted here;
the scale and the relative dimensions are approximate. Left panel: assembly of spherical NPs along
the amorphous lattice of disclination lines in BPIII; right panel: assembly of nanosheets along the
cubic lattice of disclination lines in BPI.

The TGB stabilization exhibits a more complex behavior in the case of large anisotropic
NPs. The N*-SmA phase transition of CE8 is suppressed and shifted to lower temperatures
as depicted in Figure 7; the arrow in part (h) denotes the small shoulder at the low-
temperature wing of the heat capacity anomaly indicating the potential presence of a
metastable TGBA order in CE8. The NP-induced N*-NL*-TGBA-SmA sequence is evinced
only in the case of CE8 + CoPt-decorated r-GO mixtures [76]; for CE8 + MoS2 [75] and
CE8 + r-GO [74] no stable TGBA order could be detected by ac calorimetry or optical
microscopy. A remarkable difference exists between the same concentration (χ = 0.001)
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of CoPt-decorated r-GO and r-GO. The larger core density and the additional OA on the
surface of the nanosheets result in more efficient trapping of the CoPt-decorated r-GO in
the screw dislocations and induce a TGB order, as confirmed by both ac calorimetry and
microscopy. On the contrary, the r-GO with lower OA coverage is less adaptive to the
defect lattice and more strongly disturbs the LC order, as indicated by the significantly
suppressed and broadened N*-SmA transition (for a comparison, see the heat capacity
profiles in parts (e) and (f) of Figure 7).

Figure 7. The influence of different types of anisotropic NPs on the N*-SmA phase transition of CE8
is demonstrated. The images show the characteristic textures of the N* (a), NL* (b), TGBA (c), and
SmA (d) phases for the CE8 + CoPt-decorated r-GO χ = 0.001 mixture, captured in planar cells under
crossed polarizers. The temperature profiles of heat capacity are shown for CE8 + CoPt-decorated
r-GO χ = 0.001 (e), CE8 + r-GO χ = 0.001 (f), CE8 + MoS2 χ = 0.02 (g) and pure CE8 (h) [59]. In all
cases, the N*-SmA phase transition is broadened, but only in the case of CE8 + CoPt-decorated r-GO
does the phase sequence N*-NL*-TGBA-SmA appear.
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We hereby provide more detailed evidence regarding the broad anomaly attributed
to the N*-NL*-TGBA-SmA sequence in the case of CoPt-coated r-GO. The conventional
mode of operation of ac calorimetry has been used in our experiments. This mode renders
with precision the transition temperatures. However, it does not sense the total enthalpy
change related to a phase transition, but mostly its continuous part. The phase difference
between the ac power and sample temperature oscillations is also monitored and provides
additional information for the order of the transitions and the coexistence regions (when
present). For a continuous (2nd order) phase transition, the temperature profile of phase
shift tanϕ is inversely proportional to the one of the heat capacity Cp, and the latter has
only a real part. For a discontinuous (1st order) phase transition, tanϕ shows an anomalous
behavior along the phase coexistence region, since Cp has a real and an imaginary part
(related to the latent heat). When the precise enthalpy content is of major importance,
additional measurements are performed using the relaxation mode that senses the total
enthalpy, i.e., its continuous and discontinuous (latent heat) parts. By comparing the results
of the two modes of operation, the latent heat of a 1st order transition can be derived.
Relaxation runs have not been performed in this case, since such an analysis of the enthalpy
content is out of the scope of this work.

In Figure 8, both Cp and tanϕ are commonly plotted for the CE8 + CoPt-coated r-GO
χ = 0.001 mixture. The sharp rise of Cp at the higher temperature side of the peak is related
to the onset of NL* order. The sharp drop at the lower temperature side is attributed to the
onset of SmA order, and the anomalous tanϕ behavior (positive spike) suggests a first order
TGBA-SmA transition. The wider part of the peak is signaling the continuous conversion of
NL* to TGBA along a broad coexistence region marked by the anomalous behavior of tanϕ.
The optical textures of all four phases, presented in Figure 7 for this sample, support our
conjecture from the calorimetric data for a N*-NL*-TGBA-SmA sequence. On the contrary,
neither NL* nor TGBA textures have been detected in the case of r-GO nanosheets and
MoS2 nanoplatelets. Instead, a coexistence of the oily streaks of N* and the focal conics of
SmA phases was persistently present on heating and cooling.

Figure 8. The temperature profiles of Cp (a) and tanϕ (b) are shown for the χ = 0.001 mixture of
CE8 + CoPt-decorated r-GO. The data are obtained upon cooling with a scanning rate of 0.2 Kh−1.
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3.5. Other Studies on Nanoparticle-Driven Stabilization of Blue Phases and Twist-Grain
Boundary Phases

The strategy of dispersing spherical NPs in chiral LCs has been widely adopted
regarding BP stabilization over the last ten years. Spherical NPs and colloids in a broad
range of sizes (from the smallest NPs of 2 nm to the largest colloids of 1.5 µm) and cores
composed of Au, MnO2, ZhS, BaTiO3, CdSe, PbS, Fe3O4, SiO2, and Ni, have been exploited
as stabilization agents [58,84–94]. It is rather impossible to directly compare all these
studies because of: (a) essentially different LC hosts (ranging from pure compounds to LC
mixtures of variable chemical compositions), (b) NP core composition, size and coating, and
(c) different methodologies. Occasionally, the authors refer to the total BP range without
identifying which phase has been mostly affected [86,87,89]. Many studies have focused
on LC compounds exhibiting only BPII and BPI since the optical textures (colored platelets)
and lattice parameters (such as Kossel diagrams [95]) are more straightforward for these
phases. On the other hand, BPIII exhibits a weak birefringence, and its optical texture
consists of a foggy dark blue color, frequently not trivial to detect by means of optical
microscopy (note that under crossed polarizers, the texture of isotropic phase appears
black). Nevertheless, some general trends regarding the stabilization effect can be reliably
derived. Small size spherical NPs and quantum dots persistently induce an increase of
the total BP range. The NP size-dependence studies of Sharma et al. [85] (sizes from 2.2 to
13.2 nm) and Dierking et al. [70] (sizes from 40 nm to 1.5 µm) suggest that, in general, the
smaller the NP size, the more efficient the BP stabilization. Small NPs readily assemble at
the cores of defects and enable the conditions of DCR and ADCT mechanisms.

Theory predicts [69] phase diagrams with simultaneous stabilization of BPII and
BPI for NP sizes up to 100 nm. To the best of the authors’ knowledge, there is only one
experimental study supporting the existence of such a phase diagram (an increase of both
BPII and BPI ranges) induced by 50 nm large Ni NPs [92]. A substantially different picture
is obtained for LCs exhibiting all three BPs, such as CE8 and CE6. Our systematic studies
in mixtures of CE6 + CdSe (3.5 nm, OA and TOP coating) [57], CE8 + CdSe (3.5 nm, OA
and TOP coating) [56], CE8 + CdSSe (3.4 nm, enhanced OA and reduced TOP coating) [72],
and CE8 + Au (10 nm, OA coating) [73] yield phase diagrams resembling to some extent
the ones of increased chirality [33,34]. BPIII is enhanced, BPII vanishes, whereas BPI is
either mildly affected or gradually disappears under the presence of spherical NPs. Note
that the stabilization of all three BPs is of high interest since, apart from the regular lattices
of BPII and BPI, the macroscopically amorphous lattice of BPIII also exhibits interesting
electro-optical switching properties [30,96–98].

The dispersion of anisotropic NPs in LCs for stabilizing BPs shows more consistent
results than their spherical counterparts. Regardless of their core composition (e.g., MoS2,
laponite, graphene oxide, r-GO), size and surface functionalization, nanoplatelets and
nanosheets steadily stabilize BPI [74–76,78,79,82]. In particular, in the case of r-GO, the
stabilization effect is observed only at very small concentrations; at larger concentrations,
the stabilization effect is decaying [79,82]. The possible ways that r-GO nanosheets accom-
modate within the disclination lines have been addressed by Lavrič et al. [76], considering
a stacking along or a triangular configuration around the disclination lines. Further simula-
tion studies could assist in revealing the energetically favored configurations as a function
of size and anchoring. In a recent study, Draude et al. [99] have reported BP stabilization
by means of substantially larger graphene oxide sheets, in the range of few µm. Sheets of
such a large size are likely to assemble in the boundaries between BP platelet domains.

The use of other types of anisotropic NPs, such as nanorods, as stabilization agents is
studied to a lesser extent. The idea that flexible carbon nanotubes could fill the disclination
lines has been explored; however, it was proven rather ineffective with respect to spherical
NPs in the initial studies [70]. Recently, the addition of CdS/CdSe nanorods has been
reported to increase two-fold the BP range of LC host [93]. The effect has been larger
for nanorods than for quantum dots, suggesting that the influence of nanorods is worth
more attention. Moreover, the influence of Al2O3 nanorods on the BP range has been
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investigated, yielding a maximum stabilization for concentrations around 0.5 wt.% [94].
These recent results suggest that nanorods promote the stabilization of BPII and BPI since
their shape matches the geometry of disclination lines. Hybrid stabilization techniques
such as the simultaneous use of NPs and polymers have been also tested [70,100,101].
However, hardly any remarkable accumulative effects have been harvested.

The spherical NP-driven stabilization of TGB phases has been studied to a lesser extent
compared to BPs. It has been shown in the previous section that the N*-NL*-TGBA-SmA
phase sequence is induced in CE6 + CdSe (3.5 nm, OA and TOP coating) [17], CE8 + CdSSe
(3.4 nm, enhanced OA and reduced TOP coating) [59], and CE8 + Au (10 nm, OA coat-
ing) [73] mixtures. The stabilization is enabled by the DCR and ADCT mechanisms, i.e.,
by (a) the partial replacement of the volume of screw dislocations with NPs and (b) the
appropriate surface treatment that minimizes the perturbation of the adjacent SmA slabs.

For anisotropic NPs, it has been shown that MoS2 nanoplatelets and r-GO nanosheets fail
to stabilize the TGB order in CE8. Only CoPt-decorated r-GO renders the N*-NL*-TGBA-SmA
phase sequence [74–76]. The nanosheets’ increased density and enhanced OA coverage
(for CoPt-decorated r-GO) likely hold the key role behind the difference between two
types of r-GO nanosheets. The results of spherical NPs also support this hypothesis. In
particular, when comparing the temperature range of TGB order (NL* and TGBA phases)
of CE8 + CdSSe and CE8 + Au mixtures [59,73], the stabilization effect is larger in the case
of Au NPs. The Au NPs with heavier core (than CdSSe) apparently sense a less viscous LC
medium and, therefore, they assemble in the cores of defects more efficiently. Moreover,
the OA coating of Au NPs makes them adaptive to the surrounding LC order regardless of
their larger size.

In Figure 9, the assembly of spherical and anisotropic NPs in the grain boundaries
is schematically depicted. NPs assemble within the lines of screw dislocations along the
grain boundaries. Though the picture is straightforward for spherical NPs, in the case of
graphene nanosheets, one could assume different configurations, such as stacking along or
parallel to the screw dislocations (along the walls of grain boundaries). Using small-angle
X-ray scattering it has been shown that an increased SmA layer periodicity is sensed in
the case of CE8 + CoPt-decorated r-GO mixture of χ = 0.001 [102]. This result is in favor
of the assembly of CoPt-decorated r-GO between the SmA layers. Based on the above,
we anticipate that the nanosheets assemble perpendicularly to the direction of the lines of
screw dislocations in TGBA. Upon further cooling, the mixture into the SmA phase, the
grain boundaries with screw dislocations disappear, and the nanosheets remain between
the smectic layers. Nevertheless, for essentially larger sheets sizes, such as the ones in
µm scale used in other studies [99], a preferable assembly along the surfaces of the grain
boundaries cannot be excluded. Regarding using other types of NP geometries, a recent
study by Sahoo et al. [103] reports the TGBC* phase stabilization by a small concentration
of dispersed Au nanorods.
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The NP-driven BP stabilization gives an apparently milder effect compared to the
case of polymers. However, most of the studies are based only on optical measurements,
lacking detailed information about thermal history and possible appearance of super-
cooling phenomena [62] in these first order transitions. Therefore, a direct comparison
of the stabilization effect of different strategies (polymers, NPs, dopants) is ambiguous,
unless the results are obtained by the same methodology and on the same LC host. A clear
advantage of NP-driven BP stabilization is that by selecting appropriate types of NPs, one
can tune the electro-optical properties (Kerr effect, driving voltage) of the nanocomposite,
as demonstrated for BaTiO3 [58] and graphene nanosheets [104]. In the case of TGBs, the
effect of Au nanorods on the LC material’s structural and photonic bandgap has also been
reported [103]. The optimization of the aforementioned properties is of major importance
towards potential applications in display technologies.

4. Conclusions and Prospects

An overview of the recent advances in NP-driven BP and TGB phase stabilization has
been provided, focusing on experimental studies. Calorimetric and optical measurements,
as well as the resulting phase diagrams, have been presented on BP and TGB stabilization
by: (a) spherical CdSe, CdSSe, and Au NPs [17,56,57,59,71–73], and (b) MoS2 nanoplatelets,
r-GO and CoPt-decorated r-GO nanosheets [74–76]. The simultaneous use of calorimetry
and microscopy confirms the thermodynamic stability of these phases. This is of major
importance since, as reported in several studies, LC phases (especially the ones associated
with 1st order transitions) can be super-cooled [62] or apparently induced in thin samples
by the interfaces [60,93]. The outcome of our studies and other studies in literature can be
summarized as follows. First, smaller size NPs (below 100 nm) are more easily trapped in
the cores of defects. Second, spherical NPs tend to stabilize more BPIII, while nanoplatelets
and nanosheets favor BPI when dispersed in LC compounds where all three BPs exist. Third,
spherical NPs appear more effective towards the TGB stabilization than their anisotropic
counterparts. Fourth, a higher core density and an enhanced surface coating of NPs with
long flexible chains (such as OA) are propitious for stabilization. Moreover, recent studies
suggest that the existing mechanisms (DCR and ADCT) could be further improved by
focusing on the importance of saddle-splay elasticity and Gaussian curvature [71,105,106].

The study of NP-driven stabilization of BPs and TGBs is of multifold importance.
From a fundamental point of view, it contributes to a deeper understanding of the con-
ditions needed for the trapping of inclusions in defect lattices and the development of
theoretical mechanisms, such as the DCR and ADCT [17,38,66]. For envisioned technologi-
cal applications, the controlled trapping of NPs in regular arrays can open up new avenues
towards soft nanocomposites with exceptional properties. Typical such examples are
three-dimensional, BP-based photonic crystals [107,108], external-field-controlled soft ma-
terials [109], and multi-ferroics [110], as well as tunable metamaterials [111]. Consequently,
the dispersion of NPs in LCs attracts a constantly increasing interest, both experimental
and theoretical.

Over the last ten years, great experimental progress has been made with templating
NPs and colloids in regular arrays by exploiting the defect lattices of soft liquid-crystalline
matrices [14,17–20]. This generates an emerging need for complemental molecular sim-
ulations in order to uncover the favorable NP configurations along the cores of defects.
At the same time, not only do NPs trapped within LC lattices increase the stability range
of certain liquid-crystalline phases, but they also selectively tune the photonic bandgap
of the LC hosts [36,103]. Thus, we anticipate that the ongoing research on NP-driven
stabilization of LC phases, through the assembly of the former in the defect lattices of the
latter, will provide further insight into aspects in fundamental physics and lead to novel
technological applications.
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