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Abstract

Collective behaviors that seem highly ordered and result in collective alignment, such as

schooling by fish and flocking by birds, arise from seamless shuffling (such as super-diffu-

sion) and bustling inside groups (such as Lévy walks). However, such noisy behavior inside

groups appears to preclude the collective behavior: intuitively, we expect that noisy behavior

would lead to the group being destabilized and broken into small sub groups, and high align-

ment seems to preclude shuffling of neighbors. Although statistical modeling approaches

with extrinsic noise, such as the maximum entropy approach, have provided some reason-

able descriptions, they ignore the cognitive perspective of the individuals. In this paper, we

try to explain how the group tendency, that is, high alignment, and highly noisy individual

behavior can coexist in a single framework. The key aspect of our approach is multi-time-

scale interaction emerging from the existence of an interaction radius that reflects short-

term and long-term predictions. This multi-time-scale interaction is a natural extension of the

attraction and alignment concept in many flocking models. When we apply this method in a

two-dimensional model, various flocking behaviors, such as swarming, milling, and school-

ing, emerge. The approach also explains the appearance of super-diffusion, the Lévy walk

in groups, and local equilibria. At the end of this paper, we discuss future developments,

including extending our model to three dimensions.

Introduction

Collective behavior, such as swarming, schooling and flocking, is widely observed in nature

[1–3]. These highly ordered behaviors of a group have been compared to a single body with

one mind [4]. The emergence of these behaviors has been investigated by computer simula-

tions, such as the Boids model and the self-propelled particle model [5–9]. In these models,

each agent in has neighbors within a certain radius or ranking distance (topological distance)

[10–13], and agents coordinate their behavior with these neighbors. This mutual coordination

with some extra interactions produces various flocking formations.

PLOS ONE | https://doi.org/10.1371/journal.pone.0195988 April 24, 2018 1 / 21

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Niizato T, Murakami H (2018) Entangled

time in flocking: Multi-time-scale interaction

reveals emergence of inherent noise. PLoS ONE 13

(4): e0195988. https://doi.org/10.1371/journal.

pone.0195988

Editor: Asja Jelic, Abdus Salam Centro

internazionale di fisica teorica, ITALY

Received: September 29, 2017

Accepted: April 4, 2018

Published: April 24, 2018

Copyright: © 2018 Niizato, Murakami. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: The author(s) received no specific

funding for this work.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0195988
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0195988&domain=pdf&date_stamp=2018-04-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0195988&domain=pdf&date_stamp=2018-04-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0195988&domain=pdf&date_stamp=2018-04-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0195988&domain=pdf&date_stamp=2018-04-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0195988&domain=pdf&date_stamp=2018-04-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0195988&domain=pdf&date_stamp=2018-04-24
https://doi.org/10.1371/journal.pone.0195988
https://doi.org/10.1371/journal.pone.0195988
http://creativecommons.org/licenses/by/4.0/


However, experimental studies show that within the coherent collective behavior, the

behavior of individuals seems disordered [14–18]. In starling flocks, the neighbors of each bird

shuffle and are not fixed [17]. Super-diffusion in collective behavior supports this observation.

The diffusion of birds in flocks is faster than Brownian motion, and this super-diffusion is also

observed in fish schools (e.g., Plecoglossus altivelis) [19]. Murakami et al. also found that, when

described in the center of a mass reference frame, individuals’ trajectories in fish schools show

Lévy walks, which are an optimal strategy for balancing exploration and exploitation, [20, 21].

Furthermore, their results suggest the trajectory of each fish is not constrained to a local region

of the group but covers the whole group.

It has been pointed out that these noisy behaviors facilitate the collective behavior [22, 23].

For instance, locusts in a bounded condition adjust their noisy behavior according to environ-

ment [14] and large swarms of midges use their correlation (the degree of how much and how

far the individual’s behavior affects the others it is not directly interacting with) to achieve

collective behavior despite the lack of collective order [22, 23]. The correlation in the group

enlarges each individual’s effective perception range so that it is larger than its interaction

range. This enlarged perception range increases the group’s susceptibility to external perturba-

tion [24, 25]. Recently, Mateo et al. [26] analyzed the correlation effect in terms of network

structures in flock simulations.

However, the correlation itself does not explain how individuals in flocks generate their

noise-like behavior, because the correlation in the flock only tells us how the information

(individual’s perturbation) is spread and shared with other members, and never tells us how

an individual’s decision in the group will be made in a certain environment. For instance, the

study of locust swarms suggests that each locust tunes its noisy behavior by itself according

to its local polarity [14]. Self-tuning noisy behavior is also observed in Plecoglossus altivelis
schools more directly, since the trajectory of the individual fish in the center of the mass refer-

ence shows motion that is sometimes ballistic and at other times entangled [19]. All these stud-

ies suggest that these self-regulated noisy movements inside the group need to be explained

independently with correlational properties because the statistical analysis lacks individual’s

perspective. Until now, there have been few studies that have tried to explain these behaviors

[27].

Before we describe our flocking model, we begin by discussing the origin of alignment and

attraction over multiple time scales. The attraction and alignment forces used in most models

result from the positions and directions of an agent’s neighbors. The balance between these

two forces is important for producing various flocking formations, such as swarming, milling,

and schooling [5, 28–41].

Each agent in a flock is attracted to its neighbor’s current position and aligns its direction of

motion to that of its neighbor. From a conventional viewpoint, attraction depends on the

neighbors’ positions, whereas alignment depends on the neighbors’ directions of motion [2].

However, alignment also means that each agent is attracted to the infinite-future position of its

neighbor along the neighbor’s current direction of motion. Thus the difference between align-

ment and attraction can be viewed as lying not in their properties (direction vs. position) but

in the time scale, that is, attraction to the current position (t = 0) vs. attraction to the infinite-

future position (t =1) of a neighbor. Thus, attraction and alignment are interactions on two

extreme time scales. If agents have various time scales between these two extremes, we should

expect that various flocking behaviors to emerge.

By considering these multi-time-scale interactions, we constructed a new flocking model

that shows various flocking behaviors, such as swarming, milling, and schooling, which can

coexist. The parameters of our model do not need to be tuned, unlike previous models.
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Furthermore, if we modify some interactions in our model, we can also obtain self-propelled

particle-like behavior. This proves that our model is a natural extension of previous models.

The coexistence of various flocking formations means that flocking behaviors in our model

are built on the noisy movement of individuals, which has statistical regularities, such as

super-diffusion and Lévy walks in groups. In addition, we also demonstrate that our flocking

model is at local equilibrium; thus, the local alignment speeds are much faster than the net-

work arrangement speeds [42]. Our model reproduces all these empirical results.

Finally, we discuss future developments for our model, including extending it to three

dimensions and using other interaction formats.

Material and method

Origin of alignment and attraction

First, we provide a brief overview of alignment and attraction in flocking models. Although

alignment and attraction have been widely used in many flocking models, there have been few

discussions of what alignment and attraction mean. Alignment is the coordinating of the

direction of motion with an agent’s neighbors and attraction is the tendency of the agent to

move toward a neighbor’s current position. Some studies suggest that alignment has a weak

effect in fish schools [31–33]. This may be because, in the captive environments in which fish

schools are usually observed, the concept of infinite-future positions may not be appropriate.

However, for starling flocks, alignment fits well with the empirical results because birds have

effectively infinite space in the sky [15–17].

Although attraction and alignment seem quite different because of the difference between

the properties on which they act, we can describe alignment in a way that is similar to the

description of attraction. If an agent adjusts its direction of motion to that of its neighbor, the

agent points toward the infinite-future position of its neighbor (see Fig 1A; note that the

dashed line connecting the agent of interest at O to the infinite-future position of its neighbor

is only curved because of the constraint of representing a point at infinity on a finite page).

Alignment is, therefore, the result of a kind of attraction: “attraction” is an attraction to the

neighbor’s current position, Q0, while “alignment” is an attraction to the infinite-future posi-

tion of the neighbor, Q1. Thus, the difference between alignment and attraction is not in the

interaction properties but in the time scales.

Short-term and long-term prediction on the edge of agent’s neighborhood

These two time scales hint at other possible flocking models. Taking this view of attraction,

allows us to consider attraction at arbitrary time scales t between the two extremes Q0 and Q1,

namely, attraction to Qt. To implement these intermediate points of attraction in our model,

we convert each point Qt to a point Pt on the edge of an agent’s neighborhood. In Fig 1B a cir-

cular neighborhood is superimposed upon the diagrams in Fig 1A. Attraction point P0 is the

position of a neighbor on the edge of an agent’s neighborhood, and P1 is the point that the

agent’s neighborhood intersects with the dashed line from O to Q1 (O is the position of the

agent of interest). The two extremes Q0 and Q1 are thus converted to points on the edge of the

neighborhood as P0 and P1, respectively. Note that attraction point P0 is derived from infor-

mation Q0 from inside the neighborhood and alignment point P1 is derived from information

Q1 from outside the neighborhood.

Fig 1C shows a generalization of our discussion. There is one neighbor within the agent’s

neighborhood. We define the quasi-attraction point Pτ as the point where the extended neigh-

bor’s direction vector crosses the agent’s neighborhood. When the neighbor is near the edge of

the neighborhood, the quasi-attraction point is almost the same as the attraction point. Next,
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the quasi-alignment point PΤ is defined as the intersection point where the vector to a predic-

tion point (white circle in Fig 1C) from the center crosses the boundary of the agent’s neigh-

borhood. The type of prediction determines the flocking behavior. In this paper, we use the

alignment prediction and anticipation methods. Note that τ and T represent the two most

extreme prediction times. T is always larger than τ because τ is related to a short-term predic-

tion while T is related to a long-term prediction: a neighbor would only take a short time (min-

imum time of zero) to reach the edge of the agent’s neighborhood from the inside while it

would take longer to reach a point outside of the neighborhood (e.g., the white circle in Fig

1C). Not also that, since QT and Pτ are only points on a neighbor’s predicted trajectory, the

neighbor need not actually travel to either of these points. However, one implication of these

predictions should be noted. Through the generalization process shown in Fig 1C, the relation

of the two extremes P0 and P1, which we have observed, is weakened while preserving its orig-

inal properties.

Fig 1. Schematics of attraction, alignment, and their generalization. (A) Schematic of attraction (left) and alignment

(right). The agent (red dot) is attracted toward its neighbor’s (black dot) current position (Q0: left) and infinite future

position (Q1: right) (B) Schematic of attraction and alignment with a neighborhood. The circle indicates the boundary

of the agent’s neighborhood. In the attraction case (left), the point P0 is precisely the same as Q0. In the alignment case

(right), the point P1 reflects the information of Q1 as the point on the boundary the agent would reach if it moved in

a direction parallel with its neighbor’s motion. (C) Schematic of the generalization from P0 and P1 to Pτ and PT. Pτ is

the crossing point of the agent’s extended direction vector at the boundary of the neighborhood. PT is the point where

the vector from the agent to a certain prediction pointQT crosses the boundary of the neighborhood.

https://doi.org/10.1371/journal.pone.0195988.g001
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Prediction methods

The time scales τ and Τ can take many values according to the neighbor’s position relative to

the boundary of the agent’s neighborhood and the prediction method. In this section, we

introduce the alignment prediction and anticipation methods. There may be other prediction

methods; however, these are the only examples that we have found. In this paper, we only use

the anticipation method for our analysis. The alignment method is only used to show that this

method can create self-propelled particle-like behavior.

Alignment prediction: This prediction method is similar to the alignment interaction that is

widely used. This method produces group behaviors like the self-propelled particle model

(S1 Movie). Fig 2A shows a schematic of the alignment prediction method. The end point

of an extremely elongated neighbor’s direction vector vi is used as the prediction point QT
(white circle in Fig 2A). Thus, the prediction point isQT = xi(t) + Tvi(t), where xi(t) is neigh-

bor i’s position and vi(t) is its velocity vector at time t. In this paper, we fixed T = 300

because this method is used only to provide an example of the generation of self-propelled-

particle-model-like behavior.

Anticipation: This prediction method is similar to that of Morin et al. [35). Past direction turn-

ing rate dφi(t) affects the future direction turning rate dφi(t + 1), assuming dφi(t+1) = dφi
(t) for the prediction (Fig 2B). For precision we write dφi(t) as dφis(t) because the degree of

dφi depends on how long the agent of interest refers to its neighbor’s past movements (s
steps), that is, dφis(t) = arg(vis(t)) − arg(vis-1(t)) where vis(t) = xi(t) − xi(t−s) and vis-1(t) =

xi(t−s) − xi(t−2s). The prediction point for anticipation is QT = xi(t) + T || vi(t) || ui(t),
where ui(t) is a unit vector with argument arg(vi1(t)) + dφi(t). The symbol ||-|| indicates the

vector norm. The value of T is given by s�r1(t)/ || vi(t) || where r1(t) is the radius of the

neighborhood at time t. This definition means that enlarging s, that is how long the agent

refers to its neighbor’s past, enlarges T. The value of s is uniquely determined as the mini-

mum value such that all neighbors’ QT’s lie outside the neighborhood. In S1 Fig, we give the

Fig 2. Schematics of the two prediction methods. (A) Alignment prediction: the prediction pointQT is the end point

of the elongated neighbor’s direction vector vi(t). (B) Anticipation: the prediction pointQT is the predicted landing

point if the turning rate of the agent’s neighbor is the same as its previous rate, that is, dφis(t) = dφis(t + 1). The value of

s indicates how long the agent refers to its neighbor’s past movement in terms of a number of time steps. The quasi-

alignment point PT is the point where the segment from the agent to the prediction pointQT crosses the boundary of

the neighborhood.

https://doi.org/10.1371/journal.pone.0195988.g002
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graph of the distribution of s, which shows the frequency of s values for our simulations.

We use this method for all the results (S2 Movie).

Method descriptions

In this section, we describe our flocking model algorithm. The parameter settings and other

more complicated mathematical expressions are provided in the Method section and S1 Text.

First, we define the functions and symbols that we use in our model. We define four func-

tions: (i) The distance function d(x, y); its output is the Euclidean distance between position

vectors x and y in Rn (in this paper, n = 2). (ii) The mean angle function mean(X); its output is

the mean angular direction in set X. (iii) The covering function Cov(X); its output is the set

{θ| min({θi − mean(X)| θi 2 X })� θ − mean(X)�max({θi − mean(X)| θi 2 X })}. The relation

X� Cov(X) always holds. (vi) The random function Ran(S): its output is an element x ran-

domly selected from set S.

Next, we define four sets for our model. N = {1, 2, . . ., N} are the tags for the agents and N =

|N|, where |-| indicates the cardinality of a set. E = {(i, j)| i, j 2 N, i and j are Voronoi neighbors}

is a network constructed from all directly connected Delaunay triangles. The set ni = {j| j 2 N,

(i, j) 2 E or i = j} represents all of agent i’s neighbors, including itself. The set oi = {j| j 2 N, d(xi,
xj)< R or i = j} represents all of agent i’s neighbors inside its repulsion zone, including itself. R
is a parameter giving the size of the repulsion zone, which is fixed in our simulations. Our

model uses the Voronoi neighborhood to determine neighbors because recent studies, espe-

cially in fish schools, suggest that the Voronoi neighborhood provides a more valid description

of collective behavior than other neighborhoods [36, 37].

We need to define a circular neighborhood including all Voronoi-connected-neighbors

ni(t) for agent i at time t to obtain quasi-attraction points (i.e., Pτ’s) and quasi-alignment points

(i.e., PT’s) on the boundary of this neighborhood. This circle is Ci(t) = xi(t) + {(ri(t)cos(θ), ri(t)
sin(θ))| 0 ≦ θ<2π} where ri(t) = max({d(xi(t), xj(t)) | j 2 ni(t)}) + c (c is a constant parameter).

All short-term (i.e., Pτ) and long-term (i.e., PT) predictions for an agent i lie on this circle Ci(t).
Here, we describe the two interaction methods (Fig 3A and 3B).

1. Direction through common information: A quasi-attraction point collection of Pτ’s for i is a

collection of directions, θi(t) = {θ1(t), θ2(t), . . ., θ|ni(t)| (t)}, because only directional informa-

tion matters for Ci(t) in our model (Fig 3A). Similarly, a quasi-alignment point collection of

PTs for i is also a collection of directions, Θi(t) = {Θ1(t),Θ2(t), . . ., Θ|ni(t)| (t)} (Fig 3B). Each

PT is given from QT using the prediction method, that is, alignment or anticipation (see the

section Prediction Methods). We take the intersection between Cov(θi(t)) and Cov(Θi(t)),
Ii(t) = Cov(θi(t)) \ Cov(Θi(t)). These common short-term (i.e., Pτ) and long-term (i.e., PT)

predictions determine agent i’s next direction of motion, φi(t + 1) = mean(φi(t), Ran(Ii(t))).
In particular, in the case Ii(t) = ;, φi(t + 1) = mean(φi(t), Ran(Cu—Ji(t))), where Ji (t) =

Cov(θi(t)) [ Cov(Θi(t)) and Cu is a unit circle.

2. Repulsion: Repulsion in our model is a deflection of an agent’s movement direction

from the interval. Because the neighbors in its repulsion zone are oi, a quasi-attraction

point collection of Pτ on ~CiðtÞ ¼ xiðtÞ þ fðR cosðyÞ;R sinðyÞÞj0≦ y < 2pg gives

~θ iðtÞ ¼ fy1ðtÞ; y2ðtÞ; . . . ; yjoiðtÞjðtÞg. Then, agent i’s next direction is

φiðt þ 1Þ ¼ meanðφiðtÞ;RanðCu � Covð~θ iðtÞÞÞÞ, where Cu is a unit circle.

The intersection Ii(t) in (I) is constructed from both short-term predictions (i.e., quasi-

attractions) and long-term predictions (i.e., quasi-alignments) on the circle Ci. Each agent can
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choose any direction from the interval Ii(t). The interaction in our model only determines a

bundle of directions in an obtained interval, but not a certain direction. This fact suggests that

the direction that the agent chooses always has some uncertainty, even if it can precisely com-

pute and predict all its neighbors’ behaviors, because the agent can only obtain interval infor-

mation Ii(t) and select one element from this interval.

Noise definition. In this paper, we regard noise as arising from an agent’s ability to

resolve space divisions (i.e., a cognitive resolution of space). The bundle of directions in inter-

val I gives the next direction of motion for an agent. Treating noise as cognitive resolution

blurs this interval (see S2 Fig). This assumption comes from the finite nature of the accuracy of

animal cognitive systems (e.g., animal visual perception) [38–41].

Consider the p-division of unit circle Cu for agent i, where p is a natural number. The p-

division acts on circle Cu centered on the agent’s position at time t. Each fragment of the circle

Fig 3. Schematics of the showing short-term and long-term prediction on the circle. (A) The circle shows quasi-

attractions as internal information for agent 1. The numbers under the dots are the tags for the agents. The bold blue

arc is a covering set for θ1. (B) The circle shows quasi-alignments as external information for agent 1. Each prediction

pointQTi
determinesΘi. The bold red arc is a covering set for Θ1. (C) The complete chart of our algorithm. In the first

step, find an agent which has its neighbors within its repulsion range (Covð~θ iðtÞ) colored green) and apply the

repulsion algorithm (the updated agent is shown in red). Repeat this until there is no agent which has its neighbors

within its repulsion range. Then, construct a Delaunay triangulation from all agents’ positional information. Apply

quasi-attraction (Cov(θi(t)) colored blue) and quasi-alignment (Cov(Θi(t)) colored red) and take their intersection

(Ii(t) colored yellow). The agent of interest (colored blue) selects its direction from this yellow interval.

https://doi.org/10.1371/journal.pone.0195988.g003
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is ~ca ¼ fyjφi tð Þ þ
2p

p a � y < φi tð Þ þ
2p

p aþ 1ð Þg, where the agent direction of motion is φi(t)

and 0 ≦ a<p. Note that ~ca \ ~cb ¼ ; if a6¼b and Cu ¼
Sp� 1

a¼0
~ca. The size of each fragment, ~ca,

indicates the ability of the agent to divide space (i.e., the degree of directional resolution).

Thus, intervals I can be partitioned into
S

a2½I�~ca, where ½I� ¼ faj0≦ a < p; ~ca \ I 6¼ ;g.
Applying this method, we can rewrite Eqs. (I) and (II) as follows.

ðI0Þ : φiðt þ 1Þ ¼ meanðφiðtÞ; Ranð~cRanðIiðtÞgÞÞÞ or meanðφiðtÞ; Ranð~cRanð½Cu � JiðtÞ�ÞÞÞ

ðII0Þ : φiðt þ 1Þ ¼ meanðφiðtÞ;Ranð~cRanð½Cu � Covð~θ iðtÞÞ�Þ
ÞÞ

Large p preserves the original structure of I. Interval I and partitioned interval

CovðIÞ ¼ [a2½I�~ca are generally equal. However, when p is small, the partitioned interval

[a2½I�~ca always includes the original interval I. This mismatch generates more choices from

Cov(I) than from the original interval I because the selection area from which each agent

chooses a direction expands (S2 Fig). In this paper, a noise parameterzdetermines the value of

p ¼ ½2p

z
�, where [–] is the floor function. Note that noise strength is not the same as used in tra-

ditional models. Noise in traditional models acts on an agent’s pre-determined direction of

motion. On the other hand, the role of noise in our model is only to expand the interval Cov(I)
and increase the set of directions which the agent can take.

Speed definition. We consider that turning rate curbs the agent’s speed (for instance, in

[19] Plecoglossus altivelis’s speed is small when the turning rate is large). So, we define agent i’s
speed at time t as vi(t + 1) = Vcos(φi(t + 1)–φi(t)) where V is a maximum velocity.

Algorithm

1. Distribute all agents randomly in a two-dimensional space, which is 100(m)×100(m) in our

model. Each agent also has a random velocity.

2. Each agent checks whether it has its neighbors in its repulsion zone ~CiðtÞ 6¼ ; or not. If it

does, go to 2.1. Otherwise, go to 3.

2.1. Compute the agent’s quasi-attraction points on ~CiðtÞ ¼ xiðtÞ þ fRcosðyÞ;RsinðyÞÞj0≦
y < 2pg for each agent in oi(t) = {j|d(xi(t), xj(t))< R} to obtain ~θ iðtÞ ¼ fy1ðtÞ; y2ðtÞ; . . . ;

yjo iðtÞjðtÞg. Make a covering set, Covð~θ iðtÞÞ, and determine the agent’s next direction,

φiðt þ 1Þ ¼ meanðφiðtÞ;Ranð~cRanð½Cu � Covð~θ iðtÞÞ�Þ
ÞÞ.

2.2. Determine the agent’s velocity: vi(t + 1) = Vcos(φi(t + 1)–φi(t)) where V is a maximum

velocity.

2.3. Update the agent’s position: xi(t + 1) = xi(t) + vi(t + 1).

3. Draw Delaunay triangles (i.e., find the Voronoi neighbors) E(t) = {(i, j)| i, j 2 N, i and j are

Voronoi neighbors} from agent’s distribution to find its directly connected neighbors,

ni(t) = {j| j 2 N, (i, j) 2 E(t) or i = j}. Obtain the edge of neighborhood Ci(t) = xi(t) + {(ri(t)
cos(θ), ri(t) sin(θ))| 0 ≦ θ<2π} where ri(t) = max({d(xi(t), xj(t)) | j 2 ni(t)}) + c (c is a con-

stant parameter). Compute the agent’s quasi-attraction and quasi-alignment points for ni(t)
and get θi(t) and Θi(t) by using the method (I). Make two covering sets (Cov(θi(t)) and Cov

(Θi(t))) and take the intersection, Ii(t) = Cov(θi(t)) \ Cov(Θi(t)).

3.1. If Ii(t) 6¼ ;, the agent’s next direction is φiðt þ 1Þ ¼ meanðφiðtÞ;Ranð~cRanð½IiðtÞ�ÞÞÞ.

3.2. If Ii(t) = ;, the agent’s next direction is φiðt þ 1Þ ¼ meanðφiðtÞ;Ranð~cRanð½Cu � JiðtÞ�ÞÞÞ
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4. Update the rest of the agent states vi(t + 1) = Vcos(φi(t + 1)–φi(t)) and xi(t + 1) = xi(t) + vi(t +

1) synchronously. Then update t! t + 1 and return to 2.

In Fig 3C, we describe the chart of our algorithm. The parameters are listed in the Method sec-

tion. This model has no boundary conditions. Almost all agents are simultaneously updated by

using the three steps; however, some agents apply step 2 before proceeding. This procedure is

introduced to avoid the situation of agents’ positions coinciding. Thus, our model uses a semi-

synchronous update rule.

Results

Schooling, milling, and swarming

First, we examine the effects of noise as cognitive resolution (the ability to divide space; in this

case, circle division) and the maximum velocity V on the collective behavior of our model. To

summarize the agents’ behavior, we use two measures, the degree of polarity OP and torus OT,

which have been widely used for collective behavior. High polarity OP means that the groups

are in high alignment (ordered state) and high OT means that groups are in a milling state,

which is sometimes observed in fish schools. In contrast, low OP and OT values indicate

swarming (i.e., the flock is in a completely disordered state). Note that 0 ≦OP, OT≦1. OP and

OT are expressed mathematically as

OPðtÞ ¼
1

N
j
XN

i¼1
uiðtÞj; ð1Þ

OTðtÞ ¼
1

N
j
XN

i¼1
uiðtÞ � qiðtÞj; ð2Þ

where N is the number of agents (|N| = N), ui is the unit velocity vector of agent i, and qi is a

unit vector pointing from the group’s center of mass toward agent i. Most flocking models

have suggested that these qualitatively different behaviors (schooling, milling, and swarming)

are parameter-dependent, which means a certain set of parameters corresponds to each

group’s behavior. The parametric region for producing multiple states at the same time is a

restricted one [37].

However, Fig 4A suggests that agents in our model (N = 100) can switch between schooling

(high alignment), milling, and swarming behaviors. Agents can have a high OP, a high OT, or a

low OP and OT (S2 Movie). Almost all parameter settings (velocity and noise intensity) have

the same tendency in terms of the coexistence of three different behaviors (Fig 4B and 4C).

Even if the agents are in a highly ordered state on average (Op>0.9), their minimum OP is

lower than 0.3 in most cases (S3 Fig). This fact suggests that high alignment flocks are not

always stable. Although milling states are observed more often in low-velocity regions (S3 Fig),

high OT values above 0.5 remain in both the high-velocity and noise regions. To achieve vari-

ous collective behaviors in flock models, many researchers have suggested that the balance

between attraction and alignment is crucial. In contrast, the agents in our model can tune the

balance between attraction and alignment as the time scales (τ and T) by themselves, as dis-

cussed in the previous section.

Noise as cognitive resolution works differently compared with past flocking models. Usu-

ally, increasing the noise intensity results in disordered groups. Although this trend is also

observed for high noise intensity (light green in Fig 4B), it is not always the case. In low-veloc-

ity regions, noise increases the OP on average.

In the low-velocity region, the agents collide with each other because agents tend to stick

together. Collisions happen less frequently in the high-velocity case. It is true that each agent

Entangled time in flocking
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tends to move closer in this model, but high velocity decreases the possibility of becoming

trapped in another agent’s repulsion region because high-velocity agents pass through other

agents’ repulsion areas (in our simulation, the average collision rate in a group of 100 agents

per step is 4.54, 1.49 and 0.77 for V/R = 4/4, 7/4 and 10/4, respectively). These collisions desta-

bilize the flock alignment.

The effect of this misalignment by collision would be greater for relatively low noise inten-

sity than for relatively high noise intensity. Indeed, low noise agents show high alignment, but

the unexpected large direction changes (repulsion in this case) are easily spread all over the

flock because of the high space division ability. This perturbation spreading tendency prevents

low noise agents from creating high alignment in the low-velocity region.

Diffusion in flocks

Recent findings about real flocks and schools have shown that individual behavior inside

the group is disordered rather than highly ordered. Seamless shuffling with neighbors and

bustling movements have been little reported in flocking models [11]. In particular, the maxi-

mum entropy approach is known to be able to describe these collective properties well, but it

does not provide individual perspectives to describe what is going on inside these collective

behaviors. Murakami’s recent finding on the Lévy walks inside fish schools shows the statistical

regularity in these movements [19]. Exploring and exploiting the behavior of each single fish

Fig 4. Averaged polarity OP and torus OT values and their time series. (A) Time series ofOP andOT values

(N = 100). (B) Polarity for the conditions V = 1.0, 2.0, 3.5, 5.0, 10.0, and 20.0 with respect to noise of 0.01, 0.05, 0.10,

0.50, and 1.00. V is the maximum velocity that each agent can have. The graph shows low polarity in the low-velocity

regions because of repulsion effects as we discussed in the main text. (C) Torus structure for the conditionsV = 1.0,

2.0, 3.5, 5.0, 10.0, and 20.0 with respect to noise of 0.01, 0.05, 0.10, 0.50, and 1.00 (628, 124, 62, 12, and 6 divisions of

the unit circle). The 17,000 steps were run 30 times for all cases.

https://doi.org/10.1371/journal.pone.0195988.g004
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in the school suggest individual intelligent behavior within the group. It is difficult to under-

stand their finding without considering each individual’s decision under imperfect and frag-

mented information.

Our model explains these collective behaviors. Fig 5A shows super-diffusion in a flock,

which is described as

dr2ðtÞ ¼
1

T � t
1

N

XT� t� 1

t0¼0

XN

i¼1
½riðt þ t0Þ � riðtÞ�

2

; ð3Þ

where xi(t) is the position of agent i at time t, xCM(t) is the position of the center of the mass of

the flock at time t, and ri(t) = xi(t) − xCM(t) is the position of agent i in the center of the refer-

ence frame. We averaged over all N and over all time lags of duration t in the interval [0, T],

where T is the total time interval (T = 2000 steps). The behavior of the mean square displace-

ment δr2(t) is well-described by the following power law

dr2ðtÞ ¼ Dta; ð4Þ

Where α is the diffusion exponent (0–2) and D is the diffusion coefficient. The value of α is

important. If α is 1, the process is normal diffusion, and if α is >1, the process is super-

Fig 5. Shuffling behavior inside the flock. (A) Mean square displacement in the center of mass reference frame up to

30 steps. D = 26.0 and α = 1.59. (B) Neighbors overlap.QM against time t for groups of 100 individuals. Full lines

represent Eq (6) for 0.66 (fitted value) with αm = 1.55 and d̂ ¼ 1:67. (C) Neighbors overlap:QM against number of

neighborsM for 100 individuals. Values are not fitted for highM becauseM is too large for the group size (M = 80 and

N = 100).

https://doi.org/10.1371/journal.pone.0195988.g005
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diffusion (α = 2 is purely ballistic diffusion). If the agents undergo super-diffusion collectively,

information transfer is much faster than for normal diffusion.

Fig 5A shows that the diffusion exponent of our model is>1 (i.e., super-diffusion). The dif-

fusion exponent, α, is 1.55 on average and its value matches the experimental results well (Ple-
coglossus altivelis: 1.34 < α<1.73 and starlings: α = 1.73; other parameter results for Eq (4)

and mutual diffusion are listed in S4 Fig and S1 Table).

This super-diffusive behavior in flocks results in neighbor shuffling. Neighbor shuffling

means that each agent’s neighbors change with time. Cavagna and other researchers [17]

described this using the time-dependent overlapping neighbors rate QM

QMðtÞ ¼
1

N

X

i

MiðtÞ
M

; ð5Þ

where Mi(t) is the number of neighbors of agent i at time t + t0 that share the same neighbor-

hood. members as agent i’s member M at time t0. QM decreases over time. According to their

calculation, the distribution of QM along time t is well fitted by

QMðtÞ ¼ 1þ c
tam=2

M1=d̂

� �� d̂

; ð6Þ

where d̂ is an effective dimension, αm is a mutual diffusion exponent, and c is a constant

parameter to fit QM (the method of obtaining d̂ and αm is shown in S5 and S6 Figs). This func-

tion is also satisfied in our results. Agents in our model change position dynamically inside the

flock.

Lévy walk in the flock

The Lévy walk is an optimal searching strategy found widely in nature, from the movement of

bacteria to human movements [43–46], especially in foraging strategies. This behavior can be

described by

PðlÞ � l� m with 1 < m � 3; ð7Þ

where l is step length and μ is a power law exponent. Step length is the cumulative traveling dis-

tance between two pausing points. This procedure is based on the intermittent behavior of the

Lévy walk. The definition of the pause (i.e., the state of not moving) is the same as the definition

used by Murakami and other researchers [19, 43, 44]). Namely, when dr> ||ri(t) − ri(t—1)||, or

when the traveling distance in the center of mass reference frame for one step is smaller than a

given threshold, dr, agent i is regarded as pausing.

Fig 6A is an example of one agent’s trajectory in the center of the mass reference frame for a

group size of 100. The graph shows that the trajectory has ballistic movements (non- entan-

gled) and entangled lines. The trajectory in Fig 6B resembles the trajectories of Plecoglossus
altivelis in Ref. [19]. This observation is also confirmed through our statistical analysis. Fig 6B

shows the step length distributions for 100 agents (gray lines), which are similar. The red line

in Fig 6B is the fitting curve with the truncated power law (slope: μ = 2.11), which is often used

to estimate the Lévy walk power law distribution, of averaged data for 100 distributions. S3

Table lists an example of all the statistical tests for 100 agents and averaged results over 20 sim-

ulations for 100 agents for other threshold dr settings (see detailed discussion in the Method

section or Refs. [47, 48]).
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Our result of an average value of μ = 2.11 (see S2 Table for various parameter settings)

matches Murakami’s experimental data well (1.86< μ< 2.33). Furthermore, an exponent

value of μ� 2 is the value for an optimal foraging strategy in a certain environment [20, 21].

The whole trajectory covers the mean flock size in Fig 6A. As Murakami and other researchers

suggested [19], the bustling behavior inside the flock is not restricted to a local region, but

occurs throughout the group. Thus, the agents in our model can communicate with each other

in the most efficient way.

Local equilibrium of the flock

We have shown that our model can produce the noisy behavior of individuals. However, the

highly ordered macroscale behavior must be connected to the noisy microscale behavior. To

bridge this gap, we use Mora and other researcher’s findings [42]. According to their study,

parallel processing of different time scale events for micro- and macroscopic behavior explains

the apparent paradox of an ordered state being based on a disordered state. They defined two

time scales: the alignment time scale, which corresponds to an individual’s behavior over short

time scales; and the neighbor exchange time scale, which corresponds to the network (con-

nected topological neighborhood] rearrangement time as a whole flock. We use the name

neighbor exchange time instead of using network rearrangement time, following [42].

The alignment time is the relaxation time that eliminates the effect of divergent modes

because of the Goldstone theorem (see Ref. [42] for a detailed discussion). The alignment time

is approximately τrelax = (Jnc)−1, where J is the overall interaction strength and nc is the number

of nearest neighbors of each agent. This formula is based on an approximation assuming that

the group is in a state of high polarity, Op� 1. Therefore, this method must be applied carefully

to our model. We discuss the validity of using this method in the Method section.

The neighbor exchange time is defined as the characteristic decay time of the autocorrela-

tion function Cnetwork(t) = ∑ijnij(t0)nij(t + t0), where nijðtÞ ¼ e� kij ðtÞ=nc . Here kij(t) is the topologi-

cal distance at t, given as the time-dependent rank of agent j among agent i’s neighbors ranked

by distance. This function decays exponentially, Cnetwork(t)� C0 exp(−t/τnetwork) (see S7 Fig).

Fig 6. Lévy walk behavior inside flocks. (A) Example of an agent’s trajectory in the center of a mass reference frame for

4000 steps. The vertical bar is the mean flock size during the simulation. (B) Power law distribution of step lengths. The

vertical line is the step length rank for each individual. The gray lines correspond to each individual’s step length for its

trajectory. The bold red line is the fitting curve with averaged parameters for the truncated power law function. Details of

the statistical tests for the power law are given in S2 and S3 Tables and the Method section.

https://doi.org/10.1371/journal.pone.0195988.g006
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The relationship between τrelax and τnetwork is crucial. When τrelax� τnetwork, the flock

shows only highly polarized behaviors without any rapid shuffling of neighbors in the flock.

When τrelax� τnetwork, the flock shows swarming because the network arrangement is faster

than the local alignment speed. The most interesting case is when τrelax� τnetwork, which is an

adiabatic system or local equilibrium. The alignment speed is much faster than the network

arrangement speed. This gap between the two time scales enables the flock to have consistent

bridging between highly ordered macroscopic behavior and disordered microscopic behavior.

Fig 7A shows our results. About 200 ordered differences of the two time scales (average of

τrelax� 180τnetwork) are observed in our model. The size of this gap in our model is similar to

Mora’s experimental results (τrelax� 100τnetwork). In addition, we found that there is no corre-

lation between τrelax and τnetwork, as Mora and other researchers found (Fig 7B; Pearson corre-

lation coefficient: 0.02).

Discussion

Our model is based on reconsidering attraction and alignment, which most researchers have

used for flocking models. We re-interpreted attraction and alignment so that they differ in

their time scales, rather than in their fundamental nature. Each agent uses several different

time scales through short-term and long-term prediction. The time scale for each agent is het-

erogeneous in our model because each agent uses different time scale predictions (τ and T).

The circle C, which reflects both short-term and long-term prediction, plays an important

role in our model. The interval I on circle C never gives only one direction, but provides a bun-

dle of directions (movement possibilities) for each agent. As we can see in Fig 4, the ratio

between the maximum velocity V and the repulsion radius R plays a definitive role for various

collective behaviors rather than the noise strength. Therefore, making the interval on C is the

main driving force producing the various properties that we have seen in this study. Note this

is not the same as stochastic model with certain probabilistic distributions [49, 50], observed

in stochastic differential equation, because our model never gives any probabilistic distribu-

tions in advance.

The dots on the circle in our model reflect various time scale events. Having various possi-

ble movements means that the agent’s movement is different from computing one specific

Fig 7. Local equilibrium in flocks. (A) Histogram of alignment time τrelax (red bars) and neighbor exchange time

τnetwork (blue bars). The vertical line is the frequency for 50 simulations. Alignment time 1/Jnc is almost equal to 1 step

in our simulation where nc = 5. (B) The scatter plot of τrelax versus τnetwork shows no correlation (Pearson correlation

coefficient: 0.02).

https://doi.org/10.1371/journal.pone.0195988.g007
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direction by applying multiple forces (e.g., attraction and alignment) because the covering

interval, Cov(I) only gives each agent a set of choices. Neighbors’ directions of movement can

only restrict an agent’s movement to a certain region no matter how refined their space divi-

sion ability p is. This restriction for direction selection is weaker than in previous flocking

models, and it allows our model to exhibit super-diffusion and the Lévy walk.

This type of interaction resembles Gunji and other researcher’s mutual anticipation model

[51–53]. The agents in their model also have many possible transition states, although their

anticipation method is unique. Gunji and other researchers suggest that having many potential

vectors (possible movements) produces a group with high cohesion despite the high noise

intensity. The rule that the agent has many possible movements may be key for future models

attempting to produce collective ordering while shuffling individual’s positions.

The coexistence of different time scales leads to local equilibrium in our model. Local equi-

librium (an adiabatic system) resembles Harken’s synergetics theory [54, 55], known as the

enslaving principle, which says that a fast system is directly affected by a slow system. In our

flocking model, the alignment is the relatively fast system and the neighbor exchange (or net-

work rearrangement) is the relatively slow system (τrelax� τnetwork). The theory suggests that

network dynamics in the flock directly affects local alignment dynamics, and a time scale gap

is necessary to achieve self-organization in the flock. This theory also supports our intuitive

understanding of the behavior, as a collective having one mind [4].

Finally, we discuss possible future developments for our model.

Extension of the model to three dimensions: Our model extends easily to three dimensions.

Some studies have reproduced the coexistence of schooling and milling; however, as we have

discussed before, the parameter region for coexistence is very small. The main problem of

these studies, we think, is the difficulty of extending to higher dimensions because they use the

relative orientation heading for their model and analysis [25, 28]. The relative orientation

heading is the angle between two heading directions. The problem emerges when considering

the intersection of a bundle of heading directions. This is only valid in two-dimensional space

because three-dimensional space has torsions. However, in our model, we simply replace the

interaction circle with an interaction sphere and create a spherical cap-shaped covering func-

tion for three dimensions.

Find other prediction methods and other neighborhood shapes: We introduced the alignment

(I) and anticipation (II) prediction methods. Alignment prediction produces Boid-like and

SPP-like behavior and anticipation prediction matches many empirical results well. There are

more possible prediction methods, which would change the behavior in the model. In addi-

tion, different neighborhood shapes may also change the behavior [27, 30]. For example,

Sonoda and other researchers [30] found that changing the interaction range from a circle to

an ellipse created a long-lasting torus (milling) structure. In our model, although agents

formed a torus structure, it lasted for a shorter time than schooling and swarming. Using a dif-

ferent neighborhood shape may make the flock torus structure last longer.

Methods

Unit length

We define the unit length as the norm of a unit velocity vector and its indication as m.

Parameter setting

The parameters are as in Table 1 unless indicated otherwise. The ratio between the repulsion

radius and the maximum velocity is the most definitive factor for our model because, as we

have suggested in the manuscript, collisions (or repulsion) in flock largely depend on an
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agent’s velocity. In our setting, the ratio between them is fixed at 7/4. Considering the repul-

sion radius as an agent’s body size, the speed would not be very high compared with its body

size. In the Supporting Information, we discuss three ratio values do not affect our result and

suggest the possibility that a low ratio would not be good for our analysis.

Threshold value dr for Lévy walk

We set the threshold parameter dr for each trial to obtain enough step length data: dr = 0.8D,

where D is 1

NT

PN
i¼1

PT� 1

t¼0
ððriðt þ 1Þ � riðtÞÞÞ and T = 9000. The parameter dr determines the

flock’s average travelling distance during the whole process in the center of mass of the refer-

ence frame. We examined three cases (dr = 0.9D, 0.8D and 0.7D) to demonstrate the threshold

parameter-independence of our results.

Validity of the approximation for τrelax� 1/Jnc

Mora’s approximation for the relaxation time can apply at high polarities, that is, Op� 1. To

apply this method to our flocking model, the method requires modifications because the noisy

behaviors in our model prevent stable high-polarity behaviors from being obtained. To con-

firm the validity of the method for our results, we used two treatments: (i) creating a highly

ordered group with Op> 0.9, and (ii) omitting the out values that come from highly noisy

behavior. These are discussed in more detail below. Compared with τrelax, obtaining τnetwork

does not need such careful treatment. All the graph curves apparently satisfy exponential

approximations (S7 Fig).

1. Setting high-velocity agents (V = 20 and R = 2): Under this condition, the average Op is 0.93.

The approximation of the overall interaction strength, J, is valid under this condition. This

condition rarely happens in real flocks, especially in two dimensions, because the agent’s

speed (V) is 10 times faster than its body length (R). This condition is only used to examine

the validity of the approximation.

2. Out values: The out value is far from the average of a series of trials (2000 steps). In S8 Fig

and S4 Table, the average J values with no out values are around 0.1. However, out values

with very low (<<0.1) or even negative J values occur because the average Op is far from

1.0 (e.g. Op� 0.5, when V = R = 4). Fortunately, these values are rare in our model, occur-

ring at most about once in 2000 steps (V = 4 and R = 4). Furthermore, we have no out values

at all when V = 20 and R = 2. This proves that Mora’s approximation works when V = 20

and R = 2. Therefore, we expect that the approximation is valid for most cases.

Table 1. Parameters for Figs 4 to 7.

Parameter Values Symbol Unit

Number of agents 100 N None

Maximum velocity 7 V m per step

Repulsion radius 4 R m per step

Noise strength 0.2 z Degrees (rad)

Constant parameter 10 c m
Time 1 t Steps

https://doi.org/10.1371/journal.pone.0195988.t001
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Supporting information

S1 Fig. Frequency distribution of s in the anticipation method. The value of s indicates how

long an agent refers to its neighbor’s past movement in terms of a number of steps. Each bar

corresponds to one parameter set: V/R = 4/4 (blue), 7/4 (green), 10/4 (red). The graph shows

that in our setting s-values concentrate at the minimum, that is, most agents refer back one

step before movement.

(PDF)

S2 Fig. Two examples of the covering function when p = 32 and 8. The light blue band is any

interval I on the edge of the neighborhood. Light red bands are CovðIÞ ¼ [a2½I�~ca for each p.

The covered intervals tend to be larger when p is low.

(PDF)

S3 Fig. Maximum and minimum values for Op and OT. (A) (B) Average maximum values

for Op and OT. The horizontal axis is maximum velocity V with repulsion radius R = 2 and

number of individuals N = 100. The value of OT tends to be high in the low velocity regions.

(C) (D) Average minimum values for Op and OT. The horizontal axis is maximum velocity V
with repulsion radius R = 2 and number of individual N = 100. The value of OP is less than 0.3

in the high velocity regions, although the average Op values are more than 0.9 in Fig 2B.

(PDF)

S4 Fig. Normal diffusion and mutual diffusion for each parameter set. (A) Graphs of the

super-diffusion for our results on other parameters (V = 4 and 10 with R = 4). (B) Graphs of

mutual diffusion dr2
m for our results with other parameters (V = 4 and 10 with R = 4), where

dr2
m ¼

1

T� t
1

N

PT� t� 1

t0¼0

PN
i¼1
½jjsijðt þ t0Þjj � jjsijðt0Þjj�

2
and sij(t) = rit–rjt (agent j is the nearest

neighbor of i at time t0). Mean displacement dr2
m approximately fits power law function

dr2
m ¼ Dmtam .

(PDF)

S5 Fig. Neighbor overlap for M and t. (A) (B) Graphs of the neighbor overlap value QM(t)
along the number of neighbors M for our results with other parameters (V = 4 and 10 with

R = 4). (C) (D) Graphs of the neighbor shuffling along time t for our results with other parame-

ters (V = 4 and 10 with R = 4). Both full lines represent Eq (6) in the main manuscript with

0.073 (fitted value), where αm = 1.49 and d̂ ¼ 1:71 for V = 4 and with 0.066 (fitted value),

where αm = 1.57 and d̂ ¼ 1:65 for V = 10.

(PDF)

S6 Fig. Number of agent’s neighbors M as a function of radius R of the sphere containing

them. The scatter is fitted by M ¼ aRd̂ up to M = 30 when N = 50, V = 7, and R = 4. In this fig-

ure, a = 0.02, d̂ ¼ 1:67, and R2 = 0.998. d̂ gives effective dimensions for fitting Eq 6.

(PDF)

S7 Fig. Example of an exponential function Cnetwork(t)� C0exp(−t/τnetwork) for 50 samples

with V = 7 and R = 4. All the curves decay exponentially.

(PDF)

S8 Fig. Histogram of interaction strength J for each parameter set for 50 samples. The

value of J is low for low velocities because of the collision effects. The lowest J value is around

0.11. Considering nc = 5 (median of the number of neighbors), τrelax is less than 2 (steps) at

most. In particular, for V = 7 and R = 4, τrelax ranges from 1.33 (steps) to 1.53 (steps).

(PDF)
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S1 Table. Averaged results for running the simulation 20 times for N = 100.

(PDF)

S2 Table. Averaged results for running the simulation 20 times for different parameter

sets and different threshold parameters. The exponentials of power law μ are around 2. The

pass rate is the average pass rate for the Kolmogorov–Smirnov (KS) test [36–40]. We use the

truncated power law function to fit our flocking data [37, 38]. The function of the truncated

power law function is f ðxÞ ¼ ðm � 1Þ=ðx1� m
min � x1� m

max Þx
� m, where μ is the power law exponent,

xmin is the start of the tail of a series of the trial, and xmax is the maximum value of a series of

the trial. A pass rate of 1 means that the agent’s step length distribution in a flock can be fitted

by the truncated power law distributions. For V = 4, the step length distributions tend to fail

the KS test because of the collision effect among agents in the flock. The collision effect means

that the agents at low velocities tend to have high collision probabilities. Because the repulsion

force caused by collision makes an agent turn away from its neighbors, the ballistic movements

of agents in the flock disappear.

(PDF)

S3 Table. Example of the power law test for all the flock members (all the distributions in

Fig 6B and threshold dr = 0.8D). The test followed Clauset’s methods [39]. If p> 0.1, then the

power law assumption cannot be rejected. All the agents pass the KS test. In addition to the KS

test, we also used the Akaike Information Criterion (AIC) to examine whether the truncated

power law graph can be distinguished from the exponential function f(x) = λexp(−λ(x − xmin)),

where λ is the exponential parameter [36]. If the AIC value is close to 1, the obtained graphs

are more likely to follow the truncated power law rather than the exponential power law.

(PDF)

S4 Table. Averaged results for running the simulations 50 times for N = 100. From the left,

average gap between τnetwork and τrelax, Pearson correlation coefficient (PCC) and its p value,

which show no correlation for all parameter sets, and average out value through 2000 steps in

a simulation series.

(PDF)

S1 Text. Algorithm description and the definition of symbols and functions.

(PDF)

S1 Movie. Example of the simulation of our model using alignment prediction methods

for N = 50.

(MP4)

S2 Movie. Example of the simulation of our model using the anticipation methods for

N = 50.

(MP4)

Author Contributions

Conceptualization: Takayuki Niizato, Hisashi Murakami.

Data curation: Takayuki Niizato.

Formal analysis: Takayuki Niizato, Hisashi Murakami.

Funding acquisition: Takayuki Niizato.

Investigation: Takayuki Niizato, Hisashi Murakami.

Entangled time in flocking

PLOS ONE | https://doi.org/10.1371/journal.pone.0195988 April 24, 2018 18 / 21

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0195988.s009
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0195988.s010
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0195988.s011
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0195988.s012
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0195988.s013
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0195988.s014
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0195988.s015
https://doi.org/10.1371/journal.pone.0195988


Methodology: Takayuki Niizato, Hisashi Murakami.

Project administration: Takayuki Niizato.

Resources: Takayuki Niizato.

Software: Takayuki Niizato.

Supervision: Takayuki Niizato.

Validation: Takayuki Niizato.

Visualization: Takayuki Niizato.

Writing – original draft: Takayuki Niizato.

Writing – review & editing: Takayuki Niizato.

References

1. Sumpter DJT. Collective Animal Behavior. Princeton: Princeton University Press; 2010.

2. Couzin ID. Collective cognition in animal groups. Trends Cogn Sci. 2009; 13(1):36–43. https://doi.org/

10.1016/j.tics.2008.10.002 PMID: 19058992

3. Goldstone RL, Gureckis TM. Collective Behavior. Topics in Cognitive Science. 2009; 1(3):412–38.

https://doi.org/10.1111/j.1756-8765.2009.01038.x PMID: 25164995

4. Couzin I. Collective minds. Nature. 2007; 445(7129):715–715. https://doi.org/10.1038/445715a PMID:

17301775

5. Couzin ID, Krause J, James R, Ruxton GD, Franks NR. Collective memory and spatial sorting in animal

groups. J Theor Biol. 2002; 218(1):1–11. PMID: 12297066

6. Niizato T, Murakami H, Gunji YP. Emergence of the scale-invariant proportion in a flock from the metric-

topological interaction. BioSystems. 2014; 119(1):62–8.

7. Niizato T, Gunji YP. Fluctuation-driven flocking movement in three dimensions and scale-free correla-

tion. PLoS One. 2012; 7(5).

8. Hemelrijk CK, Hildenbrandt H. Some causes of the variable shape of flocks of birds. PLoS One. 2011;

6(8).

9. Hemelrijk CK, Hildenbrandt H. Schools of fish and flocks of birds: their shape and internal structure by

self-organization. Interface Focus. 2012; 2(6):726–37. https://doi.org/10.1098/rsfs.2012.0025 PMID:

24312726

10. Bode NWF, Franks DW, Wood AJ. Limited interactions in flocks: relating model simulations to empirical

data. J R Soc Interface. 2011; 8(55):301–4. https://doi.org/10.1098/rsif.2010.0397 PMID: 20826476

11. Hemelrijk CK, Hildenbrandt H. Diffusion and topological neighbours in flocks of starlings: Relating a

model to empirical data. PLoS One. 2015: 10(5): e0126913. https://doi.org/10.1371/journal.pone.

0126913 PMID: 25993474

12. Ballerini M, Cabibbo N, Candelier R, Cavagna A, Cisbani E, Giardina I, et al. Interaction ruling animal

collective behavior depends on topological rather than metric distance: Evidence from a field study.

PNAS. 2008; 105(4):1232–7. https://doi.org/10.1073/pnas.0711437105 PMID: 18227508

13. Shang Y, Bouffanais R. Influence of the number of topologically interacting neighbors on swarm dynam-

ics. Sci Rep 2014; 4: 4184. https://doi.org/10.1038/srep04184 PMID: 24567077

14. Yates CA, Erban R, Escudero C, Couzin ID, Buhl J, Kevrekidis IG, et al. Inherent noise can facilitate

coherence in collective swarm motion. Proc Natl Acad Sci. 2009; 106(14):5464–9. https://doi.org/10.

1073/pnas.0811195106 PMID: 19336580

15. Cavagna A, Cimarelli A, Giardina I, Parisi G, Santagati R, Stefanini F, et al. Scale-free correlations in

starling flocks. Proc Natl Acad Sci. 2010; 107(26):11865–70. https://doi.org/10.1073/pnas.1005766107

PMID: 20547832

16. Bialek W, Cavagna A, Giardina I, Mora T, Silvestri E, Viale M, et al. Statistical mechanics for natural

flocks of birds. Proc Natl Acad Sci. 2012; 109(13):4786–91. https://doi.org/10.1073/pnas.1118633109

PMID: 22427355

17. Cavagna a, Duarte Queirós SM, Giardina I, Stefanini F, Viale M. Diffusion of individual birds in starling

flocks. Proc Biol Sci. 2013; 280(1756):.

Entangled time in flocking

PLOS ONE | https://doi.org/10.1371/journal.pone.0195988 April 24, 2018 19 / 21

https://doi.org/10.1016/j.tics.2008.10.002
https://doi.org/10.1016/j.tics.2008.10.002
http://www.ncbi.nlm.nih.gov/pubmed/19058992
https://doi.org/10.1111/j.1756-8765.2009.01038.x
http://www.ncbi.nlm.nih.gov/pubmed/25164995
https://doi.org/10.1038/445715a
http://www.ncbi.nlm.nih.gov/pubmed/17301775
http://www.ncbi.nlm.nih.gov/pubmed/12297066
https://doi.org/10.1098/rsfs.2012.0025
http://www.ncbi.nlm.nih.gov/pubmed/24312726
https://doi.org/10.1098/rsif.2010.0397
http://www.ncbi.nlm.nih.gov/pubmed/20826476
https://doi.org/10.1371/journal.pone.0126913
https://doi.org/10.1371/journal.pone.0126913
http://www.ncbi.nlm.nih.gov/pubmed/25993474
https://doi.org/10.1073/pnas.0711437105
http://www.ncbi.nlm.nih.gov/pubmed/18227508
https://doi.org/10.1038/srep04184
http://www.ncbi.nlm.nih.gov/pubmed/24567077
https://doi.org/10.1073/pnas.0811195106
https://doi.org/10.1073/pnas.0811195106
http://www.ncbi.nlm.nih.gov/pubmed/19336580
https://doi.org/10.1073/pnas.1005766107
http://www.ncbi.nlm.nih.gov/pubmed/20547832
https://doi.org/10.1073/pnas.1118633109
http://www.ncbi.nlm.nih.gov/pubmed/22427355
https://doi.org/10.1371/journal.pone.0195988


18. Bialek W, Cavagna A, Giardina I, Mora T, Pohl O, Silvestri E, et al. Social interactions dominate speed

control in poising natural flocks near criticality. Proc Natl Acad Sci. 2014; 111(20):7212–7. https://doi.

org/10.1073/pnas.1324045111 PMID: 24785504

19. Murakami H, Niizato T, Tomaru T, Nishiyama Y, Gunji Y-P. Inherent noise appears as a Lévy walk in
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