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ABSTRACT: A concise two step synthesis of tetrazole
containing macrocycles from readily accessible starting
materials is presented. The first step comprises a chemo-
selective amidation of amino acid derived isocyanocarbox-
ylicacid esters with unprotected symmetrical diamines to afford
diverse α-isocyano-ω-amines. In the second step, the α-
isocyano-ω-amines undergo an Ugi tetrazole reaction to close
the macrocycle. Advantageously, this strategy allows short
access to 11−19-membered macrocycles in which substituents
can be independently varied at three different positions.

Protein−protein interactions (PPIs) are a highly interesting
but challenging class of pharmaceutical targets.1−4

However, they are mostly undruggable by conventional small
molecules due to their inappropriate size and shape.5,6

Therefore, receptor interactions are the classical targets of
monoclonal antibodies (mAbs). mAbs seem to better mimic
the large network of endogenous small interactions in the
interface of receptors. While mAbs are a highly successful class
of drugs, they also show inherent disadvantages, including
potential immunogenicity, minor tissue penetration, high cost-
of-goods and restriction to cell surface targets. Development of
novel classes of molecules with properties in between small
molecules and biologics is therefore an area of intensive
research. Examples of such emerging classes are peptidomi-
metics, modified peptides, cyclic peptides, including stapled
peptides. Peptides, however, suffer often from similar
deficiencies as biologics such as reduced biological stability,
lengthy syntheses, poor or no oral bioavailability and potential
immunogenicity.
Therefore, several groups have developed elegant approaches

toward artificial macrocycles which are not built on peptides
nor involving complex multistep syntheses.7−11 For example,
we have recently described the shortest 2-step synthesis of
artificial macrocycles.12,13 In order to expand our previous work
and increase the number of macrocyclic scaffolds a concise and
general approach toward artificial tetrazole containing macro-
cycles based on the Ugi tetrazole multicomponent reaction
(MCR) was designed. The reaction design is based on our
recently published concept of building a macrocycle from an
acyclic precursor through a MCR, while the precursor is built
from an efficient linear or exponential diversification step.14 In
light of potential issues of passive membrane permeation, we
decided to replace a secondary amide group by the bioisosteric

tetrazole cycle which is devoid of hydrogen bond donors.15 The
current work is thus also an extension of our recent reports of
tetrazole macrocycles, which however did require up to 5
sequential reaction steps including two MCR reactions
(Scheme 1).12 In this study, we report the isocyanide based

multicomponent reactions (IMCRs) involving simple starting
materials like α-isocyano-ω-amine and aldehyde in the presence
of the azide source TMSN3 to access tetrazole macrocycle
scaffolds in a convergent method and to use, for the first time,
the Ugi-tetrazole reaction for macrocyclizing 16 macrocycles
(Scheme 2).
We started the study by optimizing the first step in our 2-step

protocol, the synthesis of amino isocyanide by the coupling of
the diamine and isocyanide ester under protecting group free
conditions. This turned out to be challenging due to the
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Scheme 1. Comparison of the Previous Work and New
Strategy toward Synthesis of Tetrazole Macrocycles
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polarity of our products which resulted in unreacted and double
reacted diamine side products. To overcome this problem,
some optimization of the coupling reaction was necessary, by
trying different solvents, including chloroform, dichloro-
methane, methanol, water, tetrahydrofuran, ethanol and
trifluoroethanol. It was observed that the use of dioxane gave
the best results, while other solvents resulted either in multiple
product formation, low yields or no product formation at all
(SFC-MS, TLC). As the products are quite polar in nature, we
faced difficulties in their isolation. Finally, the product
purification was accomplished on silica (60−200 μm) using
1:1 dichloromethane:ethyl acetate as eluent A and ammonia in
methanol as eluent B in a gradient method. With this optimized
method in hand, ten different α-isocyano-ω-amines of different
length were synthesized from their commercially available
diamines with excellent purity and good yields ranging from 42
to 65% on a gram scale (Table 1). It is interesting to note that
the unprecedented class of α-isocyano-ω-amines are stable

compounds and similar to other isocyanides it is possible to
store them in the fridge at low temperature for a long time.
Next, the macrocyclic ring closure by tetrazole Ugi MCR was

carried out under optimized conditions using 1 equiv of an oxo
component to yield the macrocycles (Scheme 2). Different
conditions were extensively screened by varying concentration,
temperature, solvent and time. Methanol as solvent in 0.01 M

Scheme 2. Azido-Ugi-4CR Derived Macrocycle Synthesis
Pathway and Products with Isolated Yields

Table 1. α-Isocyano-ω-amine Synthesis Strategy and the
Isolated Yields

*Isolated yield.

Organic Letters Letter

DOI: 10.1021/acs.orglett.7b02319
Org. Lett. 2017, 19, 5078−5081

5079

http://dx.doi.org/10.1021/acs.orglett.7b02319


dilution, after 48 h at room temperature was found to be
optimal condition for this macrocylization reaction. Surpris-
ingly, the yield was dramatically increased while after 24 h the
solvent volume was reduced to 50% under nitrogen, and it was
stirred in 0.02 M dilution for an additional 24 h. For example,
for compound 6f the yield was increased from 10% to 23% by
reducing the solvent volume and therefore increasing the
concentration to 0.02 M. This can be explained by the
continuous decrease in concentration of the starting materials
as the reaction proceeds. On the other hand, it is well-known
that Ugi reaction run best in high concentrations, as four
components have to react with each other.16 Here the situation
is even further complicated due to the diluted conditions for
the macrocyclization reaction.
To investigate substrate scope and limitations, a total of 16

examples was synthesized which are shown in Scheme 2. The
last step of the macrocycle synthesis was performed by using
several commercially available aliphatic, aromatic, and hetero-
cyclic aldehydes and ketones as oxo-components to afford
macrocyclic derivatives in moderate yields of 21−66% after
purification by column chromatography. Diastereomer for-
mation was also investigated by using D,L-tryptophan and
phenylalanine derived isocyanides. In these cases, surprisingly
mixtures of diastereomers were observed and compounds 6d,
6g, 6i, 6k, 6l, 6m and 6p were obtained in poor to very good
diastereomeric ratios of 3:2 to 25:1, determined by 1H NMR.
In order to confirm the product formation and to gain insight

into ring conformation and hydrogen bondings, two products
(6a and 6h) were crystallized and their solid-state structure
were determined by X-ray crystallography (Figure 1). In 6a
structure, the tetrazole N-3 forms a short hydrogen bond (2.3
Å) to a neighboring molecule amide NH. Additionally, the
hydrophobic moieties of the macrocycle undergo multiple van

der Waals interactions to neighboring rings. In 6h the
macrocycle secondary amide undergoes a hydrogen bonding
(2.0 Å) with the same amide group of a neighboring
macrocycle. Solid state hydrogen bonds can help to inform
about solution phase behavior of the molecules. Such
intermolecular hydrogen bonds and hydrophobic interactions
potentially improve chameleonic properties of macrocycles,
which enables them to change their conformation in aqueous
solution and while passing through lipid cell membranes. This
chameleonic ability improves passive membrane permeability
by exposing polar groups in aqueous solution and burying them
while traveling lipid membranes.17

The plausible mechanism for this Ugi cyclization reaction is
shown in Scheme 3. It is conceivable that initially the

condensation of the oxo-component and amino group affords
the Schiff base 7. Then, nucleophilic addition of carbenoid C
atom of the isocyanide onto the iminium group followed by the
addition of the azide anion onto the C atom of the nitrillium
ion and 1,5-dipolar electrocyclization leads to the formation of
the products 6. The low yields in this reaction are due to the
presence of unreacted starting materials even after stirring the
reaction for a long time.
The passive membrane permeation and the connected

bioavailability of macrocycles is a major concern for drug
discovery.18 While there seems to be a MW cutoff of 1000 Da
for passive membrane transportation of cyclic peptides,19 there
is also indication that specifically the macrocyclic space between
500 and 1000 Da is virtually unexplored but promises to harbor
a large number of macrocycles with drug-like ADMET
properties.20 Here we provide a novel synthesis strategy to
access specifically the space of 500 to 1000 Da using convergent
MCR chemistries toward tetrazole macrocycles. A MW vs
cLogP plot (Figure 2) of a random library based on the herein
proposed macrocycle chemistry indicates an average MW of
408 Da and clogP of 1.8, which is quite interesting for searching
for compounds with drug-like properties (SI).21

In conclusion, a very mild, straightforward, sequential, rapid
and highly diverse tetrazole macrocycle synthesis pathway is
introduced via MCRs. To the best of our knowledge this is the
first report of using a tetrazole Ugi reaction for the
macrocyclization step. 11−19-Membered macrocyles contain-
ing various side chains were synthesized in two steps by using
readily available starting materials. A simple chemoinformatic
analysis of the macrocycle space predicts drug-like properties.
We are currently venturing into these new territories of drug

Figure 1. Representative MCR-derived 14-membered-6a and 12-
membered-6h macrocycles in solid state featuring intermolecular
hydrogen bonding contacts.

Scheme 3. Possible Mechanism for the Formation of
Products by the Azido-Ugi Reaction
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discovery by preparing libraries of such macrocyclic derivatives
and screening them for biological activity.
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Dömling, A. J. Org. Chem. 2016, 81, 8789−8795.
(14) Madhavacharya, R.; Abdelraheem, E. M. M.; Rossettia, A.;
Twarda-Clapac, A.; Musielak, B.; Kurpiewska, K.; Kalinowska-Tłusćik,
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Figure 2. Molecular weight against calculated lipophilicity plot of
1.000 randomly generated macrocycles.
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