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Abstract 

Blood–brain barrier is a pivotal factor to be considered in the process of central nervous system (CNS) drug develop-
ment, and it is of great significance to rapidly explore the blood–brain barrier permeability (BBBp) of compounds in 
silico in early drug discovery process. Here, we focus on whether and how uncertainty estimation methods improve 
in silico BBBp models. We briefly surveyed the current state of in silico BBBp prediction and uncertainty estimation 
methods of deep learning models, and curated an independent dataset to determine the reliability of the state-of-
the-art algorithms. The results exhibit that, despite the comparable performance on BBBp prediction between graph 
neural networks-based deep learning models and conventional physicochemical-based machine learning models, 
the GROVER-BBBp model shows greatly improvement when using uncertainty estimations. In particular, the strategy 
combined Entropy and MC-dropout can increase the accuracy of distinguishing BBB + from BBB − to above 99% by 
extracting predictions with high confidence level (uncertainty score < 0.1). Case studies on preclinical/clinical drugs 
for Alzheimer’ s disease and marketed antitumor drugs that verified by literature proved the application value of 
uncertainty estimation enhanced BBBp prediction model, that may facilitate the drug discovery in the field of CNS 
diseases and metastatic brain tumors.
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Introduction
With the development of society and the aging of the 
population, central nervous system (CNS) diseases have 
become the second largest disease after cardiovascular 
diseases. However, the success rate of clinical candidate 
CNS drugs is only about 8%, which is quite low compared 
with the success rate of 20% for cardiovascular diseases 
[1]. Cancer is also a major disease in the current society, 
and the success rate of clinical candidates is only about 
5% [2]. Worse still, brain metastases are a common route 
of disease progression in 20% of patients with cancer. 

The vast majority of patients with brain metastases have 
a poor prognosis even with the treatment of whole-brain 
radiation therapy. Second-generation kinase inhibitor 
with blood–brain barrier (BBB) permeability is believed 
to be one of the effective treatments of brain metastases 
[3, 4].

Many potential drugs have been discontinued during 
their development for clinical use for their insufficient 
quantity to the CNS because the presence of a BBB. BBB 
is formed by the endothelial cells of the brain capillaries, 
which controls the transport of molecules between cen-
tral nervous system and circulatory system, protects the 
brain from the damage of toxic compounds and maintains 
the homeostasis inside the CNS [5]. BBB permeability 
(BBBp) of compounds is affected by many mechanisms. 
In the clinical applications of CNS drugs, small lipophilic 
molecules can cross plasmatic membranes to enter the 
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brain usually by passive diffusion. Some small hydro-
philic compounds are recognized by the endogenous 
influx or efflux transporters, and some large molecules 
are undergoing transport through endocytic route [6]. 
Approximately 98% of small molecules cannot cross the 
BBB [7]. Inappropriate physicochemical properties (PCP) 
could limit passive diffusion of drugs into the brain [1], 
and the active efflux transport, especially the ATP bind-
ing cassette family (ABC transporters), could decrease 
the concentration of many drugs in the CNS by pumping 
them out from brain to blood. Therefore, it puts forward 
higher requirements for the design of CNS drugs with 
not only excellent activity, metabolic properties and low 
toxicity, but also great BBB penetration that makes them 
reach the CNS with adequate exposure [8].

With increasing experimental data on BBB perme-
ability, attempts have been made to use computational 
models to predict the BBBp of compounds, which help 
to minimize the cost of experiments and facilitate high-
throughput screening for enormous compounds. In 
1980, Levin proposed the best fit model between the BBB 
permeability coefficient and logP for compounds with 
molecular weight (MW) less than 400  Da [9]. Since the 
early 2000s, there have been a large number of in silico 
BBBp prediction models reported, most of those aimed 
to find the relationship between scores of molecular 
physicochemical descriptors and logBB, the unbound 
brain-to-unbound plasma ratio  (Kp,uu) and BBB ± [10–
12]. Most of in silico predictions have been derived from 
data on the total brain-to-plasma concentration ratio,  Kp, 
expressed in its logarithmic form i.e. logBB. The logBB 
value is affected by the extent of plasma protein and brain 
tissue binding, however, based on “free-drug hypothesis”, 
 Kp,uu is more informative [6]. BBB ± is another property 
used to study the ability of BBBp compounds by divid-
ing compounds into BBB + and BBB − groups based on 
logBB ratio [13, 14] and CNS activity [15], so that the size 
of the database can be enlarged.

Although many BBBp models have been reported, the 
number of compounds used to train is very limited, that 
always leads to overfitting and misleading on the com-
pounds that is outside the chemical space of training 
data. Many researchers have focused on minimizing the 
number of molecular descriptors to avoid overfitting, and 
meanwhile finding physicochemical properties that are 
crucial for BBBp of compounds to benefit rational drug 
design. Zhao et  al. used 19 simple molecular descrip-
tors for the analysis of 1593 BBB ± data and showed the 
importance of hydrogen-bonding properties in mod-
eling BBBp [16]. Gupta et  al. built a prediction model 
“BBB Score”, which consists of stepwise and polynomial 
piecewise functions. Twenty-two molecular descrip-
tors were studies to describe physicochemical property 

space, and five descriptors were selected, namely num-
ber of aromatic rings, number of heavy atoms, MWHBN 
(a descriptor related to MW, hydrogen bond acceptor 
(HBA) and hydrogen bond donor (HBD)), topological 
polar surface area (TPSA) and  pKa [17]. Zhang et al. con-
structed k-nearest neighbors and support vector machine 
(SVM) models to predict BBBp using 854 molecular 
descriptors from different sources, and found that PSA, 
logP, HBA and HBD are more contributing to the model 
than others [18]. Yuan et  al. showed that the combina-
tion of property-based descriptors and molecular fin-
gerprints can significantly improve the performance of 
SVM-based BBBp prediction model comparing with 
models using property-based descriptors or molecular 
fingerprints alone [19]. LightBBB is a BBBp prediction 
model based on Light Gradient Boosting Machine algo-
rithm with a total of 2432 1D/2D molecular descriptors 
selected by exclusive feature bundling to avoid overfitting 
[20]. Alsenan et  al. compared kernel PCA, linear PCA, 
random projection and autoencoder based on BBB data-
set with a composed of 6394 property-based descriptors 
and molecular fingerprints, and proved that dimension-
ality-reduction techniques can alleviate the overfitting 
and improve the performance of the model, especially 
kernel PCA [21]. Roy et al. used 27 molecular descriptors 
incorporated with 10 molecular solvation energy descrip-
tors based on Kovalenko-Hirata closure (3D-RISM-KH) 
molecular solvation theory to construct the BBBp pre-
diction model and analyzed the importance of these 
descriptors by random forest (RF) and gradient boosting 
machine. A minimum-descriptor-based model with five 
most important descriptors was obtained, and found it 
still had good performance [22].

As summarized above, the performance of the above 
machine learning (ML)-based methods on BBBp predic-
tion depends on the selection of different physicochemi-
cal descriptors or molecular fingerprints and subsequent 
feature extraction, which requires prior knowledge and 
always prone to bias when selecting features manually. 
Deep learning (DL) techniques can automatically select 
optimal features from the provided dataset. In particu-
lar, graph neural networks (GNNs) try to learn molecular 
representation directly from molecular graphs to perform 
property prediction tasks. Most of these newly proposed 
GNNs have shown excellent performance based on the 
evaluation on a benchmark BBBp dataset from Molecu-
leNet [23]. Xiong et al. proposed Attentive FP for molec-
ular representation by introducing a graph attention 
mechanism. Attentive FP enabled the graph neural net-
work to extract not only atomic local information but also 
nonlocal interactions at the intramolecular level to learn 
additional interactions which affect the overall proper-
ties of molecules [24]. Wang et  al. built a multichannel 
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gated recurrent unit architecture to extract molecular 
features both at the node level and molecule level, so 
as to cover more elaborate molecular information [25], 
which may be beneficial to the task of molecular prop-
erty prediction. Hu et al. established a pre-trained model 
for unsupervised learning on the graph representation of 
molecules before using the model to predict molecular 
properties, which can learn from more unlabeled molec-
ular structures, and to a certain extent, improve the per-
formance of downstream prediction tasks [26]. Recently, 
Rong et  al. proposed a molecular representation frame-
work GROVER [27] based on transformer framework. 
The strategy of randomly selecting the number of hops 
can be adapted to different types of datasets, thereby fur-
ther expanding the learnable molecular datasets. Moreo-
ver, node/edge-level and graph-level self-supervised tasks 
were constructed to learn rich structural and semantic 
information from a large number of unlabeled mole-
cules in pre-training process. The well-trained GROVER 
model was fine-tuned with molecules with task-specific 
labels and used for BBBp prediction as a graph-level task.

For those complex GNNs, simply focusing on the 
improvement of metrics on the existing benchmark 
datasets may lead to the neglect of their applicability in 
practical applications. The deviations between the mod-
eling dataset and the real-world observations will bring 
the uncertainty for the predictions. For example, in Mol-
eculeNet [23], the molecules defined as BBB + are about 
three times as much as the BBB − , while it is estimated 
that 98% of molecules cannot pass through BBB in the 
real chemical space [7]. Generally speaking, by adding 
more high-quality experimental data, the applicability 
of models can be improved. However, it is not easy to 
increase the size of BBBp datasets, because measuring 
the value of BBBp is often complicated, time-consuming 
and costly. In this circumstance, introducing uncertainty 
estimation [28] can expand the application domain of 
the prediction models [29–31]. There are some general 
approaches for both ML- and DL-based models. For 
example, Shannon entropy, as a measure of information, 
also allows us to make accurate statements and perform 
calculations about the confidence of models’ prediction 
truth [32]. Multiple initialization (Multi-initial) means 
initializing the model parameters many times randomly 
to get several independent models trained with same 
dataset and thus the variances of the prediction results 
are considered as the uncertainties of the prediction [33]. 
Recently, there have been some custom-made algorithms 
of uncertainty estimation to suit the framework of DL 
model. Monte Carlo dropout (MC-dropout) has been 
proposed as an approximation of Bayesian neural net-
works (BNNs) [34, 35] in deep neural networks [36, 37] 
to reduce computational consumption, which only need 

to apply dropout in existing model during inference to 
get the distribution of prediction results. Besides, com-
pared with the model-agnostic measurement of the dis-
tance of molecular representation in a feature space, like 
fingerprints, the latent space is a more intuitive way to 
estimate the uncertainty, which does not require retrain-
ing the model. Recently, Janet et al. proposed the distance 
in latent space as a new uncertainty estimation method, 
which specifically calculates Euclidean distance of each 
test molecule to the nearest training set molecule in the 
final layer latent space of deep neural network [38].

In this study, we first analyze the existing BBBp bench-
mark dataset in MoleculeNet [23], and collect the addi-
tional molecules as an external benchmark dataset to 
evaluate the performance of different types of BBBp pre-
diction models. Furthermore, due to overfitting of DL 
models and the deviation of training data distribution 
from the real-world distribution, we introduce uncer-
tainty estimation to quantitatively evaluate the reliability 
of prediction results and determine the optimal combi-
nation of different uncertainty estimation methods. We 
examine our strategy on preclinical/clinical drugs for 
Alzheimer’s disease and marketed antitumor drugs, and 
verify it by literature. Ideally, selecting the molecules with 
certainty for the further wet experiments will reduce 
unnecessary costs and thus benefit real-world application 
of in silico BBBp prediction model.

Results and discussion
Benchmark dataset analysis and new benchmark dataset 
collection
MoleculeNet [23] is a benchmark for molecular machine 
learning that curates multiple public datasets focus on 
different levels of properties of molecules, including a 
BBBp dataset [39]. The BBBp dataset contains 2053 mol-
ecules that were collected from previous works discuss-
ing BBB penetration [14, 16, 18, 40]. The molecules are 
defined as BBB + or BBB − according to logBB ≥  − 1 or 
logBB <  − 1  (Kp ≥ 0.1 or  Kp < 0.1). Although MoleculeNet-
BBBp dataset is a relative standard and comprehensive 
collection of BBBp data, some defects should be pointed 
out (Fig. 1a). (1) It contains a number of mixtures of mol-
ecules like eqvalan. (2) It contains molecules with wrong 
SMILES that can’ t be identified by RDKit, like tiotidine. 
(3) It contains duplicate molecules. For example, ofloxa-
cin is exactly the same molecule named 40,730, and it can 
also be a duplicate of levofloxacin as some models cannot 
recognize chiral molecules. Even introducing the infor-
mation of chirality, enantiomers in the dataset like oflox-
acin/levofloxacin can lead to inflated model performance. 
Thus, we have further processed MoleculeNet-BBBp 
dataset by removing salts and solvents, neutralizing, and 
extracting the single molecule with the largest molecular 
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weight from SMILES. After standardization and removal 
of duplication, we have an updated BBBp benchmark, 
called M-data, that contains 1937 molecules, comprising 
1476 BBB + and 461 BBB − for further analysis.

After that, we curated an independent supplemen-
tary dataset to test the existing BBBp prediction mod-
els, named S-data. On the one hand, we supplemented 
hundreds of CNS and non-CNS drugs that not included 
in M-data based on Anatomical Therapeutic Chemical 
(ATC) classification system [15, 41]. ATC annotation is a 
reasonable inference about whether drugs can cross the 
human BBB, and can be used to test the generalization 
performance of computational BBBp model that build 
on the heterogeneous experiment data of other species. 

On the other hand, we collected previous reported com-
pounds from literature [42–44] that are not contained 
in M-data, and newly released compounds from ChEM-
BLdb25 [45] that have measured logBB or  Kp. Finally, the 
new benchmark dataset S-data contains 527 molecules 
that are assigned to 395 BBB + and 132 BBB − accord-
ing to logBB ≥  − 1/logBB <  − 1 or CNS/non-CNS drugs. 
To analyzing the distribution of chemical space of S-data 
and M-data, we use the Tanimoto similarities and t-dis-
tributed stochastic neighbor embedding (t-SNE) based 
on molecular fingerprint ECFP4 [46]. Figure  1b shows 
the distribution of max internal similarities in M-data 
and the distribution of max similarity of each molecule 
in S-data relative to M-data. The majority of molecules 

Fig. 1 Analyzing molecules’ defects in M-data and the distribution of chemical space of S-data and M-data. a A list of defective molecules in 
M-data. b The distribution of max similarities inside M-data (blue) and max similarity of each molecule in S-data relative to M-data based on ECFP4 
(red). c t-SNE distribution of M-data and S-data based on ECFP4
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in S-data are structurally different from M-data with low 
max similarities range from 0.1 to 0.3. Meanwhile, the 
visual analysis of t-SNE shows that some molecules in 
S-data do not overlap with M-data (Fig.  1c). Therefore, 
S-data can be used as an independent benchmark dataset 
to measure the generalization ability of BBBp prediction 
models build on M-data for the deviation in chemical 
space.

Validation of BBBp prediction models on independent 
S‑data
We evaluate the performance of existing in silico BBBp 
prediction models, including BBB score, RF, multi-layer 
perceptron (MLP), and two the state-of-the-art (SOTA) 
GNN algorithms, namely Attentive FP and GROVER. 
First of all, to verify we have correctly rebuilt the GNN-
based models, we implement threefold cross validations 
on these models using M-data as it has done in GROVER. 
As a self-supervised GNNs model that pre-trained with 
a large number of drug-like molecules, GROVER shows 
the best performance with excited metric scores that are 
in accord with it was reported in its research (the area 
under ROC curve (ROC_AUC) = 0.976, the area under 
ROC curve (PRC_AUC) = 0.994, matthews correla-
tion coefficient (MCC) = 0.842 and balanced accuracy 
(BACC) = 0.910). Close behind GROVER is Attentive FP, 
and both of the GNN-based model significantly outper-
forms RF and MLP (Additional file 1: Table S1).

Next, we focus on the evaluation on S-data. Except 
BBB score that was a series of predefined linear func-
tions, models were trained by M-data with 5 times runs 
of different initialization and evaluated by S-data. The 
implementation details are described in Method, and 
the performance is shown in Fig. 2 and Additional file 1: 

Table  S2. Above all, compared to the evaluation results 
on M-data, the slump in all metric scores of these mod-
els substantiates the independence of S-data. Inevita-
bly, BBB score shows much worse generalization ability 
on the independent S-data, as its selection of molecular 
descriptors relies on prior knowledge. Among models, 
GROVER shows highest PRC_AUC score than others, 
and significantly higher than RF(ECFP) and MLP(ECFP) 
model. Attentive FP shows best performance and signifi-
cantly exceed RF(PCP) when measured by BACC, but 
RF(PCP) also could be the best according to ROC_AUC 
and MCC. Actually, except ECFP-based ML models, 
RF(PCP), MLP(PCP), Attentive FP and GROVER show 
moderate and comparable performance on independent 
testing dataset, i.e. S-data. This rises a suspicion that the 
exciting metric scores on M-data of these models, espe-
cially the SOTA GNN-based models, are only attributed 
to overfitting.

In fact, it is expected that GNN-based models could 
learn more task-specific features directly from topologi-
cal structure of molecules. Thus, we implement a test 
based on substrates of transporters. Using physicochemi-
cal properties as molecular features to predict drug’s 
BBBp is based on an assumption that the majority of 
drugs could get across the BBB by passive diffusion [47], 
but active transport mechanisms also exercise consider-
able influence over the drug concentration in the CNS. 
The substrates of transporters [48–50] in S-data were 
extracted to evaluate the performance of these models 
(Additional file  1: Tables S3 and S4). As a self-super-
vised-based model that has been pre-trained with a tre-
mendous number of drug-like molecules, we expected 
that GROVER could distinguish substrates of trans-
porters better than others. However, as the confusion 

Fig. 2 Prediction performance on S-data by BBBp prediction models. Each histogram with an error bar indicates the mean and variance of 5 runs of 
the model, respectively. Statistical t-tests were applied between the model with the highest metric score and others, and statistically significant test 
results were noted (*p < 0.05)
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matrix for the prediction results that shown in Table  1, 
the right predictions (true positive (TP) and true nega-
tive (TN)) of PCP-based ML models are on a par with 
GROVER, as well as Attentive FP. Molecular graph fea-
tures or pre-training could not give GNN-based models 
distinct advantages on the prediction of substrates of 
transporters.

Overall, the moderate improvements of GNN-based 
models are inconsistent with the hype in their publica-
tions. The insufficient modeling data may lead to the ina-
bility to give full play to the advantages of DL models in 
the scenario of BBBp prediction.

Commonly used uncertainty estimation in BBBp prediction
In view of the above-mentioned results on independ-
ent S-data, the performance of in silico BBBp prediction 
models is not only limited by algorithms but also by data. 
Overfitting may undermine the generalization perfor-
mance of the SOTA DL models with complicated archi-
tecture and high-capacity. Furthermore, the deviation 
between modeling data and real-world data could affect 
the model’s practicability. In fact, it is estimated that 
about 98% of small molecules are BBB − impenetrable 
[7], whereas in MoleculeNet-BBBp dataset, BBB + mol-
ecules are over three times as much as BBB − molecules. 
The practicability of an in silico model that too closely fit 
to a dataset like that, despite the high accuracy, seems to 
be rather dubious. In DL models, uncertainty estimation 
is increasingly important component of assessing predic-
tion truth for its potential to secure its practicability, and 
would be the high road to circumvent the data obstacle. 
Here, aiming at bring DL-based BBBp models into play, 
we focus on how uncertainty impacts the performance of 
learning from insufficient BBBp data, in particular under 
the framework of GNNs.

We implemented five proposed algorithms of uncer-
tainty estimation in GROVER-BBBp and Attentive FP-
BBBp models. And we also explored uncertainty on 
PCP-based RF and MLP rather than ML models based 
on ECFP as the former showed much better performance 
on BBBp dataset than the latter. Entropy, MC-dropout 
and Multi-initial can capture the prediction uncer-
tainty of a classification model without any change to its 

architecture; FPsDist and LatentDist measuring the dis-
tance of molecular representation in a feature space and 
the latent space respectively, are more intuitive ways to 
estimate the uncertainty as they don’t involve re-run-
ning or re-training the model. Besides, random method 
was applied as a baseline for the comparison of different 
uncertainty estimation methods (See “Methods” Section 
for more details).

In order to explore the correlation between uncertainty 
level and prediction correctness, we discarded predic-
tions with top 10% uncertainty in S-data sequentially 
and calculated the MCC of the remaining (Fig. 3), since 
MCC is a more stringent metric for imbalance dataset 
like BBBp. First of all, in all models, the flat trend of the 
random method indicating that the uncertainty values 
assigned randomly cannot lead to model improvement, 
and thus can served as baseline. Entropy, MC-dropout 
and Multi-initial show relatively better performance 
with the higher under curve area of MCC (MCC_AUC) 
than distance-based methods i.e. FPsDist and Latent-
Dist. In particular, for GNN-basesd model i.e. GROVER-
BBBp and Attentive FP-BBBp, Entropy, MC-dropout 
and Multi-initial lead to relatively steady improvements 
in MCC with decreases in quantity of high-uncertainty 
compounds, whereas the MCC curves for MLP(PCP) 
and RF(PCP) cannot keep rising with these methods. By 
comparison, FPsDist can supplement relatively robust 
fingerprint information, and thus shows moderate 
upward swings in all of models. The trends of Latent-
Dist on GNN-based models are the opposite of that on 
MLP(PCP), probably because of the more serious overfit-
ting to M-data of GNNs than MLP. The closer distance 
of latent embedding between the training and testing 
data could exacerbate overfitting and thus cause mislead-
ing. Overall, compared to PCP-based ML models, intro-
ducing uncertainty estimation to GNN-BBBp models 
improves performance more greatly, in which the predic-
tion performance measured by MCC can reach 1 for the 
remaining 10% of the most certain molecules. Further-
more, we used a variety of drug-like datasets to demon-
strate the reliability of uncertainty-enhanced GROVER 
model, and found that Entropy, MC-dropout and Multi-
initial can enhance the prediction performance of 
GROVER robustly in applied 9 binarized datasets from 
admetSAR [51] (Additional file 1: Tables S8–S19 and Fig. 
S1).

Considering that GROVER-BBBp model showed rel-
atively good performance when enhanced by varied 
uncertainty estimation methods containing DL-specific 
LatentDist and MC-dropout, we focus on GROVER to ana-
lyze how the different uncertainty estimation methods and 
their combinations effect the performance of BBBp pre-
diction task. Figure 4 shows the percentages of molecules 

Table 1 Confusion matrix of model predictions on 27 substrates 
in S-data

RF(PCP) MLP(PCP) Attentive FP GROVER

TP 10 11 11 10

FN 3 2 2 3

FP 1 2 3 1

TN 13 12 11 13
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in S-data with the prediction of TP, TN, false positive 
(FP) and false negative (FN) within different uncertainty 
ranges, and also their total numbers. As shown in Fig. 4a, 
entropy values of these molecules are comparatively well-
distributed in each interval, and as entropy increasing, the 
proportion of molecules that are incorrectly predicted (FP 
and FN) gradually increases. When comes to MC-dropout 
and Multi-initial (Fig. 4b and c), though they tend to give 
low uncertainty to most of the predicted molecules that 
makes the distributions of them are non-uniform and 
even discontinued, the upward trends of the proportion 

of misprediction can be also seen when uncertainty get 
higher. Whereas, the clear trend is not shown in FPsDist 
and LatentDist, and the latter is even inferior to random 
method. These observations are in accord with the growth 
curves of the performance of GROVER that enhanced by 
these uncertainty estimation methods in Fig. 3a.

Optimal combination strategy of uncertainty estimation 
in BBBp prediction
Next, we attempt to explore whether the ensemble of 
these uncertainty estimation methods would provide 

Fig. 3 Prediction performance by introducing different uncertainty estimation methods for BBBp prediction models. a The MCC curves for different 
uncertainty estimation methods in GROVER, namely Entropy, MC-dropout, Multi-initial, FPsDist, LatentDist and random method. The x-axis is the 
proportion of remaining compounds in S-data when the compounds with high uncertainty are sequentially discarded, and y-axis is corresponding 
MCC of the BBBp prediction model. The MCC_AUC is shown in parentheses. b The MCC curves for different uncertainty estimation methods in 
Attentive FP. c The MCC curves for different uncertainty estimation methods in MLP(PCP). d The MCC curves for different uncertainty estimation 
methods in RF(PCP)
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more steadily enhancement in GROVER-BBBp model. 
The combined uncertainty values were calculated by 
moderated-Z (modZ) weighted average algorithm, 
and the corresponding MCC_AUC values are summa-
rized in Additional file 1: Table S5 and partly shown in 
Table 2. It is found that the combination of Entropy and 
MC-dropout obtains a highest MCC_AUC among all 
combination scheme, and outperforms using Entropy 
method alone, which is the single method of highest 
MCC_AUC for GROVER. But MCC_AUC cannot keep 

climbing when add Multi-initial, FPsDist or LatentDist 
further (Table 2).

Figure 5a shows the MCC curves of Entropy method, 
MC-dropout method and the ensemble of them. We 
conclude that the ensemble of Entropy and MC-drop-
out is a robust strategy for enhancing the model pre-
diction, that has also been verified on other 9 drug-like 
datasets (Additional file 1: Table S8–S19 and Fig. S1). 
In particular, when remaining 20% of molecules with 
lower uncertainty, using the ensemble method shows 
better performance than using Entropy alone, as the 
latter shows a slightly decrease here. This improve-
ment is necessary for the reason that molecules with 
the most certain prediction have priorities over others 
for further experimental verification. Figure 5b shows 
the prediction results under the different range of the 
ensemble uncertainty. For ensemble uncertainty below 
0.5 (left side), only 5.4% molecules (22 of 408 mole-
cules) are wrongly predicted. Remarkably, the predic-
tion accuracy is above 99% when ensemble uncertainty 
values are less than 0.1, as there is only one FP pre-
diction in 144 molecules in range 0–0.1. Therefore, 
the uncertainty value is a reliable guide for the usage 
of the GROVER-BBBp model. Predicted BBB + mol-
ecules with lower uncertainty values can be put into 
experimental verification with greater confidence but 

Fig. 4 Prediction results from GROVER-BBBp model on S-data within different uncertainty ranges, and corresponding numbers of molecules. a 
Entropy method. b MC-dropout method. c Multi-initial method. d FPsDist method. e LatentDist method. f Random method

Table 2 Model performance of various combinations of 
uncertainty estimation methods in GROVER-BBBp model

The highest value is highlighted in bold

Entropy MC‑dropout Multi‑
initial

FPsDist LatentDist MCC_AUC 

√ 0.7938

√ 0.7764

√ 0.7737

√ 0.7008

√ 0.5383

√ √ 0.7965

√ √ √ 0.7879

√ √ √ 0.7956

√ √ √ 0.7771
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molecules with uncertainty values above 0.5 should 
be treated with circumspection.

In addition, t-SNE is used to visualize how uncer-
tainty estimation works in GROVER-BBBp model. 
Figure  5c, d show the t-SNE plots of latent repre-
sentation of GROVER for molecules in M-data and 
S-data, respectively. By introducing uncertainty esti-
mation in S-data prediction, the molecules with high 
uncertainty are mainly concentrated at the junction 
of BBB + and BBB − . Thus, uncertainty estimation 
can help GROVER provide more reliable and practical 
decisions to further distinguish inseparable molecules 
in the hidden space.

Application of BBBp prediction model enhanced 
by uncertainty estimation
To verify the practicability of GROVER-BBBp model 
enhanced by uncertainty estimation, we first predicted 
preclinical/clinical drugs for Alzheimer’s disease, and 
the results have been summarized in Table 3. FPS-ZM1, 
a specific RAGE inhibitor to block Aβ binding to the V 
domain of RAGE, could readily cross the BBB and consid-
ered as a candidate drug for the treatment of Alzheimer’s 
disease [52, 53]. Consistently, FPS-ZM1 is predicted to be 
able to cross the BBB in our model, and the uncertainty 
value is less than 0.5. Tarenflurbil is predicted to be able 
to cross the BBB with uncertainty of 0.6328, but its Phase 

Fig. 5 Prediction performance by introducing ensemble uncertainty and t-SNE distribution for molecules in M-data and S-data. a The MCC curves 
of Entropy, MC-dropout and ensemble of them. b Prediction results of molecules in S-data within different range of the ensemble uncertainty, 
and corresponding numbers of molecules. c t-SNE distribution of M-data based on latent representation of GROVER. d t-SNE distribution of S-data 
based on latent representation of GROVER, and the size of the point represents the uncertainty of the prediction. The larger the size of the point, the 
smaller the uncertainty value
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III clinical trial failed due to its poor brain delivery effi-
ciency [54]. In fact, in  situ rat brain perfusion experi-
ments have shown that tarenflurbil can rapidly cross the 
BBB in the absence of plasma protein, but plasma pro-
tein binding significantly limits the free plasma fraction 
of tarenflurbil, and further leads to decrease in the con-
centration into the brain [55, 56]. As the model was built 
based on logBB, what only considered the total concen-
tration rather than unbound concentration of drugs in 
brain and plasma, the high plasma protein binding rate 
may be the reason for the wrong prediction of tarenflur-
bil. On the other hand, although mis-predicted, taren-
flurbil shows an uncertainty value greater than 0.5, which 
indicates the low reliability of the prediction result and 
avoids our excessive trust in it.

Moreover, despite the advances in the treatment of 
many cancers, CNS tumors and brain metastases still 

pose significant challenges, partially because few of the 
antitumor drugs can penetrate the BBB to reach specific 
targets in brain. As a test of GROVER-BBBp model, we 
performed BBBp prediction for some small molecule 
inhibitors (SMIs) that have been marketed for tumor 
treatment, and verified by literature. The prediction 
results of some molecules with available records related 
to BBBp are shown in Table 3 (the full list of antitumor 
SMIs and corresponding predictions in Additional file 1: 
Table  S6). In general, because these antitumor SMIs 
are structurally different from training molecules, their 
uncertainty values are higher than those in S-data, which 
are all greater than 0.3. Among these drugs, niraparib 
and alectinib are predicted as BBB + with high confi-
dence with uncertainty of 0.3676 and 0.3907, respectively. 
Niraparib is an FDA-approved poly (ADP-ribose) poly-
merase-1/-2 inhibitor for anticancer treatment [57, 58]. 

Table 3 A list of prediction results with uncertainty of clinical drugs and marketed antitumor drugs

*Structures of drugs used in model are stripped of chirality

Drug Structure* Predicted 
probability

Uncertainty Potential indications

FPS-ZM1

N

O

Cl

 

0.9761 0.1964 Alzheimer’s disease

Tarenflurbil

F

O

HO
 

0.7881 0.6328 Alzheimer’s disease

Niraparib H2N O

N
NH

N

 

0.9563 0.3676 Carcinoma ovarian, fallopian tube cancer and peritoneal carci-
noma

Alectinib

N

N
O

O

H
N

N
 

0.9484 0.3907 Non-small cell lung cancer (NSCLC) metastatic, ALK-positive

Encorafenib

O

O

N
H

H
N

N

N
N

Cl

HN
S

O

O

F

N

 

0.2529 0.7017 Melanoma with BRAF mutation, colorectal cancer with BRAF V600 
mutation

Osimertinib
O

NH
H
N

N

N

N

O N
N

 

0.4864 0.7486 NSCLC advanced, metastatic, EGFR mutation
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Niraparib (probability of 0.9563 with uncertainty of 
0.3676) has shown its ability in a BRCA2-mutant intrac-
ranial tumor model [59], and its brain to plasma expo-
sure ratio is about 0.3, that corroborates the confident 
BBB + prediction [57]. Alectinib (probability of 0.9484 
with uncertainty of 0.3907) has been approved by FDA to 
treating ALK-positive NSCLC patients for both systemic 
and intracranial disease [60–62]. Preclinical studies have 
also proved that alectinib has a high brain-to-plasma 
ratio and drug permeability in  vitro [63]. Encorafenib 
(probability of 0.2529 with uncertainty of 0.7017) is 
an example of TN infer. It is a selective BRAF inhibitor 
which has been approved for treating melanoma, with 
a brain-to-plasma ratio of approximately 0.004 in mice 
model [64, 65].

The GROVER-BBBp model enhanced by uncertainty 
estimation can correctly predict whether molecules can 
cross the BBB for most clinical or marketed drugs, and 
further quantitatively indicate the reliability of the mod-
el’s prediction results. However, it still has some limita-
tions. Although logBB is a widely used parameter to 
quantify the brain permeability of drugs, the  Kp,uu is a 
more ideally endpoint than  Kp, as it removes the inter-
ference of plasma protein and brain tissue binding that 
affect  Kp. However, publicly available  Kp,uu data is not 
enough for de novo building of in silico BBBp model. 
Therefore, we have used Friden’s  Kp,uu dataset [44] to fine-
tune GROVER-BBBp model to predict  Kp,uu, expecting 
to fix the model’s bias toward  Kp to some extent. Data-
set collected from Colclough [3] and Kim’s [66] works 
was constructed to test the fine-tuned model externally, 
in which molecules defined as BBB + or BBB − accord-
ing to  Kp,uu ≥ 0.1 or  Kp,uu < 0.1. The results show that the 
fine-tuned model can correct some misprediction (Addi-
tional file 1: Table S7). For example, osimertinib is EGFR 
inhibitor for the treatment of advanced NSCLC patients 
with EGFR-mutated and demonstrated efficacy against 
stable or asymptomatic CNS metastases [67]. Recent 
experiment has shown that  Kp,uu of osimertinib in-vivo 
rat is 0.21 [3] that characterizes its permeability [68]. In 
the original prediction results, GROVER-BBBp model 
incorrectly predicted it as BBB − (probability of 0.4864 
with uncertainty of 0.7486), while the latest fine-tuned 
model successfully predicted it as BBB + , with the corre-
sponding prediction probability of 0.6952. We can expect 
future exploration on  Kp,uu may provide a more compre-
hensive prospect for the prediction of BBBp.

Conclusions
In this study, a newly collected independent dataset 
S-data was used as a benchmark dataset to evaluate the 
performance of BBBp prediction models, which con-
tained a total of 527 molecules with 395 BBB + and 

132 BBB − respectively. Among various BBBp models, 
conventional PCP-based ML models and GNN-based 
models exhibit moderate and comparable prediction 
performance, which suggests that overfitting to a bias 
training dataset could undermine the generalization abil-
ity of the SOTA GNN-based models with complicated 
architecture. Thus, in order to secure the practicability of 
in silico BBBp prediction models, we introduced uncer-
tainty estimation to quantify the reliability of prediction 
results of these models. GNN-BBBp models enhanced 
by uncertainty estimation show greater improvement 
than PCP-based ML models, and we find that using the 
combination of Entropy and MC-dropout for uncertainty 
estimation in GROVER-BBBp model is the optimal strat-
egy. Based on this strategy, the BBBp potential of many 
drugs of Alzheimer’s disease and cancer were successfully 
predicted with a quantitative estimation of prediction 
reliability and verified by literature.

In conclusion, our study makes the first attempt to 
offer insights into prediction uncertainty into ML- and 
DL-based BBBp prediction model. Uncertainty estima-
tion helps determine how much we can trust a predic-
tion result, enhanced by that, the proposed BBBp in silico 
model can speed up the high-throughput screening and 
lead optimization of BBBp molecules, and beneficial to 
the discovery of drugs for the treatment of CNS diseases 
and malignant tumors with brain metastasis.

Methods
Data sets
The BBBp dataset collected from MoleculeNet [23] con-
tains a total of 2053 BBB + /BBB − molecules defining 
based on whether logBB ≥  − 1  (Kp ≥ 0.1). After remov-
ing salts and solvents, neutralizing, and extracting the 
single molecule with the largest molecular weight from 
SMILES, the preprocessed and deduplicated M-data 
contained 1937 molecules, including 1476 BBB + and 
461 BBB − . The new benchmark dataset was derived 
from CNS and non-CNS drugs based on ATC [15, 41], 
and compounds with measured logBB in previous lit-
erature [42–44] or ChEMBLdb25 [45], and preprocessed 
in the same way as M-data to get S-data with 527 mole-
cules (395 BBB + and 132 BBB −). The  Kp,uu dataset from 
Friden [44] was divided into BBB + /BBB − according to 
whether  Kp,uu ≥ 0.1, comprising 24 BBB + and 17 BBB − . 
And external test set from Colclough [3] and Kim’s [66] 
works contained 18 molecules (4 BBB + and 14 BBB −).

Models for BBBp prediction
In this study, we used different types of BBBp predic-
tion models, including BBB Score [17], conventional ML 
models RF and MLP, and GNN-based models Attentive 
FP [24] and GROVER [27].
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For BBB score, physicochemical descriptors like MW, 
HBA, HBD, TPSA and number of aromatic rings were cal-
culated by RDKit toolkit and  pKa was obtained with Epik 
module of Maestro. The final BBB score was summed 
according to the functions associated with the above 
descriptors, and molecules were considered as BBB + when 
the scores ≥ 4, otherwise labeled as BBB − .

ML models often use physical- or chemical-property 
descriptors or molecular fingerprints as the inputs. In this 
study, we used simple networks RF and MLP, and molecu-
lar fingerprint ECFP4 or physicochemical properties used 
in GROVER were calculated as the representation input to 
the ML models.

For RF models, three hyperparameters were consid-
ered including ‘n_estimators’, ‘max_depth’, and ‘criterion’. 
The best group of these hyperparameters for RF(ECFP) is 
set ‘n_estimators’ to 100, ‘max_depth’ to 50, and ‘criterion’ 
to ‘entropy’. The best group of these hyperparameters for 
RF(PCP) is set ‘n_estimators’ to 250, ‘max_depth’ to 20, and 
‘criterion’ to ‘gini’.

For MLP models, four hyperparameters ‘hidden_layer_
sizes’, ‘max_iter’, ‘batch_size’ and ‘learning_rate_init’ were 
considered. In MLP(ECFP) model, the best group of these 
hyperparameters is set ‘hidden_layer_sizes’ to [1000, 500], 
‘max_iter’ to 3000, ‘batch_size’ to 64 and ‘learning_rate_
init’ to 0.0001. In MLP(PCP) model, the best group of these 
hyperparameters is set ‘hidden_layer_sizes’ to [1500, 1000, 
500], ‘max_iter’ to 1000, ‘batch_size’ to 16 and ‘learning_
rate_init’ to 0.0001.

For retraining Attentive FP model, we followed the opti-
mal parameters given in article [24]. And on the basic of 
pre-trained GROVER model [27], we further fine-tuned 
the downstream BBBp prediction model on M-data follow-
ing the determined hyper-parameters from the article.

Uncertainty estimation methods
In this study, we implemented five uncertainty estimation 
methods, including Entropy, MC-dropout, Multi-initial, 
FPsDist and LatentDist. At the same time, the random 
method was used as the benchmark to compare different 
uncertainty estimation methods.

The random method is achieved by randomly assigning 
value between 0 and 1 to each molecule in S-data as an 
uncertainty value.

Schwill proposed that entropy can be used as a meas-
ure of uncertainty [32]. And it is the most classical way to 
measure the uncertainty of classification models. Specifi-
cally, the definition of Shannon entropy used in this study 
is as follows:

(1)µ = −
∑

c

pclogpc

where µ is entropy measure, and pc corresponds to the 
probability value of each class in model’s output, which 
is multiplied by corresponding logarithmic value and 
finally summed. In BBBp prediction model, we used the 
probability value of the model’s output to get the entropy 
value, that is, the uncertainty, and the larger this value, 
the greater the uncertainty of the model.

MC-dropout in deep neural networks has been proved 
to be used as an approximation of BNN [36, 37]. In prac-
tice, there is no need to change the framework of existing 
DL models, but only need to apply dropout during infer-
ence. Finally, the variances of different prediction results 
obtained by multiple inferences are taken as the values of 
uncertainty estimation.

Multi-initial is a basic method for uncertainty esti-
mation. The model is trained several times indepen-
dently with different initialization, and the variances of 
its results can also be considered as uncertainties of the 
prediction.

For FPsDist, we calculated the Tanimoto distance of the 
molecules in S-data relative to the nearest-neighbor mol-
ecule in M-data using ECFP4 [69]. LatentDist is a new 
uncertainty estimation method by measuring the dis-
tance in latent space, which specifically calculates Euclid-
ean distance of each test molecule to the nearest training 
set molecule in the final layer latent space of deep neural 
network [38].

For the combined uncertainty values obtained by dif-
ferent uncertainty estimation methods, modZ weighted 
average algorithm is used. Specifically, considering 
entropy uncertainty as a standard value, Spearman’s rank 
correlation coefficients between other uncertainty values 
and entropy values are used as weights of uncertainty 
obtained by other uncertainty estimation methods, and 
uncertainty values with different weights are averaged to 
obtain the final combined uncertainty values.

Evaluation metrics
For assessment of BBBp prediction model performance, 
several metrics are evaluated. The ROC curve takes false 
positive rate as the x-axis and true positive rate (recall) as 
the y-axis, and the area under ROC curve is called ROC_
AUC for short in this study. Similarly, the PRC curve uses 
recall as the x-axis and precision as the y-axis, and the 
area under PRC curve is abbreviated as PRC_AUC in 
this study. The larger ROC_AUC value and PRC_AUC 
value, the better the performance of the BBBp prediction 
model. The false positive rate, recall, and precision are 
defined as follows:

(2)false positive rate =
FP

TN + FP
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Specifically, BBBp dataset has the problem of data 
imbalance, BACC and MCC are used in this study to 
evaluate classification model performance, which are rel-
atively balanced metrics considering TP, TN, FP and FN 
simultaneously. These two metrics are defined as:
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