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Background: There is growing interest in the connection between the gut microbiome
and human health and disease. Conventional approaches to analyse microbiome data
typically entail dimensionality reduction and assume linearity of the observed relationships,
however, the microbiome is a highly complex ecosystem marked by non-linear
relationships. In this study, we use topological data analysis (TDA) to explore
differences and similarities between the gut microbiome across several countries.

Methods: We used curated adult microbiome data at the genus level from the GMrepo
database. The dataset contains OTU and demographical data of over 4,400 samples from
19 studies, spanning 12 countries. We analysed the data with tmap, an integrative
framework for TDA specifically designed for stratification and enrichment analysis of
population-based gut microbiome datasets.

Results:We find associations between specific microbial genera and groups of countries.
Specifically, both the USA and UK were significantly co-enriched with the proinflammatory
genera Lachnoclostridium and Ruminiclostridium, while France and New Zealand were co-
enriched with other, butyrate-producing, taxa of the order Clostridiales.

Conclusion: The TDA approach demonstrates the overlap and distinctions of microbiome
composition between and within countries. This yields unique insights into complex
associations in the dataset, a finding not possible with conventional approaches. It
highlights the potential utility of TDA as a complementary tool in microbiome research,
particularly for large population-scale datasets, and suggests further analysis on the effects
of diet and other regionally varying factors.
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INTRODUCTION

In recent years, there has been a rapidly growing interest in the connection between the gut
microbiome and disease. This area spans detailed exploration of the gut microbiome in small specific
clinical disease phenotypes to larger population-level studies. In parallel, there have been advances in
the analytics approaches the microbiome field has adopted to test the different hypotheses.
Conventional approaches employ dimensionality reduction and typically assume linearity. Here
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we use topological data analysis (TDA) exploring the difference
and similarities between the gut microbiome across several
countries. We highlight unique insights that are made possible
with the use of TDA.

The Human Gut Microbiome
The gut microbiome is a diverse community of an estimated 100
billion to trillion microorganisms - bacteria, viruses, and fungi -
inhabiting the intestine and gut (Sender et al., 2016). So far, 1,952
species have been classified - however, the majority of the
microbiome remains unreferenced (Almeida et al., 2019).
Unsurprisingly, the relationships between the different
microbiome species are highly complex, dynamic, and
nonlinear (Shoaie et al., 2013). Depletion of one species below
a specific threshold can lead to the so-called blooming of others.
Some species also exist only in either very low or very high
abundance with specific tipping points (Lahti et al., 2014). Species
can even change their phenotype based on the concentration in
the gut, environmental, or genetic context; in other words,
harmless bacteria can become pathogenic under specific
circumstances (Casadevall, 2017). These species have so-called
high pathogenic potential, are also known as pathobionts, and are
usually kept under control by a healthy microbial community
(Kamada et al., 2013). If this ecosystem is disrupted, pathobionts
and external pathogens can bloom, affecting host health. It is
important to note that a healthy composition of the microbiome
is highly individual but based around a proposed universal “core
microbiome” (Rinninella et al., 2019).

The microbiome coevolved with humans in a commensal,
perhaps even symbiotic, way (Bäckhed et al., 2005; Shapira,
2016). The microbiome appears to play a central role in host
immunity, metabolism, behaviour, and cognition through yet
unclear pathways. Specifically, it is thought that a disturbed
microbiome, also called gut dysbiosis, can set off inflammatory
cascades. Disease, lifestyle changes, or environmental influences
can disturb the delicate balance of the microbiome, leading to
loss of seemingly beneficial microbes and a simultaneous
blooming of bacterial taxa detrimental to the host (Petersen
and Round, 2014). This can lead to the breakdown of the
epithelial cells lining the gut, increasing gut permeability
which can cause pro-inflammatory bacterial metabolites or
products to leak out, triggering further inflammatory
cascades in the host (Rooks and Garrett, 2016; Thevaranjan
et al., 2017). Changes in the gut microbiome have increasingly
been linked to a range of diseases, such as colitis, diabetes,
neurodegenerative diseases, and autism (for a review seeGhaisas
et al., 2016)). Additionally, the gut microbiome influences the
efficacy and bioavailability of oral medication (see e.g. Enright
et al., 2016;Wilson and Nicholson, 2017; Clarke et al., 2019). For
instance, the interaction between drugs and microbiome
appears important in Parkinson’s disease (Rekdal et al.,
2019), arthritis (Scher et al., 2020), schizophrenia (Seeman,
2021), and bipolar disorder (Flowers et al., 2020). Analysing
the gut microbiome and illuminating the subtle relationships
driving it has significant translational value for population
health, particularly as it is an easily accessible and scalable
potential therapeutic target.

Variation in the Gut Microbiome
Several factors affect the gut microbiome, which can be broadly
distinguished into lifestyle, medical, and environmental factors.
Perhaps the most prominent lifestyle factor is diet. A high-fat diet
can induce dysbiosis in the gut microbiome (Vaughn et al., 2017),
while a diet high in resistant starches and complex carbohydrates
(such as the Mediterranean diet) increases beneficial species
(Garcia-Mantrana et al., 2018). This includes Firmicutes that
produce short-chain fatty acids (SCFA), which have anti-
inflammatory properties and maintain the integrity of the
epithelial layer in the intestine (Morrison and Preston, 2016;
Levy et al., 2017). Similarly, moderate alcohol consumption seems
to increase anti-inflammatory species (Quesada-Molina et al.,
2019), and exercise is also associated with a beneficial effect
(Monda et al., 2017). Travel has also been shown to negatively
alter the microbiome by decreasing diversity (Riddle and Connor,
2016; Langelier et al., 2019). Crucially, hygiene is a non-negligible
factor - while inadequate sanitation can increase the likelihood of
bacterial infection, excessive hygiene as practised in some
countries - even as a response to the COVID-19 pandemic -
may lead to a reduction in the microbiome diversity (Schmidt
et al., 2011; Burchill et al., 2021).

The use of oral medications, particularly antibiotics, is another
important influence on the gut microbiome. It takes some
microbial species up to 6 months to recover from a complete
cycle of antibiotics (Dethlefsen et al., 2008). Non-antibiotic
medication such as dopaminergic drugs (Hill-Burns et al.,
2017), proton pump inhibitors, antipsychotic drugs, and
opioids interact with the microbiome and can affect its
composition (Le Bastard et al., 2018). As the microbiome is
interlinked with metabolic pathways, chronic diseases such as
diabetes are also associated with a disrupted gut microbiome,
though the causal direction of this effect is unclear - the same
holds true for obesity (Singer-Englar et al., 2019). Environmental
factors are a crucial and sometimes overlooked part of the host-
microbiome relationship. External pathogens such as viruses can
induce changes to the gut microbiome, as can pesticides and other
toxins (Li N. et al., 2019; Tu et al., 2020). Pollution has also been
associated with changes to the microbiome, particularly air
pollution (Vallès and Francino, 2018; Bailey et al., 2020).
Crucially, there is evidence that the soil and drinking water
microbiomes interact with the gut microbiome (Blum et al.,
2019).

Geographical Variation of the Gut
Microbiome
The factors influencing the microbiome vary regionally, leading
to differences in the population microbiome across countries as
has been observed in many past studies (e.g., Karlsson et al.,
2014). One large review reports distinct geographical differences
in the gut, oral, and skinmicrobiomes between non-industrialised
and industrialised populations in addition to a conserved core
microbiome (Gupta et al., 2017). More specifically, the review
reported that while the non-industrialised gut microbiota include
more species of the phyla Proteobacteria, Spirochaetes, order
Clostridiales, and genera Prevotella or Ruminobacter, the
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industrialised communities were more enriched with the
Firmicutes phylum, and Bacteroides and Bifidobacterium genera.

Diet is one of the most intuitive drivers of these differences;
while some countries consume large amounts of meat, others
have a diet heavier in carbohydrates, or in fibre (Ritchie and
Roser, 2019), which has been connected to observed differences in
microbiome composition between countries (Riaz Rajoka et al.,
2017). For example, one study compared gut microbiome
signatures between children in urban Italy and rural Burkina
Faso and found unique microbial genera in the African children
that might be linked to differences in diet: the genera Prevotella,
Xylanibacter, Butyvibrio, and Treponema are involved in cellulose
and xylan hydrolysis which are fitting for the polysaccharide-rich
diet of the African children which includes many whole grains,
producing the beneficial SCFAs (De Filippo et al., 2010). These
results are echoed in a later study comparing Egyptian and US-
American teenagers, which found differences in the metabolic
profiles consistent with the dominant diet of the respective region
(Shankar et al., 2017).

Similarly, prescription patterns and access to antibiotics vary
from country to country: while low- and low-middle-income
countries count around 12 daily antibiotic doses per 1,000
citizens, high-income countries count around 25 per 1,000
(Klein et al., 2018). Pesticide use is another factor that varies
starkly between countries, due to environmental regulations
being less or more restrictive, as well as the importance of
farming or industry for a country’s economy and society
(Handford et al., 2015). Accordingly, soil and water
microbiome signatures vary between countries and regions, as
demonstrated by the EarthMicrobiome Project (Thompson et al.,
2017). This is partly naturally caused, and partly due to external
factors such as pesticide and fertiliser use (Gourmelon et al., 2016;
Lupatini et al., 2017). In addition to these environmental factors,
host genetics and the innate and adaptive immune systems can
account for some of the human microbiome variation between
populations, although the exact contributions of environmental
and genetic factors, respectively, are unclear (Gupta et al., 2017).

Together, these factors could point to differences in the
population microbiome which are important to health and
disease. As some of the differences between populations
described above include increased anti-inflammatory microbial
products, this can affect inflammatory and disease processes in
these regions. One example of this has been research into obesity:
while obesity varies between countries and has been connected to
the industrialisation level of a population, it has also been
associated with a differential microbiome profile (Dugas et al.,
2016). Mouse studies have even suggested causality: transplanting
the gut microbiome of genetically modified obese mice into germ
free mice led to weight gain (Turnbaugh et al., 2006). However,
human data on whether shifts in the microbiome associated with
geographical variations relate to geographical differences in
obesity are rare. One recent study found that the gut
microbiome of obese subjects in industrialised countries is
more similar to that of other industrialised countries, even if
these were geographically far apart, than to that of non-
industrialised communities (Angelakis et al., 2019). Similar
geographical insights could be relevant for non-communicable

diseases that have been associated with deviations in the
microbiome and that have differential prevalence in some
countries over others, as has been observed for many
gastrointestinal, neurodegenerative, psychiatric, or
inflammatory diseases (GBD 2017 Disease and Injury
Incidence and Prevalence Collaborators et al., 2018).
Knowledge about what drives these differences could in turn
inform improvements to existing medications or inspire novel
treatment options through the gut microbiome.

Limitations of Standard Analysis
Traditional approaches to microbiome analysis comparing
groups, even ones employing complex machine learning
models, have many shared limitations, preventing reliability.
Firstly, they rely on reduction in dimensionality to simplify
the modelling of the ecosystem, which leads to loss of key
information around the complex interplay of the microbiome.
The binary output of these studies, namely which taxa are deemed
to be beneficial or detrimental, is an oversimplification of the
original problem. Attempting to address the highly complex and
non-linear ecosystem of the gut microbiome with a simplistic
linear approach introduces a range of errors to the results, such as
precluding the real effect and leading to frequent false positives if
not adequately addressed. Additionally, many human
microbiome studies, including the ones on geographical
variation, have very small sample sizes, particularly those
comparing patients to healthy controls. Many also poorly
control for potential confounders. There have been efforts to
curate larger datasets to tackle some of these issues, leading to
sample sizes of up to 12,000 in the American Gut Project
(McDonald et al., 2018). However, the issues cannot be
countered with an increase in sample size on its own - in fact,
it can be argued that adding more data while maintaining the
oversimplified, linear modelling approaches will add further noise
to the results and lead to multiple comparison errors.

TDA and the Microbiome
Topological data analysis (TDA) can address many of these
concerns. TDA is an analysis method coined by Gunnar
Carlsson (2009) and was developed to analyse high-
dimensional datasets. It uses principles from topology and
differential geometry, specifically persistent homology. By
doing so, TDA can represent the underlying geometric
structure, or shape, of the data while accounting for its
complexity. Additionally, TDA deals well with high-
throughput biological data, such as the microarrays used to
sequence the microbiome. It is therefore designed to detect
subtle and non-linear relationships in the data and can deal
with noisy or incomplete datasets. These factors support the use
of TDA in microbiome research.

One previous study by another group has demonstrated the
value of TDA for microbiome analysis by combining the well-
known Mapper (Singh et al., 2007) with the Spatial Analysis of
Functional Enrichment (SAFE) algorithm (Baryshnikova, 2016)
to detect co-variance between metadata and microbiome taxa in
the dataset (Liao et al., 2019). The authors report that tmap
outperformed standard tools such as envfit, adonis, and ANOSIM
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in a synthetic dataset, specifically in detecting non-linear, as well
as mixed non-linear and linear associations within the data. They
applied tmap to two population-based microbiome datasets, the
Flemish Gut Flora Project (Falony et al., 2016) and the American
Gut Project which further illustrates the potential to detect non-
linear relationships, specifically associations with host-metadata.
They report co-enrichment between two of the so-called
enterotypes (Arumugam et al., 2011) and countries, specifically
the USA with the Bacteroidetes enterotype and the UK with the
Ruminococcaceae enterotype. Further analyses revealed co-
enrichment of diet and medication, as well as other lifestyle
factors, which were thus associated with both the countries
and the enterotypes. TDA appears to be a promising tool to
investigate the microbiome through large population-based
datasets, specifically as it highlights the increased signal
detection in noisy data. While an important and powerful
proof of concept, a key scientific limitation of this study was
the comparison of only two countries, limiting conclusions on
geographical variation of the microbiome that can be drawn from
this. Additionally, the authors did not investigate specific
underlying microbiome taxa but focused instead on
enterotypes, potentially missing more subtle relationships.

This Study
This present study aims to explore the relationship between a
range of countries and specific microbiome signatures using
TDA. To this end, we use a large repository of gut
microbiome data spanning 12 countries with over 4,400
samples and apply the TDA pipeline tmap to investigate the
co-enrichment of countries and specific microbiome taxa. To our
knowledge, this is the first study using this analysis pipeline for
this purpose on this data.We hypothesise that with this approach,
we can find evidence for differences but also similarities in the gut
microbiome signatures that have previously been overlooked by
conventional microbiome approaches. This is important in
developing our understanding of the microbiome not as a
combination of singular taxa but as a rich, diverse, and
interrelated ecosystem.

METHODS

Dataset
Microbiome data is obtained from stool samples that are
metagenomically sequenced, and then taxonomically
classified. The data is thus stored as operational taxonomic
units (OTUs).

For this study, we used data from GMrepo, a database of
curated gut microbiome metagenomes (Wu et al., 2020). Using
the provided RESTful API, we obtained all run IDs associated
with the “healthy” and adult phenotype (Mesh-ID D006262) and
filtered for only those samples that passed quality control. We
then used the run IDs to download the full metagenomic
sequence at the genus level. Countries with less than 20
samples were excluded. Metadata of interest that were
collected for the whole sample are age, sex, and BMI. BMI was
coded into underweight (BMI below 18.5), normal (18.5–24.9),

overweight (25–29.9), and obese (over 30) according to the
criteria adopted by the WHO, NIH, and NHS.

Analysis Pipeline
Data analysis was conducted in Python 3.6, in a Jupyter notebook
6.0.2 environment. The scripts are available from thesharmalab.
com GitHub repository.

A key aspect of TDA approaches is the production of the
underlying shape and persistence of the structures. To explore
this, we first produced a persistence diagram on the microbiome
data as a point cloud with the giotto-tda package (Tauzin et al.,
2021). This could then inform parameter tuning during
subsequent steps. Then, TDA was conducted with the tmap
analysis pipeline (Liao et al., 2019). The pipeline is an
“integrative framework” based on TDA and is specifically
designed for stratification and association analysis of
population gut microbiome datasets. It utilises two established
algorithms for TDA and stratification analysis, the Mapper and
SAFE algorithms, respectively.

TDA With Mapper
The input to the Mapper algorithm is a point cloud of data
points, in this case, each data point represents one stool sample.
First, pairwise distances are calculated with the Bray-Curtis
distance and these are then transformed to a square-form
distance matrix. This matrix is filtered from the original
high-dimensional space into a low-dimensional space using
multidimensional scaling (MDS), a non-linear method of
dimensionality reduction which translates pairwise distances
among data points into the low-dimensional space (Mead,
1992). This filter was used as in the origination of the
Mapper algorithm (Singh et al., 2007), and the components
were set to two, as recommended by the developers of the tmap
pipeline, with the “pre-computed” metric. Next, the low-
dimensional space is partitioned into bins using overlapping
covers with each cover including a subset of data points that
overlap in some way. Within each cover, data points are then
clustered based on the distances from each other in the original,
high-dimensional space. These clusters are represented as a
node in the TDA network. The shape of the network is a
combination of distances in the low- and high-dimensional
spaces. In other words, each node in the network is a group
of samples with overlapping microbiome profiles and each link
between the nodes indicates a shared sample between nodes.
The clusterer used was the Density-Based Spatial Clustering of
Applications with Noise (DBSCAN) from scikit-learn, as is
recommended in tmap documentation. To set an appropriate
maximum distance between two data points (eps), we used the
Mapper algorithm automated optimisation function
(optimize_dbscan_eps) with a threshold of 95%, which
specifies the percentage of samples for which to cover or
cluster the surrounding neighbourhood, based on the
distribution of nearest-neighbour distances. The minimum
number of neighbours was set to 5.

To optimise the cover ratio, a measure of how many samples
are retained during the clustering process, the resolution and
overlap parameters were adjusted. Resolution is a measure of how
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many bins the data is being split into, while overlap decides how
big the overlap between adjacent bins needs in order to be
considered overlapping. Resolution determines how sparse
versus coarse the network will be and thereby how many
nodes the network will have. Overlap, on the other hand,
determines how densely connected the network will be and
thereby how many edges the network will have. Both
parameters were adjusted by hand and are shown in Figure 1B.

Enrichment With SAFE
The SAFE algorithm maps values of a variable onto the network,
denoting enrichment of this variable. The algorithm uses the
TDA network as input and then maps the values of a given
variable onto the network as node attributes. For example, if the
variable is age, then the SAFE algorithm maps the average age of
each node (i.e., group of samples). This is called network
enrichment.

FIGURE 1 | (A) Persistence Diagram. (B) Adjusting the resolution and overlap parameters of the TDA network to achieve optimal cover ratio. Bv shows the final
network, including the three clusters.
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Subsequently, each node is examined in subnetwork analyses
while permutating a given number of times over the entire network
which determines how significant the observed enrichment is. For
this study, the number of network permutations during this step
was set to 5,000 to maximise sensitivity. A subnetwork is identified
as a local neighbourhood around each node, where constituent
nodes are selected according to the maximum distance threshold.
We kept this threshold at the 0.5th percentile of all pairwise node
distances in the network. For each neighbourhood, the enrichment
of observed values at the neighbour nodes is summed and then
ranked to compare the observed with the permutated scores. The
score is then log-transformed and normalised to yield a so-called
SAFE score for each node of the network. To reiterate, the SAFE
scores quantify the enrichment level of a variable in the nodes
around a given node. These local scores can be filtered and
summed to yield the SAFE enriched score, which represents the
network-level association of a target variable. It can be used as
analogous to an effect size, allowing comparison between variables
in the form of ranking, as well as investigation of their co-
enrichment of variables.

Stratification, meaning subgrouping of a population, can be
conducted by analysing the enrichment of a host metadata
variable across the network. For this, metadata and taxa were
entered as covariates for the network enrichment analysis
described above. Continuous data, such as age and the
microbial taxa, yield stratification heat maps. These show the
distribution of absolute values across the network (with the mean
of each group of samples represented as one node value), as well
as the distribution of enrichment across the network as
represented with the SAFE score for each node. Note that
dark blue corresponds to the number 0 in both cases. All
countries, as well as the metadata variables sex and BMI, were
dummy coded. The different levels, or groups, of each variable
can be plotted against each other by comparing the SAFE scores
of each level at a given node. This means that for each node, the
visualisation shows which group was more enriched. If none of
the groups show enrichment at a given node, it is grey.
Additionally, the most enriched taxa can be found by
identifying the most enriched taxon of each node and
colouring that node accordingly. It is important to note that
to assess significance of an enrichment, the SAFE algorithm
depends on both sample size and distribution across the TDA
network, affecting the SAFE score, number of significantly
enriched nodes, and the SAFE enriched score. This means that
for a metadata variable with few samples that are highly
distributed across the network, the probability of permutation
is very small, making assessment of the enrichment difficult. This
affects interpretation of the results, especially for countries with
low sample size. If these countries have low SAFE scores, this does
not signify the absence of an effect; instead, it demonstrates an
inability to detect the presence of an effect. This should be kept in
mind when interpreting the results of the SAFE algorithm.

Finally, co-enrichment between variables can be determined,
which describes relationships between host metadata and
microbiome variations (Liao et al., 2019). While two variables
can be considered co-enriched if they enrich in the same area of
the network – suggesting that they account for the shape of the

network in this area –, it is also possible to quantify this
association. For this, we calculated the pairwise co-enrichment
for all taxa and metadata, yielding the significance level of each
pair. We then applied a threshold to the significance at the 0.5th
percentile and binarized the data accordingly. This strict
threshold was used to account for the large number of pair-
wise tests and reduce the type I error rate. The binarization
allowed us to easily find significant co-enrichment between
variables. Specifically, we used this quantitative indicator to
supplement visual indications of co-enrichment, such as
enrichment in the same areas of the network, between the
variables most highly enriched across the network.

RESULTS

Dataset
Based on our criteria, the final dataset includes 4,437 stool
samples, 1,341 taxonomic units, as well as relevant study and
host metadata. The data spans 12 countries from 19 studies,
including both Amplicon and metagenomic data. Mean and
standard deviations for age, as well as the distribution of sex
and BMI for each country, are shown in Table 1.

Persistence Diagram
The persistence diagram (Figure 1A) shows four highly persistent
structures in dimension 0 - representing clusters - and no high
persistence in dimension 1 - representing loops. We thus expect
to see two to four clusters and a relatively noisy network in the
next step of our analysis.

Parameter Adjustment
During the construction of the TDA graph, the resolution and
overlap parameters were adjusted by hand to obtain the optimal
cover ratio that is representative of the persistence diagram,meaning
two to four clusters and no loops. The panels in Figure 1B show the
result of this adjustment. The final network was constructed with the
resolution set to 85 and overlap to 0.85 (Figure 1Bv).

TDA Network
The TDA network produced by tmap contains 1,435 nodes and
8,870 edges, based on 2,910 samples. 1,527 (65.58%) samples had
to be dropped during the construction of the network, likely due
to missing data as the individual studies did not measure the same
taxa, leading to many OTUs being marked as 0 in each sample. As
can be seen in Figure 1Bv, the network has two central clusters, a
smaller one on the left (1) and a larger one in the middle (2).
There is also a small third cluster on the right (3). This pattern is
broadly consistent with the persistence diagram (Figure 1A).

Geographical Enrichment
Enrichment of the countries across the TDA network is shown in
Figure 2A, in which each node is coloured according to which
country has the most enrichment at that local node. Additionally,
larger nodes correspond to a larger number of samples in that node.

Most countries are either predominantly enriched in cluster 1
(e.g., Canada) or cluster 2 (e.g., the USA, the UK, Italy,
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New Zealand). Interestingly, the USA and the UK are also
significantly co-enriched. China is enriched at the junction of
cluster 1 and 2, as well as in cluster 3, in which they are together
with theUSA andCanada. Brazil is enriched both in cluster 2, as well
as the junction of the two big clusters. Samples from France are
enriched in the same area of the graph, namely the top left, which
appears sparse and disconnected from the rest of the network. As can
be seen in Figure 1B, this holds true for all the observed parameter
adjustments. Finally, Tanzania is not significantly enriched in the
network at all. As mentioned above, this finding needs to be
interpreted cautiously due to the low sample size of Tanzania.

Figure 3A shows all host metadata ranked according to their
SAFE enriched scores. The USA and Canada stand out with
scores of over 400 each, making them the two most enriched host
metadata. The next most enriched country is the UK with a SAFE
score of 190, and China with a score of 84. Together with France,
these countries also have the most samples (see Table 1).

Other Metadata
Age, sex, and BMI were also investigated. Host age has a SAFE
enriched score of 205 and is enriched mostly in cluster 2 (see
Figure 4A). Host age is significantly co-enriched with the UK and
France, which both have higher than average age compared to the
other countries (see Table 1). Host sex was relatively highly
enriched (SAFE enriched scores Male: 223, Female: 210), and
the enrichment network shows that female sex is mostly enriched
in cluster 1, while the enrichment of male sex is more distributed
across the network (Figure 4B). Interestingly, both female and
male sex are significantly co-enriched with Canada. Finally, BMI
seems to be a relevant host variable, as normal BMI is the third
most enriched metadata with a SAFE enriched score of 302. Most
of the enrichment of the normal BMI appears in cluster 1, while
cluster 2 is more enriched with non-normal BMI phenotypes
(Figure 4C). This is reflected in a significant co-enrichment of
normal BMI with Canada. Further, normal BMI is significantly
co-enriched with male sex.

Taxa
We also explored the enrichment patterns of different taxa with
host metadata. Figure 2B shows the taxa with the most enriched
nodes in one figure, while Figures 5, 6 show network heat maps of

the most relevant taxa. The top enriched taxa belong to the
Bacteroidetes and Firmicutes phyla. Figure 6B shows a heatmap
on the matrix of all co-enrichment pairs between host metadata
and taxa of interest. Note that the significance threshold for co-
enrichment was set to the 0.5th percentile of all scores, so that
some of the seemingly lowest significances don’t pass the
threshold.

Of the Bacteroidetes, Bacteroides is the genus with the second
most enriched nodes, has a SAFE enriched score of 256, and is
enriched in cluster one (Figure 2B). Looking at its heat map, it
also becomes apparent that it is enriched in the junction of the
two large clusters (Figure 5A). Despite the co-enrichment
observable in these figures, no co-enrichment passes the
significance threshold. Figures 2B,5B show that the genus
Prevotella, which has one of the highest numbers of enriched
nodes despite a relatively low SAFE enriched score of 99, is highly
enriched exclusively in cluster 3, while it is abundant across the
network. Although the heat map indicates co-enrichment of this
genus with many variables such as China, Canada, or the US, they
don’t pass the significance threshold. The genus with the most
enriched nodes, Paludibacater, is the third most enriched taxon in
the dataset, with a SAFE enriched score of 273. It is mainly
enriched in the lower half of cluster 2 (Figures 2B,5C). Further, it
is significantly co-enriched with the countries USA and Italy, as
well as obese BMI, and Lachnoclostridium. Alistipes is exclusively
enriched in the top left part of cluster 1 (Figure 6A). It is
significantly co-enriched with Canada and normal BMI, which
notably also co-enriched with each other.

The two genera with the most enriched nodes -
Lachnoclostridium (SAFE enriched score 295) and
Ruminiclostridium (284) - are both members of the
Clostridiales order in the Firmicutes phylum and enriched
predominantly in cluster 2 (Figures 6B,C), Ruminiclostridium
particularly in the top half. Both are significantly co-enriched
with the United States, United Kingdom, and Italy,
Ruminiclostridium is further significantly co-enriched with
host age. They are also both significantly co-enriched with
Faecalibacterium prausnitzii and each other. Finally, the sparse
and disconnected nodes in the top left of the network are most
enriched by Blautia (SAFE enriched score 153) and
Faecalibacterium prausnitzii (SAFE enriched score 223).

TABLE 1 | Demographic Data.

Brazil Canada China Denmark France Germany Italy New Zealand Spain Tanzania UK USA Total

Age
Mean 30.1 25.9 43.3 55.4 62.0 38.1 39.3 36.9 40.9 36.1 51.3 41.7 40.0
SD 5.0 5.1 12.4 8.1 10.5 8.3 13.6 12.6 14.5 13.3 13.2 16.7 16.9

Sex
Female 18 659 81 73 249 0 26 82 31 8 122 847 2196
Male 2 610 90 34 216 70 14 49 16 14 149 965 2229
Missing 0 0 0 0 0 0 0 0 0 0 2 10 12

BMI
Underweight 0 0 8 0 4 0 1 0 0 0 8 38 59
Normal 15 973 33 1 228 29 26 101 2 0 180 1059 2647
Overweight 4 296 32 0 182 29 2 30 0 0 69 495 1139
Obese 1 0 0 0 38 12 0 0 0 0 16 95 162
Missing 0 0 98 106 13 0 11 0 45 22 0 135 430

Total 20 1269 171 107 465 70 40 131 47 22 273 1822 4437
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Blautia is significantly co-enriched with New Zealand and
Ruminococcus, while F. prausnitzii is significantly enriched
with the UK and host age. Additionally, France, enriched
across this sparse area, is significantly co-enriched with
Eubacterium, Ruminococcus, as well as Dorea – a genus also
significantly co-enriched with New Zealand.

DISCUSSION

Using TDA, we highlight novel differences and similarities of the
gut microbiome across 12 countries. The TDA approach
demonstrates the overlap between countries, a finding not
possible with conventional approaches. We found distinct
distributions of the countries across the TDA network that,
through co-enrichment analysis, corresponded to the
distribution of specific driver microbial genera, namely
Paludibacter, Bacteroides, Prevotella, and Alistipes of the
phylum Bacteroidetes, as well as Lachnoclostridium and
Ruminiclostridium, as well as Blautia, Faecalibacterium
prausnitzii, Dorea, Eubacterium, and Ruminococcus of the
Firmicutes phylum. This highlights the potential utility of
TDA as a complementary tool in microbiome research, and
particularly of the library tmap as a helpful tool for
implementing TDA in the microbiome space.

Geographical Co-enrichment of Taxa
Broadly, TDA shows the similarities between the countries within
each cluster. For example, the first cluster (Cluster 1) shows the
shared features of the gut microbiome of Canada, China, Denmark,
and Spain. Likewise, several countries have shared features in cluster
2 (USA, UK, Italy, New Zealand, Germany, Brazil), and Cluster 3
(USA, China, Canada). Importantly, the distinct clusters are
associated with differences in the gut microbiome composition
between these regions. It is also notable that membership of the

cluster is not exclusive. For instance, the gut microbiome from
Canadian samples shares features with cluster 1 and cluster 3. In
contrast, the UK appears only in cluster 2. It is noteworthy that
countries in close geographical proximity such as the USA and
Canada, or France andGermany, seem to have important differences
in their microbiome composition, whereas countries that are
separated by thousands of miles, such as the UK and USA, share
many features, as evidence by their co-enrichment. Below, we
explore these differences in more detail with a focus on the
specific co-enriched taxa and potential underlying explanations
and confounds.

Bacteroidetes
One of the most enriched genera this study identified is
Bacteroides of the Bacteroidetes phylum. It was most enriched
at the junction of clusters 1 and 2 and visually co-enriched with
China, the USA, Denmark, and Brazil, although on individual
testing these did not reach significance. The genus contains many
pathogens and pathobionts and generally has a high virulence
potential, as well as the highest antibiotic resistance of microbial
genera (Wexler, 2007). It is further associated with diseases such
as Irritable Bowel Disease (IBD; Walters et al., 2014) or the gut
microbiome changes seen in ulcerative colitis carcinogenesis, as
shown in a recent mouse study (Wang et al., 2019). Additionally,
the genus Bacteroides is associated with obesity (Ppatil et al.,
2012), which corresponds to the co-enrichment of an obese BMI
score in cluster 1, which however was not statistically significant.
Increased Bacteroides is associated with a long-term high-fat diet,
specifically an omnivorous diet high in protein and animal fat
(Wu et al., 2011; Zimmer et al., 2012; Ferrocino et al., 2015;
Franco-De-Moraes et al., 2017). This diet is prevalent in high-
income countries such as the USA and Canada (Ritchie and
Roser, 2019), and becoming more common in middle-income
countries, such as China and Brazil, as average income rises (Fu
et al., 2012). Our results mirror the results of the tmap study by

FIGURE 2 | (A) Network stratification of the countries in the dataset, showing the enriched nodes. Note that Tanzania is not included here, as it did not have any
significantly enriched nodes. However, this does not necessarily imply the absence of an effect. (B) Network stratification of the taxa with the most enriched nodes.
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Liao et al. observed (2019), as they also associated the USA with a
Bacteroides enterotype. While this overlapping result may be
explained by the inclusion of data from the American Gut
Project (McDonald et al., 2018) in this study, the data here
shows more complex associations, owing to the increased
number of included countries in our study. Bacteroides has
also been specifically associated with an “industrialised” diet: a
study comparing children from the USA and Egypt associated the
American children with a Bacteroides enterotype, meaning a
microbiome profile dominated by Bacteroides (Shankar et al.,
2017). The Egyptian children on the other hand, who ate a
Mediterranean diet rich in plant-based foods and fibres, were
associated with the Prevotella enterotype.

Other studies find similar results for Prevotella: it has been
associated with a long-term diet high in carbohydrates (Wu et al.,
2011), and is particularly abundant in vegans (Franco-De-Moraes
et al., 2017). In this study, Prevotella is enriched in cluster 3 as the
main driver taxon. The cluster is disconnected from the other
clusters and highly enriched with samples from China, Canada,
and the USA, although the visually observed co-enrichment with
Prevotella does not reach significance. The influence of diet,
particularly vegan versus omnivorous, needs to be addressed

in future studies of population-level microbiome studies and
may have specific impacts on disease phenotypes.

Paludibacter is a fermentative genus that includes species
producing the SCFA propionate (Qiu et al., 2017). While there
is a lack of literature exploring this genus in humans, one study
has associated it with a high fibre diet as it consumes mostly
polysaccharides and was found to be abundant in children from
rural Burkina Faso (De Filippo et al., 2010). Its statistically
significant co-enrichment with the USA and Italy, as well as
with obese BMI, is thus surprising. However, it should be noted
that the abundance of Paludibacter is zero for the entirety of
cluster 1, implying that its high abundance and enrichment in
cluster 2 could be an artefact of the genera sampled in the
different studies.

Alistipes is another genus of the Bacteroidetes phylum, of the
Parabacteroides family, that was among the most highly enriched
taxa. Specifically, it was enriched in the top half of cluster 1, and
significantly co-enriched with Canada and normal BMI, which
also co-enrich with each other. This association is in line with
previous research finding an association between Alistipes and a
lower BMI (Aguirre et al., 2016; Lv et al., 2019). The association
with Canada on the other hand could be a sampling artefact, as

FIGURE 3 | (A) Heatmap of age: distribution of absolute value across the network on the left, enrichment on the right. (B) Network stratification of sex across the
network. (C) Network stratification of BMI across the network.
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Canada has a particularly high number of normal BMI samples
compared to other countries in this study. Further, 77% of the
Canadian sample used here are of normal BMI, while the Canadian
adult population has an obesity rate of 64% (Government of
Canada, 2017). Additionally, studies have found Alistipes to
have both beneficial, as well as detrimental effects on the host:
on the one hand, it has been found to attenuate colitis in mice
(Dziarski et al., 2016), but on the other hand, it has consistently
increased abundance in Parkinson’s Disease (PD) patients

(Barichella et al., 2016; Bedarf et al., 2017; Li C. et al., 2019).
This could be further explored by applying our approach to the gut
microbiome of populations with a differing prevalence of PD.

Firmicutes
Two of the top enriched taxa were Firmicutes of the order
Clostridiales: Lachnoclostridium and Ruminiclostridium. While
the phylum Firmicutes, and specifically the order Clostridiales, is
often associated with beneficial effects for the host, as it contains

FIGURE 4 | Enrichment heatmaps of three Bacteroidetes genera, absolute abundance across the network on the left, enrichment on the right. (A) Bacteroides.
(B) Prevotella. (C) Paludibacter.
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many SCFA producers (Morrison and Preston, 2016; Levy et al.,
2017), these two genera seem to fall out of this pattern.

Similar to the above Bacteroides, Lachnoclostridium has been
associated with the changes in gut microbiome found in the
carcinogenesis of ulcerative colitis in mice (Wang et al., 2019) -

but recovered to a normal abundance after probiotic treatment.
Additionally, a new Lachnoclostridium species has recently been
found to contain a specific genetic marker that is enriched in
people with colorectal adenoma, leading to it being suggested as a
non-invasive diagnostic marker of the disease (Liang et al., 2020).

FIGURE 5 | Enrichment heatmaps of one Bacteroidetes genus and two Firmicute genera, absolute abundance across the network on the left, enrichment on the
right. (A) Alistipes, of Bacteroidetes phylum. (B) Lachnoclostridium. (C) Ruminiclostridium.
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Ruminiclostridium is a medium-chain fatty acid (MCFA)
producer. MCFAs, such as Caproic acid (CA), are metabolites
that are less studied than SCFAs. There is evidence that MCFAs
antagonise the anti-inflammatory effects of SCFAs by enhancing
TH1 and TH17 cell differentiation in a CNS autoimmune model
(Haghikia et al., 2015). Additionally, CA was found to be
augmented in Multiple Sclerosis patients while SCFAs were
reduced, correlating with an immunological profile of an
increase in TH1 and TH17 and a decrease in Treg lymphocytes
(Saresella et al., 2020). Ruminiclostridia were also elevated in a
mouse model of dysbiosis – and intriguingly also increased in aged
mice (Liu et al., 2020). This is relevant as in this study,
Ruminiclostridium was significantly co-enriched with host age.

It thus seems that these two Firmicutes are both associated
with pro-inflammatory properties. These genera were highly
enriched in cluster 2 and specifically co-enriched significantly
with the USA and UK, suggesting an important role in those
countries’ microbiome profile that is distinct to that of other
countries. This is further supported by the significant co-
enrichment between the USA and UK, as well as between
Lachnoclostridium and Ruminiclostridium. This finding is
opposite to that of Liao and colleagues (2019) who found the
two countries to have distinct microbiome signatures,
specifically that only the UK but not the USA were co-
enriched with the family Ruminococcaceae, which contains
Ruminiclostridium.

FIGURE 6 | (A) Ranking of host metadata by their SAFE enriched score. (B) Co-enrichment significance values of host metadata and the most enriched taxa,
presented as a heatmap. The significance threshold was set at the 0.5th percentile threshold of all values.
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Finally, the sparse and disconnected collection of nodes in the
top left of the TDA network is highly enriched with France and
five different genera of the order Clostridiales: Blautia,
Faecalibacterium prausnitzii, Dorea, Eubacterium, and
Ruminococcus, the last three of which were statistically
significantly co-enriched with France. Some were also
associated with the geographically separated New Zealand. The
Clostridiales order has been identified as one of the main SCFA
producers in the human gut and indeed all of these genera have
been previously identified as butyrate producers (Venegas et al.,
2019). However, the fact that the nodes of this network area do
not cluster together complicates adequate interpretation of this
finding, warranting further investigation by future studies.

Limitations
This study has several limitations. Firstly, the microbiome data is
assumed to be representative of the country population, which may
not be the case if sampling bias is present. The importance of this is
highlighted in the unexpected co-enrichment between normal BMI
and Canada, which is likely an artefact of sampling. Similarly, other
countries such as Denmark, Spain, or Tanzania, are missing many
data points on BMI, limiting the conclusions that can be drawn
from BMI enrichment. Secondly, diet could not specifically be
controlled for, given the dataset is a composite of many studies
and diet was not collected for all samples. Similarly, the clear
separation of enrichment between cluster 1 and 2 for the most
highly enriched taxa might be an artefact of the way the data was
curated as not all countries sequenced exactly the same taxa.
However, this is unlikely to be a significant confounder, apart
from the Paludibacter enrichment, as the heatmaps show taxa can
be highly abundant but not highly enriched across the network.
Another potential limitation is using microbiome data at the genus
level. Each genus is composed of many species which in turn can be
made up of various strains, all having potentially different effects.
While not all strains constituting a genus are fully sequenced yet,
analysis at species-level could still aid inmaking interpretationmore
precise. As species-level data is also available from the GMrepo
database, this could be a future extension of the current study.

CONCLUSION

In summary, we find that TDA highlights novel insights into the
differences and similarities between the gut microbiome at a
population level, both between geographically separated

countries and within single countries. This underscores the
importance of accounting for factors such as geography or
regionally varying factors such as diet when conducting
microbiome studies. Further, the dimensionality preserving
TDA approach may yield more depth and a richer
understanding of the changes in the gut microbiome seen
across several diseases and clinical phenotypes that would not
be possible using conventional approaches. The python library
tmap seems to serve as a valuable vehicle for such analyses,
particularly due to the inclusion of co-enrichment analysis and
network visualisation. TDA may be particularly beneficial for
patient data, as current studies cannot account for non-linearity
which is often present in such data. This would, however, require
larger datasets on clinical phenotypes than are currently available
in curated datasets such as GMrepo (Wu et al., 2020) or MGnify
(Mitchell et al., 2020). Finally, there is the potential for TDA to be
integrated with machine learning approaches, a novel avenue of
research (Hensel et al., 2021). This may identify specific taxa for
interventional therapeutics, though there are significant barriers
to overcome before this may be feasible.
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