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Clinical studies report associations between cannabis use during adolescence and later onset of schizophrenia. We examined
the causal relationship between developmental cannabinoid administration and long-term behavioral and molecular alterations
in mice. Mice were administered either WIN 55,212-2 (WIN), a cannabinoid receptor 1 (CB1) agonist or vehicle (Veh) during
adolescence (postnatal day 30–35) or early adulthood (postnatal day 63–70). Behavioral testing was conducted after postnatal
day 120 followed by biochemical assays. Adolescent cannabinoid treatment (ACU) leads to deficits in prepulse inhibition and
fear conditioning in adulthood. Metabotropic glutamate receptors type 5 (mGluR5), a receptor critically involved in fear
conditioning and endocannabinoid (eCB) signaling, is significantly reduced in the ACU mouse hippocampus. Next, we examined
expression profiles of genes involved in eCB synthesis (diacylglycerol lipase (DGL)) and uptake (monoacylglycerol lipase (MGL)
and fatty acid amide hydrolase (FAAH)) in the experimental mice. We find evidence of increased MGL and FAAH in ACU mice,
reflecting increases in eCB uptake and degradation. These data suggest that administration of cannabinoids during adolescence
leads to a behavioral phenotype associated with a rodent model of schizophrenia, as indexed by alterations in sensorimotor
gating and hippocampal-dependent learning and memory deficits. Further, these deficits are associated with a reduction in
hippocampal mGluR5 and a sustained change in eCB turnover, suggesting reduced eCB signaling in the ACU hippocampus.
These data suggest that significant cannabis use during adolescence may be a contributory causal factor in the development of
certain features of schizophrenia and may offer mGluR5 as a potential therapeutic target.
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Introduction

Cannabis is the most commonly abused illicit drug in the
United States, with about 60% of the 2.4 million marijuana
initiates in 2010 being o18 years of age.1 Daily marijuana use
is now at a 30-year peak level among high-school seniors.2

This is of particular health concern given the large body of
literature that shows an association between adolescent
cannabis use and adult onset of psychosis.3–8

A recent systematic review of longitudinal studies of cannabis
use and subsequent psychotic outcomes reported a 40%
increased risk of psychotic outcome in individuals who had
ever used cannabis (pooled adjusted odds ratio¼ 1.41, 95%
confidence interval 1.20±1.65).9 The risk rose in a dose-
dependent fashion with greater cannabis exposure (odds
ratio¼ 2.09, 1.54±2.84). Schizophrenia did not develop days
or weeks after cannabis use but years later, suggesting that
cannabis use during a critical period of brain maturation may
lead to long-term effects. These human studies demonstrate
associations but do not demonstrate causality.
D9-Tetrahydrocannanol (D9-THC), the main psychoactive

constituent of Cannabis sativa, binds to cannabinoid recep-
tors in the brain. To date, two G-protein-coupled cannabinoid
receptors, cannabinoid receptor 1 (CB1) and CB2, have been
discovered. CB1 receptors are highly expressed in the brain,

particularly in the cortex, hippocampus and striatum. The
principal endogenous ligands for the CB receptors include the
endocannabinoids (eCBs) 2-AG (2–arachidonoylglycerol)
and anandamide (N-arachidonoylethanolamide, AEA), with
2-AG being predominant in the hippocampus.10–12 The key
synthetic enzyme for 2-AG is diacylglycerol lipase (DGL),
whereas several routes for AEA synthesis have been
described. Inactivation of these eCBs occur predominantly
through monoacylglycerol lipase (MGL) and fatty acid amide
hydrolase (FAAH) for 2-AG and AEA, respectively.13 In the
brain, eCBs are synthesized on demand in post-synaptic
neurons, released into the synapse where they activate
presynaptic CB1 receptors in a retrograde manner to inhibit
neurotransmitter release. In the rodent and human hippo-
campus, CB1 receptors are predominantly expressed on
gamma-aminobutyric acid (GABA) terminals,14–16 implicating
a role in GABA neurotransmission. eCBs are key activity-
dependent molecules in the regulation of synaptic transmis-
sion in the brain and are involved in numerous neural
processes, including memory and cognition.

Previous studies show that D9-tetrahydrocannabinol
(D9-THC) or CB1 receptor agonists administered prenatally

or peri-pubertally leads to behavioral deficits in rodents,17–22

suggesting that adolescence may be a developmental period
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during which the brain is susceptible to the effects of
exogenous cannabinoids. In addition, human post-mortem
studies have identified alterations in the eCB system in
schizophrenia.23–26 We conducted a series of experiments in
mice to (i) examine the cause–effect relationship between
adolescent cannabinoid treatment (ACU) and development of
schizophrenia-like behaviors and (ii) to determine whether
exposure to exogenous cannabinoids during adolescence
has a lasting impact on metabotropic glutamate receptors
type 5 (mGluR5) and CB1 receptor expression, genes
critically involved in eCB signaling.

Methods

Behavioral experiments. C57BL6 mice were obtained from
Jackson Laboratories, (Bar Harbor, ME), housed on a 12:
12-h light–dark cycle in a temperature- and humidity-
controlled environment with ad libitum access to food and
water. Mice were administered either a CB1 agonist (WIN
55,212-2, 2 mg kg� 1) or vehicle (n¼ 10 per group) for 3–5 or
10 consecutive days by intraperitoneal injection. Injections
were administered to mice starting on either postnatal day 30
or 63 to reflect adolescence and adulthood, respectively.
After drug administration, the animals were left undisturbed
until postnatal day 120 at which time they underwent
behavioral testing. Behavioral tests included locomotor
activity, prepulse inhibition (PPI), social interaction and fear
conditioning in that order (Figure 1). Two weeks after
behavioral tests were completed, the mice were killed, brains
immediately removed, hippocampus dissected, snap frozen
and processed for immunoblotting studies. All experimental
procedures were approved by the Institutional Animal Care
and Use Committee of the UT Southwestern Medical Center
and are in accordance with the National Institutes of Health
policy on the care and use of laboratory animals.

Fear conditioning. Fear conditioning was measured in
boxes equipped with a metal grid floor connected to a
scrambled shock generator (Med Associates, St Albans, VT).
For training, mice were individually placed in the chamber.
After 2 min, the mice received two tone-shock pairings (30 s
white noise, 95 dB tone co-terminated with a 2 s, 0.5 mA foot
shock, 1 min inter-trial interval). The following day, memory of
the context was measured by placing the mice into the same
chambers and freezing was measured every 5 s for 5 min.
Forty-eight hours after training, memory for the white noise
cue was measured by placing the mice in a box with altered
floors and walls, different lighting and a vanilla smell.
Freezing was measured every 4–5 s for 3 min, then the
noise cue was turned on for an additional 3 min and freezing
was measured every 5 s.

Baseline startle and PPI. Startle was measured using a San
Diego Instruments SR-Lab Startle Response System (San
Diego, CA). Mice were placed into the Plexiglas holders and
allowed to acclimate to the chamber and background white
noise (70 dB) for 5 min. After the acclimation period, startle
stimuli (120 dB, 40 ms, white noise) were presented with
an average interstimulus interval of 20 s (range 13–27 s).
The maximum startle amplitude was measured. The Plexiglas

holders were wiped and allowed to dry between mice. Startle
was measured using a San Diego Instruments SR-Lab Startle
Response System (San Diego, CA). Mice were placed into the
Plexiglas holders and allowed to acclimate to the chamber and
background white noise (70 dB) for 5 min. After the acclimation
period, six startle stimuli (120 dB, 40 ms, white noise) were
presented with an average interstimulus interval of 15 s (range
7–23 s, these data were not used to calculate PPI), followed by
40-startle stimuli preceded by a prepulse stimulus (20 ms
prepulse preceding the 120-dB stimulus by 100 ms). The
prepulse intensities were 0, 4, 8 or 16 dB above the
background noise and were presented in a pseudorandom
order. The Plexiglas holders were wiped and allowed to dry
between mice.

Locomotor activity. Mice were placed individually into a
clean, plastic mouse cage (18 cm� 28 cm) with minimal
bedding. Each cage was placed into a dark Plexiglas box.
Movement was monitored by five photobeams in one
dimension (Photobeam Activity System, San Diego Instru-
ments, San Diego, CA) for 2 h, with the number of beam
breaks recorded every 5 min. Movement was characterized
in three ways: repetitive beam breaks of a single beam is
classified as stereotypy, consecutive beam breaks of X2
beams is classified as ambulatory movements and total
beam breaks during each 5-min interval.

Social interaction. A mouse was placed in the center of a
novel open field environment (44 cm� 44 cm, walls 30 cm
high) in a dimly lit room and allowed to explore for 5 min. A
small plastic chamber (the ‘interaction box’, 8.5 cm� 4.5 cm)
was placed along one wall of the arena. After 5 min, the test
mouse was removed and a novel, unfamiliar mouse was
placed into the interaction box. Small holes in the interaction
box allow the mice to see, hear and smell each other. The
test mouse was returned to the center of the open field
environment and allowed to explore for another 5 min. The
test mouse was monitored from above by a video camera
connected to a computer running video-tracking software
(Ethovision 3.0, Noldus, Leesburg, VA). The time the test
mouse spent in the area immediately adjacent (within 8 cm)
to the interaction chamber was recorded as the interaction
time. Total activity within the arena was also measured.

Immunoblotting experiments. Bilateral hippocampi from
each mouse were pulverized on dry ice and homogenized
in buffer (1� phosphate-buffered saline containing 1%
sodium dodecyl sulfate, 1 mM phenylmethanesulfonylfluoride,
20 mg ml� 1 leupeptin, 10 mg ml� 1 pepstatinA, 2 mg ml� 1

aprotinin). In all, 20 mg protein per sample was loaded in
duplicate on a 10% polyacrylamide gel, transferred to
nitrocellulose membrane, blocked for 30 min at room
temperature (5% non-fat dry milk, 0.1% Tween20, 50 mM

Tris-buffered saline; TBS, pH7.5) and then incubated
overnight at 4 1C with mGluR5 (1:1000), CB1 (1:1000),
MGL (1:1000), FAAH (1: 1000), DGL (1:500) or norbin
(1:350). After washing, blots were incubated with respective
secondary antibody for 30 min. b-Tubulin or vcp (valosin-
containing protein) was used as a loading control. Immuno-
reactive proteins were detected using enhanced
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chemiluminescence (Amersham, NJ) using Fuji film (Light
Labs Company, Dusseldorf, Germany). Film-based images
of immunoblots were scanned and bands of interest
quantified using ImageQuant software (Amersham,UK) blind
to the treatment group. Antibodies were obtained commer-
cially: CB1 and mGluR5 (Abcam, Cambridge, MA), MGL
(Thermoscientific, Rockford, IL), FAAH, DGL and norbin
(Santa Cruz Biotechnology, Santa Cruz, CA).

Statistical analysis. For behavioral data, two-way analyses
of variance were used to examine significant main effects of
age (adolescent or adult), drug (WIN 55,212-2 or vehicle)
and age� drug interactions. Significant findings were further
analyzed using post hoc t tests. Immunoblotting data were
quantified and analyzed by unpaired t-tests for each gene
target. Pearson’s Product Moment correlations were con-
ducted to determine relationships between measured target

molecules and behavior. Values outside two s.d.s away from
the mean were considered outliers and not included in the
statistical analyses. All statistical analyses were conducted
using Statistica software (StatSoft Inc., Tulsa, OK, USA).
Significance was taken as Po0.05 for all experiments.

Results

ACU leads to long-lasting behavioral deficits. Mice
treated with CB1 agonist during adolescence show signifi-
cant long-lasting deficits in sensorimotor gating and hippo-
campal-dependent contextual learning in adulthood. These
deficits were not observed in mice treated with the CB1
agonist during adulthood.

PPI: Mice treated with WIN 55,212-2 during adolescence
display significant deficits in PPI. There is a significant
interaction of age (F¼ 12.37, df (1,36), P¼ 0.0012), no effect

ADOLESCENT CANNABINOID TREATMENT

ADULT CANNABINOID TREATMENT
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Figure 2 Adolescent cannabinoid treatment (ACU) leads to long-term behavioral deficits. Mice were administered WIN 55,212-2 (white bars) or vehicle (black bars) for 10
days during adolescence (a–d) or adulthood (e–h) and tested behaviorally as 4-month-old adults (n¼ 10 mice per group). (a, e) Prepulse inhibition: the startle response was
measured with prepulse intensities 0, 4, 8, or 16 dB above the background noise presented in a pseudorandom order. (b, f) Contextual and cued fear conditioning show
significant deficits in contextual but not cued freezing in ACU, but not adult CU, mice compared with control (CON) mice. (c, g) Locomotor activity: movement was monitored by
five photobeams in one dimension for 2 h. Data are expressed as the average number of beam breaks at each 5-min bin per 2-hour test. (d, h) Social interaction: time spent by
test mouse in the area immediately adjacent to the interaction chamber either with or without a novel, unfamiliar mouse. All data are presented as meansþ s.e.m. Asterisk
represents significant differences at Pp0.05.

Figure 1 Overview of experimental timeline. Mice were administered cannabinoid receptor 1 agonist (WIN 55,212-2) or vehicle for either 3–5 or 10 days starting at
postnatal day (PND) 30 or PND 63, tested behaviorally after PND 120 and killed 2 weeks later. Cond, conditioning; PPI, prepulse inhibition; soc, social.
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of drug (F¼ 0.44, df (1,36), P¼ 0.51) and a significant age�
drug interaction (F¼ 6.09, df (2,27), P¼ 0.018). Post hoc
analyses show that ACU mice show reduced PPI at prepulse
intensities 4 dB (t¼ 2.1, df 18, P¼ 0.049) and 8 dB (t¼ 2.2, df
18, P¼ 0.041) above background. Adult-CU mice, however,
do not show any significant change in PPI at any of the
prepulse intensities (all t between 0.6 and 1.6, all P 40.13)
(Figure 2a and 2e).

Fear conditioning: Mice treated with WIN 55,212-2 during
adolescence display significant deficits in contextual learning.
There is a significant interaction of age (F¼ 72, df (1,36),
Po0.0001), drug (F¼ 8.1, df (1,36), P¼ 0.007) and a
significant age� drug interaction (F¼ 8.1, df, p¼ 0.007).
Post hoc analyses show that ACU mice show reduced
freezing compared with controls (t¼ 2.85, df 18, P¼ 0.011).
Adult-CU mice, however, do not show any significant change
in the contextual fear conditioning (t¼ 0.27, df 18, p¼ 0.78),
Similarly, two-way analysis of variance conducted for cued
fear conditioning shows a significant interaction of age
(F¼ 57.3, df (1,36), Po0.001), drug (F¼ 5.4, df (1,36),
P¼ 0.03 ) and a significant age� drug interaction (F¼ 5.6,
df (1,36), P¼ 0.02). Post hoc analyses show that ACU mice
show reduced freezing compared with controls (t¼ 2.34, df
18, P¼ 0.031). Adult-CU mice, however, do not show any
significant change in cued fear conditioning (t¼ 1.22, df 18,
P¼ 0.24,). Mice treated with WIN 55,212-2 during adoles-
cence for a shorter duration between 3–5 days did not display
any fear-conditioning deficits in the contextual (t¼ 0.62, df 38,
P¼ 0.54) or cued paradigms (t¼ 0.83, df 38, P¼ 0.41)
(Figure 2b and 2f).

Social interaction: There were no significant differences in
interaction time between groups. There were no interactions
of age (F¼ 0.78, df (1,36), P¼ 0.38), drug (F¼ 0.22, P¼ 0.64)
or age� drug interaction (F¼ 0.80, df (1,36), P¼ 0.38)
(Figure 2d and 2h).

Locomotor activity: There were no significant differences in
total locomotor activity. There were no interactions of
age (F¼ 1.54, df (1,36), P¼ 0.22), drug (F¼ 1.14, df (1,36),
P¼ 0.29) or age� drug interaction (F¼ 0.002, df (1,36),
P¼ 0.96) (Figure 2c and 2g).

Molecular assays. mGluR5 is critically involved in fear
conditioning with mGluR5 knockout mice showing impair-
ments in acquisition of fear, deficits in the ability to extinguish
contextual fear and poor performance in novelty detec-
tion,27,28 all tasks that involve the hippocampus. We
measured mGluR5 protein expression in the hippocampus
of the ACU mice and found significant reductions in mGluR5
levels (t¼ 3.02, df 18, P¼ 0.007) (Figure 3). In addition,
mGluR5 receptor activation is one mechanism for activating
eCB synthesis and release, suggesting that eCB signaling
might be altered in ACU mice. We measured CB1, DGL
(synthetic enzyme for 2-AG), MGL (metabolic enzyme for 2-
AG) and FAAH (metabolic enzyme for AEA) protein levels in
the hippocampus of the experimental mice. We found
significant increases in both MGL (t¼ 4.2, df 13, P¼ 0.001)
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and FAAH (t¼ 2.8, df15, P¼ 0.014) but no changes in
CB1 (t¼ 0.17, df18, P¼ 0.86) or DGL (t¼ 0.56, df14,
P¼ 0.59) between groups. Lastly, we quantified norbin,
an endogenous mGluR5 ligand,29 which was not altered in
ACU mice (t¼ 0.35, df 16, P¼ 0.73).

Receptor-behavior correlations. Given the critical role for
mGluR5 in contextual fear conditioning, we examined
correlations between contextual freezing and mGluR5
protein levels. In ACU mice, we find strong significant
correlations (r¼ 0.66, P¼ 0.039) that are not seen in
vehicle-treated mice (r¼ 0.20, P¼ 0.58). There were no
correlations between freezing behavior and hippocampal
CB1 levels in ACU mice (r¼ 0.31, P¼ 0.39) or controls
(r¼ 0.35, P¼ 0.32) (Figure 4).

Discussion

We find that cannabinoid treatment leads to certain schizo-
phrenia-like behaviors in an age of exposure-dependent
manner, providing evidence supportive of the notion that
cannabis use during adolescence may have a contributory
causative role in schizophrenia. Mice treated with cannabi-
noids during adolescence exhibit sensorimotor-gating deficits
and impaired learning and memory in adulthood, physiological
functions known to be affected in schizophrenia. We also find
reduced expression of hippocampal mGluR5 receptors, levels
of which correlate with the learning and memory deficits in
ACU mice.

ACU-induced behavior. Cannabinoid treatment during
adolescence, but not adulthood, leads to disruptions
of PPI and contextual fear conditioning. PPI deficits are well
characterized in schizophrenia and reflect an inability to
‘gate’ sensory stimuli.30 Our findings are consistent with
previous studies showing a persistent reductions in PPI
following D9-THC or synthetic cannabinoid treatments during

adolescence.19,21 Contextual fear conditioning is known to be
dependent on the hippocampus. There is high density of
CB1 receptors in the hippocampus31 and direct injection of
cannabinoids into the hippocampus acutely impairs mem-
ory,32 possibly by desynchronizing hippocampal neuronal
assemblies.33 Microinjections of THC into the hippocampus,
but not other brain regions relevant to maze learning, impair
learning in radial arm maze.34 In addition, hippocampal
morphological changes are reported following chronic admin-
istration of cannabinoids.35,36 Thus, cannabinoids affect
hippocampal structure and function, a brain region repeat-
edly implicated in schizophrenia pathophysiology. Declara-
tive memory, critically dependent on the hippocampal,37–39 is
one of the most consistent impairments in memory in
schizophrenia.40–42 These deficits include impairments in
the flexible use of learned information,43–45 deficits in recall46

and contextual memory.47 Abnormal hippocampal activation
is observed while schizophrenia volunteers perform declara-
tive memory tasks.48–50 These deficits may be similar to the
hippocampal-dependent contextual fear-conditioning deficits
induced by ACU in our mouse model. Previous studies have
reported deficits in object recognition and spatial learning in
cannabinoid-treated rats,19,32,51–54 supporting the idea that
ACU leads to hippocampal deficits.55,56

ACU-induced molecular changes. The ACU-induced
reductions in mGluR5 are of particular interest. mGluR5
knockout mice show reduced hippocampal long-term poten-
tiation associated with deficits in PPI that can be reversed by
chronic clozapine treatment.57 Administration of mGluR5
antagonists (MPEP (2-Methyl-6-(phenylethynyl)-pyridine),
MTEP (3-((2-methyl-4-thiazolyl)ethynyl)pyridine)) augments
psychotomimetic effects of NMDA (N-methyl-D-aspartate)
receptor antagonists58 while mGluR5 agonists and positive
allosteric modulators attenuate these effects.59,60 Modulators
of mGluR5 are being developed as novel treatments for
schizophrenia.61 Further, mGluR5 is critically involved in fear

Figure 5 Model of hippocampal deficits induced by adolescent cannabinoid administration. Panel (a) shows a control endocannabinoid (eCB) synapse and panel (b)
shows adolescent cannabinoid treatment (ACU)-induced changes in the adult. Adult mice treated with cannabinoids during adolescence express significantly lower levels of
mGluR5, known to stimulate eCB synthesis. This is associated with an upregulation of monoacylglycerol lipase (MGL) and fatty acid amide hydrolase (FAAH), enzymes
associated with eCB degradation. The net effect is lower eCB production and increased degradation, which would lower eCB levels and reduce cannabinoid receptor 1 (CB1)
activation. As CB1 activation inhibits gamma-aminobutyric acid (GABA) release, lower CB1 activation would be expected to lead to greater GABA release in the ACU
hippocampus. AEA, N-arachidonoylethanolamide, 2-AG, 2–arachidonoylglycerol; DAG, diacyl glycerol; DGL, diacylglycerol lipase.
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conditioning,27 with mGluR5 knockout mice showing impair-
ments in acquisition of fear and deficits in the ability to
extinguish contextual fear and performing poorly on detecting
novelty.28 This is consistent with our data showing reduced
mGLuR5 in the ACU hippocampus.

Next, we examined expression of eCB genes. The rationale
for this was twofold. Firstly, modulation of the eCB system
by exogenous cannabinoids could impact the trajectory of
the developing eCB system. Secondly, we found reduced
mGluR5, the activation of which is known to mobilize eCBs.
We find that the enzymes involved in eCB inactivation, MGL
and FAAH are significantly increased in the ACU hippocam-
pus. This observation, together with reduced mGluR5,
suggests that there is reduced eCB synthesis and greater
eCB degradation. Both 2-AG and AEA are present in high
concentrations during adolescence62 in the rodent brain, and
treatment with THC during adolescence acutely increases 2-
AG concentrations.62 It is possible that chronic administration
of exogenous cannabinoids alters the dynamics of the eCB
system in an attempt to maintain normal eCB signaling. This
could be in the form of reducing synthesis of eCB, increasing
degradation or reduction in CB1 receptor expression. We find
evidence of reduced synthesis and increased breakdown of
eCB but did not find any long-term change in CB1 receptor
expression. This is, however, consistent with a previous
rodent studies that quantified CB1 expression following
adolescent THC treatment22 but differs from other studies.63

Another study reports acute but transient reductions in CB1
expression following chronic administration of the synthetic
cannabinoid agonist, CP-55940, during adolescence.64 A
similar pattern of CB1 transient downregulation is seen in
human PET (positron emission tomography) imaging studies
of the CB1 receptor in chronic cannabis, but, with abstinence,
CB1 receptor density returned to normal levels.65 It has also
been proposed that adolescent CB1 receptors contribute to
learning impairments in ACU mice by virtue of their functional
properties.66 Adolescent CB1 receptors are less functionally
active during adolescence, desensitize and develop tolerance
to THC more slowly than the adult rodent which may be one
reason that adolescent rodents find D9-THC less aversive
compared with adults.53 This delay in CB1 homeostatic
adaptation, not CB1 density, has been postulated to con-
tribute to the long-term cognitive deficits in ACU mice.66 It is
also possible that long-term ACU-induced gene expression
changes are mediated via epigenetic mechanisms. Drugs of
abuse can alter specific gene programs by altering chromatin
structure on specific gene promoters,67 and histone-asso-
ciated heterochromatin structural changes are known to occur
in hippocampal long-term potentiation and memory forma-
tion.68 Our data suggests that ACU leads to persistent
changes in eCB system in the hippocampus that may impact
long-term plasticity69,70 and subsequent hippocampal-depen-
dent learning and memory as seen in schizophrenia.

Model of ACU-induced hippocampal deficits: relevance
to schizophrenia. CB1Rs are almost exclusively expressed
on GABA-containing interneurons,16,71 but may also exist on
glutamate terminals.72–74 Cholecystokinin-containing axon
terminals contain high levels of CB1 receptors in rodents14,71

and humans23 and are more sensitive to the effects of CB1

receptor agonists than pyramidal cell axon terminals.73 The
data we present suggests that ACU-induced schizophrenia-
like behaviors are associated with a reduction in eCB
signaling, which would be expected to increase GABA
release (Figure 5). There are several reports of reductions
in GAD67, the synthetic enzyme for GABA, in the prefrontal
cortex75 and hippocampus76 in schizophrenia, interpreted as
reductions in GABA neurotransmission in schizophrenia. On
the other hand, a recent human magnetic resonance spectro-
scopy (MRS) study finds increases in GABA in the medial
prefrontal cortex of unmedicated schizophrenia volunteers.77

This MRS study is consistent with our model (Figure 5)
showing that ACU leads to a long-term reduction in eCB
signaling that is predicted to enhance GABA release. One
possible explanation for differences in GABA levels in
schizophrenia could be explained by the fact that schizo-
phrenia is a heterogeneous illness, and individuals with
schizophrenia who have significant premorbid adolescent
cannabis use may have a discrete pathophysiology. In fact,
individuals with schizophrenia and a history of adolescent
cannabis use exhibit a clinically distinct profile with earlier onset
of illness,78–82 more severe positive symptoms80,83,84 and
discrete cognitive deficits85–94 compared with affected indivi-
duals without a cannabis use history. These data may suggest
that individuals with schizophrenia and significant history of
adolescent cannabis use may have a distinct underlying
neurobiology associated with differential clinical profile.

Limitations of the study. There are several considerations
to take into account. One is that we treated mice the commonly
used synthetic CB1 agonist, WIN 55,212-2. This compound is a
full agonist at the CB1 receptor, while D9-THC is a partial
agonist at CB1, raising the possibility that the two compounds
might not have identical effects. Secondly, molecular assays
were conducted on mice that had behavioral testing 2 weeks
before being killed. It is possible that the behavioral testing
could influence expression levels of the proteins examined.
Thirdly, there are some discrepancies between studies on
behaviors induced by adolescent cannabinoids/D9-THC treat-
ment. This might reflect experimental design differences, such
as age at treatment, duration of treatment or drug doses used,
which might be of particularly importance in terms of the
magnitude and duration of receptor desensitization.

Summary. In summary, we report that the adolescent use of
cannabinoids has long-term impact on the brain and induces
schizophrenia-like behaviors, including hippocampal learning
and memory deficits. Adult administration of cannabinoids
did not have lasting effects. We also demonstrate that ACU
induces a long-term reorganization of the eCB system and a
reduction in mGluR5 that correlates with ACU-induced
hippocampal deficits. These data may add to the literature
suggesting candidacy of mGluR5 as a therapeutic target for
schizophrenia, perhaps specifically for those individuals with
a history of significant adolescent cannabis use.
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