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Abstract

As larval cannibalism is common under intensive rearing conditions, leg regeneration can

help ladybugs adapt to the competitive environment, but whether the leg regeneration leads

to side effects on development remains unclear. To analyze the potentially developmental

cost of leg regeneration, the developmental period and weight of leg-regenerated Coccinella

septempunctata were studied in the laboratory. The results showed that, when the time

intervals between the emergency of 4th-instar larva and leg amputation increased, the

developmental period of leg-regenerated 4th-instar larvae was gradually prolonged. Signifi-

cantly developmental delay were also examined at prepupal and pupal stages, and various

timings of leg amputation affected the periods of leg-regenerated prepupae/pupae similarly.

After the leg was amputated at different larval instars, the developmental delay only

occurred at the larval instar when the leg was amputated, whereas other larval instars failed

to be extended, and the developmental periods of leg-regenerated prepupae/pupae were

affected similarly by the instars of leg amputation. Developmental delays possibly resulted

in more consumption by leg-regenerated larvae, and then weight gains at prepupal/pupal

stages, but different larval instars of leg amputation affected the weight gain similarly. Both

the developmental delay (at 4th-instar larval, prepupal and pupal stages) and weight gain

(at pupal and adult stages) in complete/bilateral amputation were longer or greater than

those in half/unilateral amputation. However, the thoracic locations of leg amputation

impacted the developmental delay and weight gain similarly. Our study indicates that

although leg regeneration triggers the developmental cost decreasing the competitive supe-

riority or agility, C. septempunctata larvae still choose to completely regenerate the leg to

adapt to complex environments. Thus, in order to remain competitive at adult stages, leg-

impaired larvae may make an investment tradeoff between leg regeneration and develop-

mental cost.
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Introduction

Regeneration is a process of regrowing or renovating injured tissues/cells in organisms [1,2],

and the in-depth study of regeneration may contribute to technical improvements in repairing

damaged human organs [3]. Epimorphosis observed in both vertebrate and invertebrate is the

tissue reestablishment of lost parts via cell multiplication [4,5]. Rebuilding impaired append-

ages is common across many taxonomic groups such as malacostracan crustaceans [6] and

insects [7,8], contributing to researches in various respects [9] containing genetic, cellular, tis-

sue, organic and organismal mechanisms. Leg regeneration in insects has been studied in at

least 36 genera of 11 orders, including Blattaria, Periplaneta americana [10], Leucophaea
maderae [11], Eupolyphaga sinensis Walker [12], Phasmida, Sinophasma spp. [13], Orthoptera,

Acheta domestica [14], Lepidoptera, Galleria mellonella [15], Odonata, Ischnura cervula [16],

Dictyoptera, Blattella germanica [17], Triatominae, Rhodnius prolixus [18], Heteroptera, Onco-
peltus fasciatus [19], Coleoptera [20,21,22], Tribolium castaneum [23]. Numerous studies asso-

ciated with regeneration are also reported in hemimetabolous insects such as cockroaches

[24,25] and crickets [26,27]. Leg regeneration helps insects adapt to competitive environments,

but also causes developmental costs.

Different forms of organ/tissue damage cause a systemic reaction of insects, and thus

extend developmental periods. Mini-incisions to the integument of Galleria extend the larval

duration by nearly a day [28], and leg amputations also lead to developmental delays of Blat-

tella and Periplaneta [29,30,31,32]. The regeneration of injured legs influences the molt cycle

of insects, resulting in the molting delay [33,34,35,36,37,38,39,40,41,42,43]. Many insects have

a capability to heal impaired legs through localized cell proliferation [44]. Insulin-like peptides

secreted by impaired imaginal tissues of Drosophila act as a signal inhibiting ecdysteroid pro-

duction [45,46,47,48,49,50,51], causing developmental delays [52,53,54]. The development

may be suspended until the injured cells/tissues are regrown and then intact morphologies

appear [55,56]. Moreover, the pupal stage is also affected by the damage, larval Drosophila

injured in 48–84 hours delays the pupariation [57,58]. Ecdysteroids can control the period of

developmental transitions including larval-larval, larval-pupal and pupal-adult molts

[59,60,61].

The degree of developmental delay depends on two potential factors: the amount of

impaired tissue/cell and the developmental stage when damage occurs [62,63,64,65,66].

Besides delays at larval stages, the pupariation delay is also positively correlated with the

amount of injured larval tissues/cells [67,68]. Similarly, after fragments of wing imaginal discs

are implanted into Ephestia larvae, the fragments regenerate completely, leading to puparia-

tion delays [41]. Moreover, injures at different developmental timings have different effects

[56,60,61,62]. For example, imaginal disc fragments are transplanted into Ephestia at various

larval stages, triggering different degrees of developmental delay [42]. Developmental delays

make Harmonia axyridis invest more nutrient resources into regeneration, and increased con-

sumption results in weight gains [21].

Under intensive rearing conditions, losing a leg is common for coccinellid larvae due to

cannibalism. Although lost legs caused by cannibalism could be regenerated, the development

of ladybugs may be affected. Thus in the current study, the developmental cost of leg-regener-

ated Coccinella septempunctata was examined. Our goals in this study were to determine: 1)

whether the leg amputation at different timings of 4th-instar caused the developmental delay

of leg-regenerated ladybugs. 2) Whether the factors containing the instar, site, thoracic loca-

tion and amount of leg amputation influenced the developmental period and weight of leg-

regenerated ladybugs.
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Materials and methods

Insects

Ladybugs C. septempunctata were taken from our laboratory colony (Laboratory of Integrated

Pest Management, China Agricultural University, Beijing, China). Larvae were kept in plastic

containers (7 cm × 4.5 cm × 8 cm), reared with fresh bean aphids (Acyrthosiphon pisivorum)

under the condition of a constant temperature of 25 ± 1˚C, RH = 60–70% and a photoperiod

of 16: 8 (L: D) under the light intensity of 600 lux.

Effect of leg amputation at different timings of 4th-instar on the

developmental period of leg-regenerated ladybugs

To evaluate whether timings of leg amputation impacted development periods of leg-regener-

ated ladybugs, larvae at the 4th-instar rather than other instars were selected due to the longer

duration. Zero-, 0.5-, 1-, 1.5-, 2-, 2.5-, 3-, 3.5- or 4 days after the 4th-instar larva emerged, its

left-middle leg was amputated at the base of the tibia (half amputation), so each group con-

tained 9 treatments. After anesthetization, the larva was placed on a double-sided tape, and the

leg was amputated using a pair of micro-scissors. Then the leg-amputated larvae were held and

fed in the same conditions as mentioned above. The 4th-instar larval, prepupal and pupal peri-

ods were recorded. Emerging adults were tested by microscopy to determine whether the

amputated leg was regenerated again (the lost part reappeared). Moreover, ladybugs without

any treatments were regarded as control. Each treatment was replicated three times simulta-

neously, and each replication included 20 ladybugs (male: female = 1: 1).

Effects of instar, site, thoracic location and amount of leg amputation on

the developmental period and weight of leg-regenerated ladybugs

To analyze the factors influencing the developmental period and weight of leg-regenerated

ladybugs, 1) the left-middle leg of larvae in three instars (2nd-, 3rd- or 4th-instar) was ampu-

tated at the base of the tibia (since 1st-instar larvae exhibited high mortality rates after leg

amputation); 2) the left-middle leg of 4th-instar larvae was amputated at the base of the tibia

(half amputation) or coxa (complete amputation); 3) the leg of 4th-instar larvae was half

amputated at 3 thoracic locations (fore-, mid-, or hind leg); 4) the left-middle leg of 4th-instar

larvae was half amputated in different amounts (unilateral or bilateral amputation) (Fig 1).

Developmental periods of leg-regenerated larvae, prepupae and pupae were recorded, and the

leg-regenerated pupae and adults were weighted using analytical balance (BS124S, Sartorius,

Goettingen, Germany). Ladybugs without any treatments were regarded as control. Each treat-

ment contained 20 ladybugs (male: female = 1: 1) and was replicated for three times

simultaneously.

Statistical analysis

Descriptive statistics were given as the mean values and standard errors of the mean. Differ-

ences in developmental periods or weights between two treatments were examined using inde-

pendent t-tests. Other data were analyzed using one-way ANOVA with the post hoc Tukey’s

honest test of significance at the 5% level of statistical significance. All statistical analyses were

conducted using the SPSS 20.0 software (IBM, Armonk, NY).
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Results

Effect of leg amputation at different timings of 4th-instar on the

developmental period of leg-regenerated ladybugs

Developmental periods of leg-regenerated 4th-instar larvae were prolonged progressively

when the leg was amputated from day 0 to day 4, and almost all 4th-instar larval periods

of leg-regenerated ladybugs significantly longer than that of control (F9, 38 = 155.556,

P < 0.001; Fig 2A). Various timings of leg amputation affected developmental periods of

leg-regenerated prepupae/pupae similarly, but both leg-regenerated prepupae (F9, 20 =

2.895, P = 0.014; Fig 2B) and pupae (F9, 20 = 2.831, P = 0.025; Fig 2C) delayed development

significantly compared to normal individuals after the leg was amputated at the different

timings.

Fig 1. Complete amputation: The larval leg of C. septempunctata was amputated at the base of the coxa. Half amputation: the larval leg was amputated at the base of

the tibia. Unilateral amputation: one larval leg was amputated. Bilateral amputation: a pair of legs was amputation. Scale bars equal 1000 μm.

https://doi.org/10.1371/journal.pone.0210615.g001
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Effects of instar, site, thoracic location and amount of leg amputation on

the developmental period and weight of leg-regenerated ladybugs

Developmental period. After the leg was amputated at various larval instars, only the lar-

val instar when the leg was amputated was significantly extended. Compared to normal peri-

ods, developmental periods of leg-regenerated 2nd-, 3rd- and 4th-instar larvae were prolonged

significantly when the leg was amputated at the 2nd- (F3, 8 = 8.373, P = 0.008), 3rd- (F3, 8 =

16.265, P = 0.001) and 4th- (F3, 8 = 26.821, P< 0.001) instars, respectively. Moreover, the

developmental periods of leg-regenerated prepupa and pupa were impacted similarly by the

instars of leg amputation, and both of them were extended significantly compared to normal

periods (prepupa, F3, 8 = 7.357, P = 0.011; pupa, F3, 8 = 4.279, P = 0.044; Fig 3A).

Fig 2. Mean (± SE) developmental periods (d) of leg-regenerated ladybugs at various stages after the leg was amputated at different timings of 4th-instar. A.

Fourth instar larva; B. Prepupa; C. Pupa. Different letters indicate significant differences among the treatments (Tukey’s HSD, P< 0.05).

https://doi.org/10.1371/journal.pone.0210615.g002
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Developmental delays of leg-regenerated 4th-instar larvae (t4 = 3.551, P = 0.024), prepupae

(t4 = 6.283, P = 0.003) or pupae (t4 = 2.895, P = 0.044) in complete amputation were signifi-

cantly longer than those in half amputation (Fig 3B). However, the developmental periods at

4th-instar larval (F2, 6 = 0.102, P = 0.904), prepupal (F2, 6 = 0.082, P = 0.922) and pupal (F2, 6 =

0.048, P = 0.954) stages were affected similarly by thoracic locations of leg amputation, i.e., the

fore-, mid- or hind leg (Fig 3C). Both bilateral and unilateral amputations caused developmen-

tal delays of leg-regenerated ladybugs, and the 4th-instar larval (t4 = 3.077, P = 0.037), prepupal

(t4 = 3.202, P = 0.033) and pupal (t4 = 3.141, P = 0.035) periods in bilateral amputation were

significantly longer than those in unilateral amputation (Fig 3D).

Fig 3. Mean (± SE) developmental periods (d) of leg-regenerated ladybugs at 4th-instar larval, prepupal and pupal stages. A. Results in amputation at various larval

stages, i.e., the 2nd-, 3rd- or 4th instar, together with CK (normal developmental duration); B. Results in half and complete amputations; C. Results in amputations at

various thoracic locations (fore-, mid- or hind leg); D. Results in unilateral and bilateral amputations. Different letters indicate significant differences among the

treatments (Tukey’s HSD, P< 0.05). Asterisks indicate significant differences between two treatments (independent t-test, �P< 0.05; ��P< 0.01).

https://doi.org/10.1371/journal.pone.0210615.g003
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Weight. When the leg of ladybugs was amputated at various larval instars, the weights of

leg-regenerated pupae/adults were impacted similarly by the instars of leg amputation, and

both the leg-regenerated pupae (F3, 8 = 11.696, P = 0.003) and adults (F3, 8 = 9.774, P = 0.005)

gained weights significantly compared to normal individuals (Fig 4A). Weight gains of leg-

regenerated pupae (t4 = 4.26, P = 0.013) or adults (t4 = 2.939, P = 0.042) in complete amputa-

tion were significantly greater than those in half amputation (Fig 4B). Nevertheless, pupal (F2,

6 = 0.033, P = 0.967) or adult (F2, 6 = 0.025, P = 0.975) weights were affected similarly among

various thoracic locations of leg amputation (Fig 4C). Leg-regenerated pupae (t4 = 4.732,

P = 0.009) or adults (t4 = 2.808, P = 0.048) gained greater weights in bilateral amputation com-

pared to those in unilateral amputation (Fig 4D) (All data from figures are provided in S1

Table).

Fig 4. Mean (± SE) weights (mg) of leg-regenerated ladybugs at pupal and adult stages. A. Results in amputations at the 2nd-, 3rd- or 4th instar larval stage, together

with CK (normal weight); B. Results in half and complete amputations; C. Results in amputations at various thoracic locations (fore-, mid- or hind leg); D. Results in

unilateral and bilateral amputations. Different letters indicate significant differences among the treatments (Tukey’s HSD, P< 0.05). Asterisks indicate significant

differences between two treatments (independent t-test, �P< 0.05; ��P< 0.01).

https://doi.org/10.1371/journal.pone.0210615.g004
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Discussion

Developmental delay of leg-regenerated ladybugs

Some species such as crab and scolopendra shorten developmental periods during leg regener-

ation [12,69], whereas many species including Drosophila, Ephestia and Galleria delay devel-

opment after the leg was impaired [15,31,45,55,61,70]. Since larval cannibalism is frequent in

intensive rearing systems, regenerating lost legs is common for C. septempunctata to adapt to

the competitive environment, but in the meantime the normal development of this beneficial

species is impacted. Developmental delays of leg-regenerated ladybugs were observed when

the leg was amputated at various timings of 4th-instar, and developmental periods of leg-

regenerated 4th-instar larvae were gradually prolonged with increased intervals between the

emergence of 4th-instar larva and leg amputation, suggesting that development might be sus-

pended until the damaged leg was regrown [55,56], so the timing of leg amputation impacted

the degree of developmental delay [60,61]. It is also found that in Blattella germanica and Peri-
planeta americana, the leg amputation delayed the subsequent molt until wound healing and

complete regeneration of the leg [30,68]. Insulin-like peptides secreted by damaged tissues act

as a signal inhibiting ecdysteroid production, impacting normal larval-larval molts [51,52].

However, developmental delays were also tested at subsequently prepupal and pupal stages,

implying that ecdysteroid controlled not only larval-larval molts but also larval-pupal molts

[60,61].

Developmental period and weight of leg regenerated ladybugs are affected

by the instar, site and amount of leg amputation

When the leg was amputated at different larval instars, the obvious prolongation was only

detected at the larval instar when leg amputation occurred, whereas other larval instars were

not affected, indicating that the ecdysteroid might independently control molt cycle in each

larval instar, causing that the developmental delay in each larval instar was independently

impacted by leg amputation [71,72]. Furthermore, the degree of developmental delay at subse-

quently prepupal and pupal stages was affected similarly by larval instars of leg amputation.

The consumption ratio of leg-regenerated/normal larvae was 1.103 (Wu unpublished data), so

development delays might increase consumption by leg-regenerated larvae. Thus at a later

stage, the leg-regenerated pupae and adults also significantly gained weights after the leg was

amputated at different larval stages, further indicating extended time might be spent accumu-

lating resources for leg regeneration and growth [9]. But on the other hand, weight gains may

decrease the agility of ladybugs, damaging the competitive ability. Weight gains can be exam-

ined not only in insects, but also in other arthropods such as cellar spiders Holocnemus pluchei
[73] and American lobster Homarus americanus [74].

The degree of developmental delays depends on not only the developmental stage of leg

amputation, but also the amount of impaired tissues or cells [62,63,64]. In Periplaneta and

Blattella, the amputation of a second leg causes an extra delay after a single leg is amputated

[29,30,31,32,68]. Compared to half or unilateral amputation, more tissues are damaged in

complete or bilateral amputation, so more time is spent on leg regeneration. Thus, develop-

mental delays of leg-regenerated 4th-instar larvae, prepupae and pupae in complete/bilateral

amputation were longer than those in half/unilateral amputation. Moreover, the degree of the

developmental delays was impacted similarly among thoracic locations of leg amputation.

Besides leg-amputation treatment, X-irradiation, ethyl methanesulfonate treatment and elec-

tromagnetic field also support the notion that the extent of delay is positively correlated with

the amount of injured cells or tissues [46,60,61,65]. More damaged cells or tissues lead to
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longer developmental delays, causing more consumption. Thus, similar to developmental

delays, weight gains of leg-regenerated pupae and adults in complete/bilateral amputation

were greater than those in half/unilateral amputation.

Asymmetry of leg regeneration after bilateral amputation

After fore-, mid- or hind legs were bilaterally amputated, asymmetric phenotypes were

observed. Two leg-regenerated phenotypes were detected in both half and complete amputa-

tions: 1) partial regeneration, leg was regenerated, but some segments were not regenerated, or

were regenerated but were fused together (aqua marks of the leg segments highlighted), and

significantly shortened segments were mainly detected at the distal tibia and tarsus; 2) com-

plete regeneration, legs were regenerated with normal segments (red marks of the leg segments

highlighted) (Fig 5). In a somite, the nutrition supplying the regeneration of bilateral legs via

hemolymph was uneven [75], possibly leading to non-consistent sizes of regenerated legs.

Potential investment tradeoff between leg regeneration and developmental

cost

The leg regeneration triggered by cannibalism is common for coccinellid larvae in intensive

rearing systems, but the mechanism of developmental delay and weight gain caused by leg

regeneration remains unclear [76,77]. After leg amputation, the developmental cost of leg

regeneration may decrease the competitive superiority and predatory agility of coccinellid

Fig 5. Regeneration of fore-, mid- or hind legs of C. Septempunctata adults after the legs bilaterally amputated at 4th-instar larval stages. Phenotypes after half

amputation (A) and complete amputation (C) are shown. In the two columns on the right, B and D are color-level inversion images of the leg segments highlighted,

both partial regeneration (red mark) and complete regeneration (aqua mark) are shown. Each scale bar equals 500 μm.

https://doi.org/10.1371/journal.pone.0210615.g005
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larvae. What is worse, physical lesions may cause mutations during leg regeneration, disrupt-

ing cell multiplication and then triggering systematic delays [78,79]. Although developmental

costs of leg regeneration cause negative effects, C. septempunctata larvae still choose to regen-

erate the lost leg completely to adapt to competitive environments. After larval cannibalism,

leg-damaged ladybugs may tend to make an investment tradeoff between structural recovery

and developmental cost, and this investment selection is essential to remaining competitive at

the adult stage.
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69. Bulliére D, Bulliére F (1985) Regeneration. Comprehensive insect physiology, biochemistry and

pharmacology, pp. 371–424 In Kerkut GA, Gilbert LI. [eds.], Pergamon Press, Oxford, UK.

70. Villee CA (1946) Some effects of x-rays on development in Drosophila. J Exp Zool 101: 261–280.

http://dx.doi.org/10.1002/jez.1401010206 PMID: 21022220

71. Marks EP, Leopold RA (1970) Coackroach leg regeneration: Effects of ecdysterone in vitro. Science

167: 61–62. http://dx.doi.org/10.1126/science.167.3914.61 PMID: 5409478

72. O’farrell AF, Stock A, Morgan J (1956) Regeneration and the moulting cycle in Blattella germanica L. IV.

Single and repeated regeneration and metamorphosis. Aust J Biol Sci 6: 406–422. https://doi.org/10.

1071/BI9560406

73. Johnson SA, Jakob EM (1999) Leg autotomy in a spider hasminimal costs in competitive ability and

development. Anim Behav 57: 957–965. https://doi.org/10.1006/anbe.1998.1058 PMID: 10202103

74. Emmel VE (1907) Regeneration and the question of “symmetry in https://doi.org/10.1126/science.26.

655.83 PMID: 17743207 big claws of the lobster”. Science 26: 83–87. https://doi.org/10.1126/science.

26.655.83

Developmental cost of leg-regenerated Coccinella septempunctata

PLOS ONE | https://doi.org/10.1371/journal.pone.0210615 January 18, 2019 13 / 14

http://dx.doi.org/10.1016/0022-1910(93)90129-F
http://dx.doi.org/10.1016/0022-1910(93)90129-F
http://dx.doi.org/10.1126/science.96525
http://www.ncbi.nlm.nih.gov/pubmed/96525
http://dx.doi.org/10.1073/pnas.23.9.478
http://dx.doi.org/10.1073/pnas.23.9.478
http://www.ncbi.nlm.nih.gov/pubmed/16577798
http://dx.doi.org/10.1371/journal.pone.0049105
http://dx.doi.org/10.1371/journal.pone.0049105
http://www.ncbi.nlm.nih.gov/pubmed/23166607
http://dx.doi.org/10.1007/BF00848432
http://dx.doi.org/10.1007/BF00848432
http://www.ncbi.nlm.nih.gov/pubmed/28304775
http://dx.doi.org/10.2307/3570585
http://www.ncbi.nlm.nih.gov/pubmed/13379619
http://dx.doi.org/10.1016/j.cub.2010.01.038
http://www.ncbi.nlm.nih.gov/pubmed/20189388
http://dx.doi.org/10.1016/0022-1910(80)90010-4
http://dx.doi.org/10.1016/0022-1910(80)90010-4
http://dx.doi.org/10.1146/annurev-ento-120811-153608
http://dx.doi.org/10.1146/annurev-ento-120811-153608
http://www.ncbi.nlm.nih.gov/pubmed/23072462
https://doi.org/10.1093/icb/33.3.340
http://www.ncbi.nlm.nih.gov/pubmed/8167571
http://www.ncbi.nlm.nih.gov/pubmed/7430927
http://www.ncbi.nlm.nih.gov/pubmed/1295740
http://dx.doi.org/10.1146/annurev.pharmtox.39.1.295
http://www.ncbi.nlm.nih.gov/pubmed/10331086
http://dx.doi.org/10.1080/09553000600798849
http://dx.doi.org/10.1080/09553000600798849
http://www.ncbi.nlm.nih.gov/pubmed/16846978
http://dx.doi.org/10.1111/j.1096-3642.1898.tb01392.x
http://dx.doi.org/10.1111/j.1096-3642.1898.tb01392.x
http://dx.doi.org/10.1007/BF00857640
http://dx.doi.org/10.1002/jez.1401010206
http://www.ncbi.nlm.nih.gov/pubmed/21022220
http://dx.doi.org/10.1126/science.167.3914.61
http://www.ncbi.nlm.nih.gov/pubmed/5409478
https://doi.org/10.1071/BI9560406
https://doi.org/10.1071/BI9560406
https://doi.org/10.1006/anbe.1998.1058
http://www.ncbi.nlm.nih.gov/pubmed/10202103
https://doi.org/10.1126/science.26.655.83
https://doi.org/10.1126/science.26.655.83
http://www.ncbi.nlm.nih.gov/pubmed/17743207
https://doi.org/10.1126/science.26.655.83
https://doi.org/10.1126/science.26.655.83
https://doi.org/10.1371/journal.pone.0210615


75. Frasnelli EG, Vallortigara G, Rogers LJ (2012) Left-right asymmetries of behaviour and nervous system

in invetebrates. Neurosci Biobehav R 36: 1273–1291. https://doi.org/10.1016/j.neubiorev.2012.02.006

PMID: 22353424

76. Shearn A, Rice T, Garen A, Gehring W (1971) Imaginal disc abnormalities in lethal mutants of Drosoph-

ila. Proc Natl Acad Sci USA 68: 2594–2598. http://dx.doi.org/10.1073/pnas.68.10.2594 PMID:

5002822

77. Szabad J, Bryant PJ (1982) The mode of action of “discless” mutations in Drosophila melanogaster.

Dev Biol 93: 240–256. http://dx.doi.org/10.1016/0012-1606(82)90256-1 PMID: 6813163

78. Stevens ME, Bryant PJ (1986) Temperature-dependent expression of the apterous phenotype in Dro-

sophila melanogaster. Genetics 112: 217–228. PMID: 3079719

79. Shi W, Stampas A, Zapata C, Baker NE (2003) The pineapple eye gene is required for survival of Dro-

sophila imaginal disc cells. Genetics 165: 1869–1879. PMID: 14704172

Developmental cost of leg-regenerated Coccinella septempunctata

PLOS ONE | https://doi.org/10.1371/journal.pone.0210615 January 18, 2019 14 / 14

https://doi.org/10.1016/j.neubiorev.2012.02.006
http://www.ncbi.nlm.nih.gov/pubmed/22353424
http://dx.doi.org/10.1073/pnas.68.10.2594
http://www.ncbi.nlm.nih.gov/pubmed/5002822
http://dx.doi.org/10.1016/0012-1606(82)90256-1
http://www.ncbi.nlm.nih.gov/pubmed/6813163
http://www.ncbi.nlm.nih.gov/pubmed/3079719
http://www.ncbi.nlm.nih.gov/pubmed/14704172
https://doi.org/10.1371/journal.pone.0210615

