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ABSTRACT

Protein–nucleic acid interactions exhibit varying
degrees of specificity. Relatively high affinity,
sequence-specific interactions, can be studied with
structure determination, but lower affinity, non-
specific interactions are also of biological import-
ance. We report simulations that predict the popula-
tion of nucleic acid paths around protein surfaces,
and give binding constant differences for changes
in the protein scaffold. The method is applied to the
non-specific component of interactions between
eIF4Es and messenger RNAs that are bound tightly
at the cap site. Adding a fragment of eIF4G to the sys-
tem changes both the population of mRNA paths and
the protein–mRNA binding affinity, suggesting a
potential role for non-specific interactions in modu-
lating translational properties. Generally, the free
energy simulation technique could work in harness
with characterized tethering points to extend analysis
of nucleic acid conformation, and its modulation by
protein scaffolds.

INTRODUCTION

Non-specific interactions between protein and nucleic acid are
important determinants of biological function, e.g. in combin-
ing with specific interactions to form distorted binding geo-
metries (1) or facilitating reduced dimensionality searches for
binding sites (2). Major questions remain to be resolved con-
cerning packaging and unpackaging of nucleic acids in many
systems, including chromatin (3) and viruses (4). Structural
biology provides much information about specific protein–
nucleic acid complexes (5), including the ribosome (6), whilst
atomic-level molecular models can be used in relatively
short simulations (7). It has been apparent since the first struc-
ture determinations for nucleic acid binding proteins that sur-
face charge plays a significant role in binding. This property is
currently being used to aid the identification of DNA-binding

surfaces in proteins emerging from Structural Genomics
initiatives (8,9), and in studies of DNA wrapping paths
around proteins (10). Methods for computational analysis of
protein–nucleic acid interactions at a reduced level of com-
plexity are being introduced (11,12).

The mRNA cap-binding protein eIF4E has central roles in
several aspects of post-transcriptional gene expression (13). In
cap-dependent translation initiation, eIF4E binds the mRNA
cap before ribosome docking, in a larger complex that includes
eIF4G (14). Transport of mRNAs from the nucleus also make
use of the capped mRNA-binding potential of eIF4E (15). The
cap binds to a groove in eIF4E, an interaction which is modu-
lated by a variety of binding partners (16) that contact a region
on the opposite side of eIF4E to the cap site (17). The molecu-
lar mechanism of interaction between these binding sites is
not yet fully understood. Binding of a fragment of eIF4G
(393–490) triggers a coupled folding event with the eIF4E
N-terminus (18). There is no major structural change at the
cap site, although some chemical shift changes may relate to
modulation of binding affinity (19). Interaction between the
two sites can occur with cap in the absence of an mRNA body,
demonstrated for eIF4G fragments (19), and with a substantial
reduction in cap analogue binding upon eIF4E association
with a number of factors, including promyelocytic leukemia
protein (20). Interactions between mRNA and eIF4E have also
been studied in the absence of additional factors. Although
NMR measurements of eIF4E binding to capped trinucleotide
RNAs show no detectable contacts beyond the first nucleotide
following the cap structure (21), sequence alteration close to
the cap causes variation in affinity (22), presumably due to
non-specific protein–RNA interactions. Studies of eIF4E asso-
ciation with cap analogues of varying phosphate chain length,
with changes in ionic strength and with engineered protein
surface charge to mimic phosphorylation events (23), indicate
that electrostatic interactions are important in this system (24).
Brownian dynamics simulations have been used to interpret
the salt-dependence of cap-eIF4E binding (25).

We report a Monte Carlo simulation approach, using a type
of ‘phase switch’ algorithm (26), which allows prediction of
the free energy difference between two systems, as opposed to
the intractable problem of deriving free energy for a single
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system in isolation using Monte Carlo. The ‘phase switch’
method is used with a coarse-grained RNA model and either
free or eIF4G-bound eIF4E. The presence of the eIF4G frag-
ment is predicted to have a small, but significant effect (via
non-specific interactions) on capped mRNA-binding, accom-
panied by alteration of the preferred pathways of mRNA
in the simulations. We further investigate alteration of
surface charge for two modelled Schizosaccharomyces pombe
eIF4Es (27).

MATERIALS AND METHODS

In our calculation scheme, eIF4E protein and eIF4E com-
plexed to an eIF4G fragment (18) are modelled as fixed
units with impenetrable volumes. The eIF4E protein alone
was trimmed down to that part which is structured in the
absence of eIF4G (17). Each protein unit is surrounded by
a fixed electrostatic potential field, calculated with the Finite
Difference Poisson Boltzmann (FDPB) method (28). Ionisable
group charge was assigned at neutral pH with model com-
pound pKas (29), and 0.15 M ionic strength was used. The
mRNA chain is modelled as a chain of tangent hard spheres,
diameter s ¼ 7 s (i.e. nearest neighbour bond length fixed at
7 s), each monomer carrying a charge of q ¼ �1e, where e is
the proton charge. Non-bonded monomers interact via the
hard-core screened Yukawa potential, given by:

uðrÞ ¼
( 1 r < s

� q2s
4peeor

exp �k
r

s
�1

� �� �
r > s

with an inverse screening length k due to counterions that
matches the FDPB calculations of protein electrostatic poten-
tial, and dielectric constant e ¼ 78.4 for the solvent, with e0

the vacuum permittivity.
We have performed simulations for single free hard core

Yukawa chains to calculate the persistence length, lP, for
comparison with experimental results. We have measured
the mean end-to-end distance, Re, for these polymers, and
estimated the persistence length via the relationship expected
from the Worm-Like Chain model (30,31):

hR2
ei ¼ 2lPLð1 � lPð1 � expð � L=lPÞÞ=LÞ

where L is the contour length (end-to-end length at full exten-
sion) for the polymer. For chains at 311 K, this gives an
estimate for the persistence length of 3.1 nm. By comparison,
microscopy, single molecule stretching and spectroscopic
methods yield experimental results from <1 nm to around
10 nm, for single-stranded RNA and DNA (31–36). The
shorter persistence lengths mostly relate to single molecule
experiments, and the larger values to bulk measurements.

For our non-specific binding simulations, the model mRNA
chain, which is tethered to eIF4E at the cap site, moves within
the protein electrostatic potential, discretized on a 2 s grid.
Protein excluded volume is also recognized with a grid map.
Standard polymer Monte Carlo moves (37) (crankshaft, pivot
and CCB) are used to generate mRNA chain configurations.
In addition, every 1000 configurational move attempts a
switch move (26) is attempted. This swaps the protein unit
with which the mRNA chain is interacting, according to the

standard Metropolis Monte Carlo acceptance probability (38),
Pacc ¼ min[1,exp(�DE/kBT)], where DE is the change in
energy for this move. At the end of the simulation, the free
energy difference between the two systems can be estimated as
DGA!B ¼�kBT ln(nB/nA), where kB is the Boltzmann con-
stant, T is the temperature and nx is the number of sampled
configurations where the mRNA was attached to protein unit x.
Since the system is held at constant volume (infinite dilution),
the enthalpy difference between the two systems, DHA!B, can
be estimated as the difference in average interaction energy
for each system. This also allows access to the entropy dif-
ference between the two systems, DSA!B, since DGA!B ¼
DHA!B �TDSA!B. To avoid problems of metastability, simu-
lations are performed within a parallel tempering framework
(38), using ten simulation boxes distributed according to a
power law across a range in temperature (39). After an initial
equilibration run of 5 · 107 move attempts, data collection
runs are made over 108 move attempts, with data recorded
every 5 · 104 move attempts. During post-processing, a
smooth interpolation of data across the studied temperature
range is achieved using the multiple histogram method (40).
Over the course of each simulation, we record how many times
monomer centres lie within each potential map cell, which
allows us to build up a probability density map for mRNA
configuration.

RESULTS

Non-specific RNA–protein interactions in
the eIF4E/4G system

One end of RNA polymer is fixed to eIF4E in all simulations,
modelling cap binding (Figure 1). Monte Carlo sampling of
RNA polymer conformation is made for two related systems,
with a switch move allowing evaluation of the protein–RNA
binding energy difference, DG, between the two systems.
Figure 2A shows the calculated DG for mRNA-binding
upon addition of the eIF4G fragment (18), with variation in
RNA length and temperature. The binding differential satur-
ates as mRNA length is increased to 40 monomers, with a
value of 1.5 kJ/mol at 310 K. Although this represents a
relatively small impact on a binding equilibrium (a factor
of 	1.8), it is accompanied by a substantial change in RNA
paths brought about by eIF4G fragment binding to eIF4E

Figure 1. Simulation schematic. Modelled mRNA (yellow beads) moves with-
in the protein excluded volumes and electrostatic potential fields (red, blue) of
the eIF4E and eIF4E/eIF4G fragment systems. Switch moves test the energetics
of swapping between these systems.
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(Figure 2B). A relatively small free energy change coupled to
an observable re-distribution in mRNA paths is consistent with
a delicate balance of enthalpic and entropic components
(Figure 2A).

Differences between S.pombe eIF4E1 and eIF4E2
interactions with mRNA

Our analysis has been extended to include two eIF4E homo-
logues from S.pombe, for which we have previously made
structural models (41). In this case we use just that part of
eIF4E that is structured in the absence of eIF4G, and the
binding energy difference is now calculated between the
two S.pombe eIF4E isoforms. The binding differential is
again saturated at a length of 40 monomers, with binding
more favourable for eIF4E1 by about 5 kJ/mol at 300 K,
corresponding to a change in binding of around 7-fold
(Figure 3A). The extent to which enthalpic and entropic com-
ponents balance to give a small change in free energy is also

evident. Monomer density plots (Figure 3B) suggest that
mRNA occupies significantly different conformational space
in the two systems. These densities follow the positive protein
electrostatic potential, whether this be extended (eIF4E1) or
more concentrated in a surface patch (eIF4E2). The mRNA
model includes screened monomer–monomer interactions,
which generates a stiffness (calculated persistence length
of 3.1 nm for free mRNA) that probably contributes to
mRNA following elongated paths where these are available
(eIF4E1).

DISCUSSION

The alteration of surface charge mediated by phosphorylation
of eIF4E on S209 may play a role in the control of translation
initiation (23), and appears to be involved in regulation of
transformation and mRNA transport properties of eIF4E
(42). The scale of binding changes that are likely to underpin
these physiological effects can be assessed from in vitro

Figure 2. Binding of mRNA to eIF4E and eIF4E complexed to an eIF4G fragment. (A) Temperature-dependence of binding differential (DG4E/4G!4E,DH4E/4G!4E,
�TDS4E/4G!4E), with more favourable binding to eIF4E/4G complex denoted by positive DG values. Results (DG) are shown for variable polymer length. (B) RNA
monomer densities (green) around eIF4E and eIF4E/4G complexes, with electrostatic potential surfaces at �kBT/e (red) and kBT/e (blue). The ribbon
diagram is colour-coded according to eIF4E (cyan) and eIF4G fragment (orange), with a spacefilled cap analogue in all panels. This figure was drawn with Swiss
PDB-Viewer (46).
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measurements. Phosphorylation at S209 gives about a 2.5-fold
change for cap analogue binding and 5-fold for capped mRNA
(23). Charge mutation at S209 has not been simulated in the
current study since this is close to the cap site and would be a
less effective probe of non-specific interactions. However the
alteration of binding equilibria that we predict for capped
mRNA interactions, about 2-fold for eIF4G/eIF4E compared
to eIF4E and about 7-fold difference between S.pombe eIF4E1
and eIF4E2, are of the same order as those measured for S209
phosphorylation. We therefore suggest that modulation of pro-
tein surface charge could provide a physiologically relevant
mechanism for fine-tuning the mRNA-binding affinities of
eIF4E variants.

The model excludes several factors that play roles in eIF4E–
mRNA interactions, such as possible allosteric changes
associated with effector binding to eIF4E (18), additional

(sequence-specific) mRNA tethering interactions mediated by
some eIF4E-binding proteins (16,43,44), the extent
of secondary structure within the 50-untranslated region (50-
UTR) and RNA helicase activity associated with eIF4A, and
poly(A)-binding protein (13). With regard to RNA secondary
structure, it is possible that eIF4E surface charge could interact
differentially according to the density of RNA negative
charge. For example, the less linear concentration of positive
charge on S.pombe eIF4E2 relative to eIF4E1 may interact
preferentially with more compact/structured mRNA segments.
This would be consistent with the observation that the pres-
ence of eIF4E2 modifies the competence of S.pombe ribo-
somes to translate mRNAs with structured leaders (27). Our
calculations also suggest that mRNA binding affinity will vary
with changes of intracellular salt concentrations that may
result from externally applied salt stress (45).

Figure 3. Binding of mRNA to S.pombe eIF4E1/E2. (A) Temperature-dependence of binding differential, with DG4E2!4E1 plotted for variable polymer length.
Simulations have been performed up to high (non-physiological) temperatures to facilitate the parallel tempering algorithm in allowing configurations to escape
metastable ‘traps’. More favourable binding to S.pombe eIF4E1 is denoted by negative DG. (B) eIF4E surfaces with mRNA monomer density plots, as detailed in
Figure 2, with spacefilled cap analogue (green).
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Since we are examining the effects of non-specific mRNA–
protein interactions, the complexities of individual nucleotides
are replaced with a chain of identical, spherical monomers.
The internal (to the nucleotide) degrees of freedom ignored by
this model will be approximately the same in the systems
between which the free energy differences are being taken;
as such, they should make only a small contribution to the
measured binding differences. The switch algorithm used to
find the free energy differences is entirely separate from the
approximations made in the modelling process. In order for the
algorithm to function, it is necessary only that the switch move
is accepted often enough to give statistically significant sam-
pling of both systems. This type of algorithm has proven useful
in the field of chemical physics (26), and has other possible
applications in computational molecular biology. The simu-
lations reported here, and related work (12), add quantitative
prediction to qualitative arguments based solely on matching
of positively-charged protein regions with negatively-charged
phosphate backbone. The details of protein surface charge can
be incorporated with FDPB calculations, whilst the entropic
cost of restraining nucleic acid conformation is included with
polymer modelling. This technique is suitable for study of
other systems where a nucleic acid molecule is tethered to
a protein unit, such as mRNA decapping enzymes. The method
can also be extended, (with appropriate revision of nucleic
acid model), to duplex DNA-binding systems in which a
sequence-specific recognition site is flanked by regions that
can form non-sequence-specific contacts with protein. Incorp-
oration of duplex modelling will also allow estimation of the
role of nucleic acid secondary structure for interacting systems
such as eIF4E and mRNA. Our modelling suggests that a
degree of tuning may exist between charged surface shapes
of protein and nucleic acid. Bioinformatics analysis of the
database of complexes could go beyond positive/negative
charge recognition to study underlying patterning. These fur-
ther developments generally have the potential to enhance
computational analyses of proteins of unknown function, par-
ticularly when combined with searches for specific binding/
tethering sites.
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