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Abstract: Geldanamycin and the closely related herbimycins A, B, and C are benzoquinone-type
ansamycins with antitumoral activity. They are produced by Streptomyces hygroscopicus var. geldanus,
Streptomyces lydicus and Streptomyces autolyticus among other Streptomyces strains. Geldanamycins
interact with the Hsp-90 chaperone, a protein that has a key role in tumorigenesis of human cells.
Geldanamycin is a polyketide antibiotic and the polyketide synthase contain seven modules organized
in three geldanamycin synthases genes named gdmAI, gdmAII, and gdmAIII. The loading domain of
GdmI activates AHBA, and also related hydroxybenzoic acid derivatives, forming geldanamycin
analogues. Three regulatory genes, gdmRI, gdmRII, and gdmRIII were found associated with the
geldanamycin gene cluster in S. hygroscopicus strains. GdmRI and GdmRII are LAL-type (large
ATP binding regulators of the LuxR family) transcriptional regulators, while GdmRIII belongs to
the TetR-family. All three are positive regulators of geldanamycin biosynthesis and are strictly
required for expression of the geldanamycin polyketide synthases. In S. autolyticus the gdmRIII
regulates geldanamycin biosynthesis and also expression of genes in the elaiophylin gene cluster,
an unrelated macrodiolide antibiotic. The biosynthesis of geldanamycin is very sensitive to the
inorganic phosphate concentration in the medium. This regulation is exerted through the two
components system PhoR-PhoP. The phoRP genes of S. hygroscopicus are linked to phoU encoding
a transcriptional modulator. The phoP gene was deleted in S. hygroscopicus var geldanus and the
mutant was unable to grow in SPG medium unless supplemented with 5 mM phosphate. Also, the
S. hygroscopicus pstS gene involved in the high affinity phosphate transport was cloned, and PhoP
binding sequences (PHO boxes), were found upstream of phoU, phoRP, and pstS; the phoRP-phoU
sequences were confirmed by EMSA and nuclease footprinting protection assays. The PhoP binding
sequence consists of 11 nucleotide direct repeat units that are similar to those found in S. coelicolor
Streptomyces avermitilis and other Streptomyces species. The available genetic information provides
interesting tools for modification of the biosynthetic and regulatory mechanisms in order to increase
geldanamycin production and to obtain new geldanamycin analogues with better antitumor properties.

Keywords: geldanamycins; Streptomyces hygroscopicus; antitumorals; biosynthesis; gene cluster;
phosphate control

1. Introduction: Antitumor Activity of Geldanamycin and its Derivatives

Geldanamycin and the closely related herbimycins A, B, and C are benzoquinone-type
ansamycins [1] with antitumoral activity [2,3] (Figure 1A). These compounds are produced by
different strains of S. hygroscopicus, Streptomyces lydicus, and by Streptomyces autolyticus, and gene
clusters for geldanamycin have been found in other Streptomyces strains (Table 1). Both, geldanamycin
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and the herbimycins were discovered as weak antifungal and antibacterial antibiotics [4–6] but their
major interest is as potent antitumor agents due to their ability to interact with the Hsp-90 chaperone
complex in human cells [7,8]. The members of the Hsp-90 chaperone family play an important role in
the tumorigenesis process in humans. Both geldanamycin and the herbimycins have potent antitumor
activity at nanomolar concentration, particularly the former [9,10]. However, it was shown that the
natural compounds are hepatotoxic [11]. In the last decades, great interest has focused on the discovery
of new derivatives with lower toxicity by direct genetic modification of the known geldanamycin gene
cluster and investigation on new producer strains [3,12–14]. Structurally similar compounds, such as
17-amino-17-demethoxy-geldanamycin, were found in a knock out mutant of S. autolyticus CGMCC
0516 [15]. Two other chemical derivatives of geldanamycin, 17-allylamino-17-demethoxygeldanamycin,
and 17-(2-dimethylamino) ethylamino-17-demethoxy-geldanamycin have been tested in clinical
trials [16,17].
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Figure 1. Geldanamycin structure and biosynthesis pathway. (A) Structures of geldanamycin and
herbimycin. (B) Geldanamycin biosynthetic pathway. The enzymes involved in every step are indicated.

Table 1. Strains producers of geldanamycin.

Streptomyces Strains Reference

Streptomyces hygroscopicus var geldanus NRRL3602 [18]

Streptomyces hygroscopicus 17997 [19]

Streptomyces hygroscopicus sub. duamyceticus JCM 4427 [20]

Streptomyces hygroscopicus XM 201 [21]

Streptomyces autolyticus JX-47 [22]

Streptomyces autolyticus CGMCC 0516, [23]

Streptomyces cameroonensis sp. [24]

Streptomyces species containing geldanamycin biosynthesis genes identified bioinformatically

Streptomyces violaceusniger Tu 4113
Streptomyces sp. RTd22

Streptomyces lydicus strain 103
Streptomyces rapamycinicus NRRL 5491

Streptomyces iranensis
Streptomyces albus DSM 41398

Streptomyces bingchenggensis BCW-1

Cited in [23]
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2. Biosynthesis of Geldanamycins

Geldanamycin is a polyketide derived ansamycin [4] that is synthesized from precursors assembled
by polyketide synthases. In general, the geldanamycin biosynthetic process can be divided in three
large steps: (1) Biosynthesis of the precursor 3-amino-5-hydroxybenzoic acid (AHBA); (2) extension of
the starter unit with polyketide elongation units, and (3) post-polyketide modifications [19].

2.1. Origin and Biosynthesis of the AHBA Unit

All ansamycins derive from a seven carbon and one nitrogen atom (mC7N) AHBA starter unit,
that is elongated using malonyl-CoA or methylmalonyl-CoA units and finally form the ansamycin
ring through a lactam bond. The AHBA unit is synthesized from glucose by the amino shikimate
pathway which includes the three initial steps similar to those of the shikimate pathway (for the
biosynthesis of aromatic amino acids). Previous information on the synthesis of the AHBA unit
of rifamycin provides evidence indicating that seven genes, rifGHJKLMN, linked in a cluster, are
required and sufficient to synthesize this compound in Amycolatopsis mediterranei. The gene rifK of
this cluster, that encodes the AHBA synthase, has been extensively used to search for ansamycin gene
clusters in other actinobacteria [25–28]. Homologs of these genes were searched in S. hygroscopicus
17997, producer of geldanamycin, and two different gene clusters were found. One of them, of the
benzoquinone type, was shown to be involved in geldanamycin biosynthesis [18]. Genes of the second
cluster, of the naphtoquinone type, did not complement mutants in geldanamycin biosynthesis in
S. hygroscopicus [19].

The work of He et al. [19] provides evidence showing that the benzoquinone-type cluster in the
S. hygroscopicus strain is, indeed, involved in geldanamycin biosynthesis while the naphtoquinone-type
cluster is likely to be involved in biosynthesis of a rifamycin-type ansamycin. Similarly, two gene
clusters encoding benzoquinone-type and naphtoquinone-type ansamycins have been found in
Streptomyces collinus that produces ansatrienin and naphthomycin [26]. The presence of two related
gene clusters in single Streptomyces species is relatively common. This is normally generated by gene
duplication and subsequent specialization. Interestingly, there are differences in the organization of
the AHBA gene cluster in the original S. hygroscopicus NRRL 3602 [18] and S. hygroscopicus 17997 [19].
This indicates that these two strains have evolved separately in modern times, although most likely
both AHBA gene clusters derive from a common cluster in an ancestor of both strains.

2.2. Elongation Steps

After formation of the AHBA starter unit the biosynthesis of geldanamycin proceeds by elongation
steps involving one malonyl-CoA unit, 4 methylmalonyl-CoA units, and 2 methoxy-malonyl-ACP
elongation units. These elongation reactions are catalyzed by three polyketide synthases encoded by
gdmAI, gdmAII, and gdmAIII, totaling seven modules. They are organized in three polyketide synthases
(Figure 2, Table 2), containing the AT, KS, ACP, and KR domains. The first condensation step catalyzed
by a PK type I is of interest, since it includes a loading domain in addition to the ACP domain of the
PKS. The loading domain of this PKS activates AHBA and related aromatic units [29] by a mechanism
that uses ATP and is similar to that performed by the A domain of NRPSs [30,31]. In this reaction the
carboxyl group of the AHBA is activated as an acyl-phosphate and then is transferred to the ACP1 in
the first PKS synthase. This activation and elongation is similar to the p-aminobenzoic acid (PABA)
activation and elongation performed by the first module of the candicidin PKS [32]. Noteworthy,
the loading domain has low substrate specificity and is able to activate several benzoic acid related
compounds. This activation and first elongation are also very similar to those performed by the
rifamycin producer LM-M1 bimodule of A. mediterranei. In this strain the protein encoded by the first
PKS, named rifA, served as a model for the biosynthesis of rifamycin and other ansamycins in different
Streptomyces; it contains an initial didomain consisting of an AHBA activating A domain and an ACP
domain. This didomain, separated from the rest of the PKS protein, has been expressed in E. coli and
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shown to be able to activate AHBA and related benzoic acid derivatives [29]. The requirement of ATP
and CoA in the in vitro (E. coli extracts) reaction excludes the possibility that the starter unit is provided
to the PKS in an activated different form during its synthesis in the shikimate pathway. This loading
enzyme is able to activate, in addition to the natural starter unit, other 3- or 5-substituted benzoic acid
derivatives and 3,5-disubstituted derivatives. Therefore, as occurs in the case of rifamycin, the loading
module in the GdmA PKS of the geldanamycin gene cluster has the potential to synthesize compounds
similar to geldanamycin containing aromatic units related to AHBA. The subsequent elongation steps
use the standard polyketide biosynthesis mechanisms.
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Table 2. Genes in the geldanamycin cluster and function of the encoded enzymes. 

Genes  Function Reference 
gdmMT  O-methyltransferase [15] 

gdmL = gel1 Flavin-dependent oxygenase [20] 
gdmX Unknown [18] 

gdmAI, AII, AIII =  
gelAI, AII, AIII Polyketide synthases I, II and III 1 [18] 2 

gdmF Amide synthase [33] 
gdmM = gel7 Flavin-dependent oxidase [20] 
gdmN = gel8 Carbamoyl transferase [20,34] 

gdmH Methoxymalonyl-ACP biosynthesis [18] 
gdmI Methoxymalonyl-ACP biosynthesis [18] 
gdmJ Methoxymalonyl-ACP biosynthesis [18] 
gdmK Methoxymalonyl-ACP biosynthesis [18] 
gdmG O-methyl transferase for methoxy-malonyl-ACP biosynthesis [18] 

gdmRII = gel17 LAL-type regulator [35,36] 

gdmO 3 Amino dehydroquinate synthase [18] 

Figure 2. Cluster of geldanamycin genes in S. hygroscopicus NRRL3602. Cluster of geldanamycin
genes in S. hygroscopicus NRRL3602 [18]. The name of each gene is indicated above it. Similar gene
clusters have been found in other S. hygroscopicus strains and in S. autolyticus with the minor differences
described in the text. Genes for the geldanamycin precursor AHBA [19], named gdnKEAOP, and
located separately in the genome, are shown below. The names of the geldanamycin genes given by
different authors and function of the encoded enzymes are shown in Table 2.

Table 2. Genes in the geldanamycin cluster and function of the encoded enzymes.

Genes Function Reference

gdmMT O-methyltransferase [15]

gdmL = gel1 Flavin-dependent oxygenase [20]

gdmX Unknown [18]

gdmAI, AII, AIII = gelAI, AII, AIII Polyketide synthases I, II and III 1 [18] 2

gdmF Amide synthase [33]

gdmM = gel7 Flavin-dependent oxidase [20]

gdmN = gel8 Carbamoyl transferase [20,34]

gdmH Methoxymalonyl-ACP biosynthesis [18]

gdmI Methoxymalonyl-ACP biosynthesis [18]

gdmJ Methoxymalonyl-ACP biosynthesis [18]

gdmK Methoxymalonyl-ACP biosynthesis [18]

gdmG O-methyl transferase for
methoxy-malonyl-ACP biosynthesis [18]

gdmRII = gel17 LAL-type regulator [35,36]

gdmO 3 Amino dehydroquinate synthase [18]

gdmFx Ferredoxin [20]

gdmP = gel16 P450 monooxygenase [20]

gdmRI = gel14 LAL-type regulator [35,36]

gdmRIII = gel 19 TetR-family positive regulator [36]
1. The GdmAI, AII, AIII proteins are translated from a putative monocistronic mRNA encoded by the gdmA gene.
The original gdm gene designation was proposed by Rascher et al. [18]. 2. Other gene designations (gel genes)
correspond to articles on the characterization of the genes. 3. Other genes for AHBA biosynthesis have been cloned
in S. hygroscopicus 17997 by He et al. [19], but except the amino dehydroquinate synthase (gdmO) were not located in
the geldanamycin cluster described by Rasher et al. [18].
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Transcriptional studies of the geldanamycin polyketide synthase genes in S. hygroscopicus
XM201 suggested that expression of the polyketide synthase genes was limiting for geldanamycin
biosynthesis [21]. These authors replaced the native polyketide synthase promoter upstream of gdmA1
by a strong endogenous S. hygroscopicus XM201 promoter selected on the basis of its high transcriptional
activity. Interestingly, the replacement of the native promoter led to overexpression of the gdmA genes
(4 to 141-fold) leading to 39% increase of geldanamycin production. Then, in this overproducing strain,
biosynthesis of the AHBA starter unit became limiting. Combined overexpression of the polyketide
synthase gene and the amino shikimate gene cluster resulted in an increase of 88% in geldanamycin
production [21].

2.3. Cyclization of the Lineal Polyketide to Progeldanamycin

After completion of the growing polyketide chain, it is released from the enzyme by intramolecular
cyclization catalyzed by the amide synthase encoded by gdmF, a gene present in all geldanamycin
producers (Figure 2, Table 2). It is noteworthy that the amide synthase of the geldanamycin gene
cluster of S. hygroscopicus has much broader substrate specificity than the homologous enzyme of
Actinnosynnema pretiosum [33], that produces ansamitocin, a cytotoxic compound. These authors
isolated mutants of each of these two microorganisms blocked in the synthesis of the AHBA starting
unit, to test whether they are able to incorporate other hydroxybenzoic acid compounds (which lacks
the amino group of AHBA). Using these mutants, they demonstrated that at the difference of the
A. pretiosum amide synthase, the enzyme of S. hygroscopicus was able to cyclize the linear polyketide
intermediate containing hydroxybenzoic acid, forming a 20 membered lactone ring instead of the
standard 19 membered lactam ring of geldanamycin. The difference of the amide synthases in these two
organisms is apparently due to the protein structure that determines the accessibility of the substrate
to the active center in the enzyme, formed by the triad Cys72, His110, and Asp125.

The incorporation of AHBA starter analogous units by S. hygroscopicus produced compounds
similar to geldanamycin with potential antitumor activity [33]. However, none of them improved the
antitumor activity of the native geldanamycin.

2.4. Post-Polyketide Modifications

The pro-geldanamycin intermediate is finally modified by a series of polyketide modifications
that include hydroxylation at C-17 and oxidations at C-18 and C-21, followed by methylation of the
hydroxyl group at C-17, introduction of the carbamoyl group at C-7 and finally formation of the
double bond between C-4 and C-5. The C-17 hydroxylation and the C-18 and C-21 oxidations have
remained unclear for many years; these reactions might be performed by at least one flavin-dependent
oxidase, encoded by gdmM [15]. The O-methyltransferase that introduces a methyl group at
the hydroxyl formed at C-17 was not initially found in the geldanamycin gene cluster but later
Yin et al. [15] found a putative methyltransferase gene, gdmMT, located 17 kb away from the
main geldanamycin gene cluster in S. autolyticus. The involvement of the gdmMT gene in the
methylation of the hydroxyl group at C-17 was supported by in vivo and in vitro experiments.
The O-carbamoyl transferase encoding gene, gdmN, cloned from S. hygroscopicus 17997 is very
similar to the orthologous genes of other geldanamycin producers [34]. The gdmN-disrupted
mutant synthesized C-7 decarbamoyl-geldanamycin confirming that the enzyme encoded by this
gene is involved in the carbamoylation at C-7. Furthermore, these authors complemented the
disrupted mutant with the wild type gdmN gene resulting in the formation of geldanamycin.
Interestingly, the gdmN disrupted mutant was able to synthesize several novel geldanamycin
compounds, including 4,5-dihydro-7-O-decarbamoyl-7-hydroxy-19-O-glycylgeldanamycin and
4,5-dihydro-7-O-decarbamoyl-7 hydroxygeldanamycin. These novel compounds showed less activity
against human tumor cell lines but instead they showed better solubility [34]. Finally, desaturation
resulting in the formation of the C-4/C-5 double bond was catalyszd by a P450 monooxygenase encoded
by gdmP (see below).
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3. Geldanamycin Gene Clusters in Different Streptomyces Species

Similar geldanamycin gene clusters have been found in other Streptomyces species (Table 1). Recent
studies using different geldanamycin producers, as S. hygroscopicus sub. duamyceticus JCM4427 [20],
have shed light on the post-polyketide modification reactions, although the use of different names for
the same gene makes it difficult to compare the findings of different authors.

Two of the genes, named gel1 and gel7 by these authors (equivalent to gdmL and gdmM, respectively),
encode flavin dependent oxygenases. Disruption of gel1 did not affect geldanamycin production,
indicating that gel1 has no role in geldanamycin biosynthesis, whereas disruption of gel7 led to the
formation of 17-demethoxy-reblastatin, an ansamycin containing a benzoquinone nucleus, suggesting
that gel7 is involved in an oxidation of the benzoquinone ring. Complementation of the gel7 disrupted
mutant with the wild type gel7 gene re-established the geldanamycin production. Shin et al. [20] proved
that the hydroxylations at C-17 and C-21 are previous to the C-7 O-carbamoylation. They also described
that gel16 (equivalent to gdmP), that is linked to a ferredoxin gene, encodes a P450 oxygenase, containing
an heme-pocket. Disruption of the gel16 gene results in the formation of 4,5 dihydrogeldanamycin, and
geldanamycin production was restored by complementation with a wild type gel16 gene suggesting
that gel16 is involved in the formation of the geldanamycin C-4/5 double-bond. This was formally
demonstrated by Rimal et al. [37] obtaining recombinant Gel-16 protein in E. coli and using it to perform
the in vitro conversion of 4,5-dihydrogeldanamycin to geldanamycin. In silico protein–protein docking
studies were performed by these authors to identify putative ferredoxin and ferredoxin reductases
electron transporters cooperating with Gel16, involved in the dehydrogenation step. Although no
hydroxylated intermediates were found in the gel16- disrupted mutant, the authors do not exclude that
a hydroxylated intermediate is involved in the process of the double-bond formation.

In another geldanamycin producer, S. autolyticus JX-47, the complete genome consists of a 10 Mb
lineal chromosome and 7 circular plasmids [22]. This strain was obtained from a laboratory at Yunnan
(China) as an autolytimycin producing strain. Later, it was shown that this strain also produced
geldanamycin, and a geldanamycin gene cluster was isolated in a bacterial artificial chromosome (BAC)
library [22]. From this library, a 250 kb contiguous region of S. autolyticus JX-47 DNA, that included
the complete geldanamycin cluster, was subcloned. In this strain, the central polyketide region of
the geldanamycin gene cluster is 99% identical to that of the S. hygroscopicus 17997 strain and the
encoded proteins range from 81% to 100% identity in amino acid sequence to the orthologous proteins
of S. hygroscopicus. All genes of the geldanamycin cluster in S. autolyticus, have similar organization to
those of S. hygroscopicus NRRL3602, except gdmL and gdmX, which are absent from the core region
(Figure 2, Table 2).

4. Regulatory Genes in the Geldanamycin Gene Cluster

In the early studies on geldanamycin biosynthesis, Rascher et al. [18] found that in the geldanamycin
gene cluster of S. hygroscopicus var. geldanus there were several putative regulatory genes. A similar
finding was reported later in the cluster of S. hygroscopicus 17997 [35]. These authors cloned and
characterized two geldanamycin regulatory genes, named gdmRI and gdmRII; both genes encode LAL
type regulators which contain a Walker motif (ATP/GTP binding site) in the amino terminal region
and a helix-turn-helix binding domain in the carboxyl end. Both GdmRI and GdmRII act as positive
regulators of the geldanamycin biosynthesis as shown by gene disruption and complementation studies.
In an independent parallel work, we isolated a mutant of S. hygroscopicus var. geldanus NRRL3602
deleted in gdmRII and observed that this mutant was completely blocked in geldanamycin biosynthesis
(Figure 3).
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squares), and gdmRI+gdmRII (white circles). (B) HPLC analysis of geldanamycin production by
S. hygroscopicus var. geldanus NRRL3602 (upper panel) and S. hygroscopicus ∆gdmRII (lower panel) in
which gdmRII was deleted. The arrow indicates the geldanamycin peak.

Both, the results of He et al. [35] and our own experiments, indicate that disruption of one of
the two LAL regulatory genes completely abolished geldanamycin biosynthesis. This means that
both, gdmRI and gdmRII genes, are independent and are not simply duplicated regulatory genes.
He et al. [35] showed that expression of these two genes is independent of each other; i.e., inactivation
of one of these genes did not affect expression of the other one. These authors proved that inactivation
of the gdmRI or gdmRII gene suppresses expression of the polyketide biosynthetic genes but does not
affect transcription of post-polyketide modification genes and we confirmed that deletion of gdmRII
resulted in lack of production of geldanamycin (Figure 3B). Using S. hygroscopicus NRRL3602, we
amplified in an integrative monocopy vector either gdmRI, gdmRII, or both. The results indicated that
production of geldanamycin increased about 33% with an additional copy of either gdmRI or gdmRII,
but an important increase (more than 100%) was found when the wild-type strain was transformed
with a combination of gdmRI and gdmRII (Figure 3A).

Later Kim et al. [36] studied the regulatory genes located close to the geldanamycin gene cluster
from a different strain, S. hygroscopicus var. duamyceticus JCM4427, obtained from the Japanese culture
collection of microorganisms (Table 1). These authors found up to five putative regulatory genes near
the geldanamycin cluster; three of which were located downstream of the gdm cluster; these three genes,
named gel14, gel17, and gel19, were characterized in detail [36]. Genes gel14 and gel17 encode LAL-type
regulators that are identical to GdmRI and GdmRII described in S. hygroscopicus 17997 [35]. The identity
between the two LAL-type regulator Gel14 and Gel17 is low (26%) and this explains why these
two regulators are not functionally equivalent and work independently of each other in controlling
geldanamycin biosynthesis [35]. On the other hand, gel19 encodes a TetR-type transcriptional factor
that acts as a positive regulator of geldanamycin biosynthesis. The gel19 regulator belongs to the
well-known family of TetR transcriptional factors, which are characterized as homodimers with an
DNA binding helix-turn-helix domain at their N-terminal region and a ligand binding domain in
the C-terminal end [39,40]. Studies of these regulatory genes and comparison of gene expression
in mutants disrupted in each of these genes provide evidence indicating that regulation in strain
S. hygroscopicus JCM4427 is somehow different from that found previously in S. hygroscopicus 17997.
Indeed, in strain S. hygroscopicus JCM4427, gel17 and gel19 are required for expression of the gel14
LAL-type regulator and of the common promoter of the gelA genes (equivalent to gdmA, encoding the
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three polyketide synthases). Mutants in gel14 were able to express normally gel17 and gel19, whereas
mutants in gel17 and gel19 did not express the LAL regulator gel14 or the polyketide synthase gene.
In conclusion, the available evidence suggests that there is a cascade in which expression of gel14
is controlled by gel17 and gel19 and, in turn, gel14 is required for expression of GelA and controls
initiation of transcription of gel8 (carbamoyl transferase) and gel16 (P450 oxygenase).

LAL-type regulators similar to Gel14 and Gel17 are encoded in many other polyketide gene
clusters as, for instance PimM of the pimaricin producer Streptomyces natalensis [41,42], FkbN of the
tacrolimus producers S. tsukubaensis and S. hygroscopicus var. ascomyceticus [43,44] or FscRI in the
candicidin producer Streptomyces griseus [32,45], among others.

Regulatory Genes in the Geldanamycin Gene Cluster of Streptomyces Autolyticus: Regulation of the Distant
Unrelated Elaiophylin Cluster

The complete genome of S. autolyticus CGMCC 0516, isolated from a soil sample of Yunnan
province (China), was reported recently [23]. It encoded 57 putative secondary metabolite clusters,
many of them similar to known gene clusters in other Streptomyces species. These include the
geldanamycin, autolytimycin, and reblastatin biosynthetic clusters, located in the left arm of the
chromosome, and the cluster for the macrodiolide elaiophylin in the right end of the chromosome.
The three first compounds are benzoquinone-type ansamycins and all of them are able to bind the
Hsp-90 chaperone. Previous studies on the target of the proteins encoded by the three genes, gel14,
gel17, and gel19 of the geldanamycin gene cluster in S. hygroscopicus [36] showed that these genes
were cluster situated regulatory genes, as occurs in other actinomycetes [46], that affected specifically
geldanamycin biosynthesis. However, recent evidence in S. autolyticus on the role of GdmRIII (gel19),
encoding a TetR regulator (see above) revealed that this regulator controls not only geldanamycin
biosynthesis but also formation of elaiophylin, which is an unrelated antibiotic encoded by a gene
cluster located in the distal end of the genome with respect to the geldanamycin gene cluster [47].

The regulatory role of GdmRIII on the biosynthesis of autolytimycin and on elaiophylin
biosynthesis was investigated using a knock-out mutant in the gdmRIII gene. This mutant produced only
19% of the geldanamycin-type compounds in relation to the wild type but, showed a 3.2-fold increase in
the formation of three new compounds that were initially thought to be geldanamycin-type derivatives.
Surprisingly, when the molecular mass and the nuclear magnetic resonance spectra were determined,
they were found to be elaiophylin and elaiophylin derivatives, namely 11-methyl-elaiophylin and
11,11 dimethyl-elaiophylin. Complementation of the gdmRIII mutant with the wild-type allele restored
production of geldanamycin up to 80% in relation to the parental strain and reduced the levels of the
three elaiophylin derivatives to the normal levels as in the parental strain. These results clearly indicate
that although the gdmRIII gene is located in the geldanamycin cluster, it regulates a far distant unrelated
cluster; this agrees with recent findings of regulation of distant clusters by a single transcription
factor [47–49]. The gdmRIII encoded protein was expressed in E. coli and was found to bind to the
upstream regions of several genes in the geldanamycin gene cluster, namely gdmM, gdmN, and elaF in
the elaiophylin gene cluster [47].

5. Engineering of Polyketide Biosynthesis in Geldanamycin Producing Strains

In the last decades the availability of genome sequences of different Streptomyces species has
provided evidence indicating that many Streptomyces contain type I polyketides gene clusters [50,51].
The biosynthesis of these polyketides requires acyl-CoA precursor units including malonyl-CoA
methylmalonyl-CoA, methoxymalonyl-CoA, allylmalonyl-CoA, among others. When these polyketides
are produced simultaneously, they compete for the available common precursors. In the S. hygroscopicus
17997 strain, Li et al. [52] disrupted two polyketide genes different from that of geldanamycin and
observed distinct effects; disruption of the polyketide cos-10 gene did not affect geldanamycin production
but in contrast, disruption of the polyketide pg-10 gene doubled the production of geldanamycin
supporting the conclusion that there is competition between the biosynthesis of geldanamycin and
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that of Pg-10 polyketide, which does not occur with other polyketides. At this time, the molecular
mechanism of the specific competition between geldanamycin and polyketide Pg-10 is not yet clear.

Several important efforts have been made to obtain novel geldanamycin derivatives by modification
of the biosynthetic pathway [53]. Moreover, Kim et al. [13] obtained, by combined mutagenesis of the
geldanamycin PKS and modification of the tailoring enzymes, a C15-hydroxylated, C17-demethoxy
non-quinone geldanamycin analogue, DHQ3, that has 4.6-fold higher Hsp90 ATPase activity inhibition
than geldanamycin

6. Phosphate Control of Geldanamycin Biosynthesis

Growth of the Streptomyces species and the biosynthesis of antibiotics and other secondary
metabolites is controlled by the concentration of phosphate in the medium [54]. However, there
are important differences in the sensitivity to phosphate of the biosynthesis of distinct secondary
metabolites [55–57].

Our studies on the effect of inorganic phosphate in production of geldanamycin by S. hygroscopicus
var. geldanus NRRL3602 showed that the biosynthesis of geldanamycin is highly sensitive to inorganic
phosphate (Figure 4B). In soy-peptone-glucose (SPG) medium, which supports high geldanamycin
production (above 500 µg/mL at 120 h), inorganic phosphate at 5 mM or higher concentration reduces
geldanamycin production by 80%.
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6.1. Cloning of the phoU- phoRP Gene Cluster of S. hygroscopicus NRRL3602

Phosphate control of both primary metabolism and the biosynthesis of secondary metabolites is
mediated by the two components PhoR-PhoP system [58,59].

A cosmid library of total DNA of S. hygroscopicus var geldanus in the superCos1 vector (Stratagene)
was constructed and screened by hybridization with a 1.2 kb DNA probe containing the phoRP genes
of S. coelicolor [60]. A cosmid, Cos17d1, showing a high hybridization signal was selected and a 7.0 kb
fragment of the insert was subcloned in pBluescript and sequenced. Five orfs were found in this insert
that include phoR, phoP, phoU, lpp, carD, and the incomplete ispD gene (Figure 4A).
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phoR-phoP were located in the opposite orientation to phoU; the three genes are expressed from
a divergent promoter region as occurs in other Streptomyces species [56,57]. The lpp gene encode a
lipoprotein, the carD gene encodes a CarD family transcriptional regulator that binds RNA polymerase,
and the incomplete ispD encodes a cytidyltransferase.

The S. hygroscopicus sensor kinase PhoR is a protein of 432 amino acids that contains the
characteristic Boxes H, N, D/F, and G [61] present in all PhoR proteins. PhoR has a high identity
in amino acid sequence to the orthologous proteins of S. coelicolor (85%), S. avermitilis (86%), and
S. natalensis (88%).

The response regulator PhoP has 223 amino acids and is 98% identical to the homologous protein
of S. coelicolor and S. avermitilis. PhoP is extremely well conserved in all Streptomyces species [62]
supporting its important role on the PhoR-PhoP mediated response [63]. The PhoP protein has the
conserved aminoacids Asp6 and Asp49 in the amino terminal region, lysine K98 for phosphorylation,
as part of the receiver domain, and a DNA binding domain (DBD) in the carboxyl terminal end (amino
acids 190-201). The distance between phoR and phoP is only 5 nucleotides, strongly suggesting that
these two genes are co-transcribed as reported previously in S. coelicolor [60,64].

The divergent phoU gene encodes a 275 amino acids protein 92% identical to the PhoU of
S. natalensis and 93% to those of S. coelicolor and S. avermitilis. In S. coelicolor, phoU encodes a modulator
of the PhoRP expression that exerts self-control of phosphate regulation [64]. In addition, the pstS
gene, encoding the high affinity phosphate transport was cloned by hybridization with a probe of the
orthologous S. coelicolor gene.

6.2. Disruption and Characterization of the PhoP Gene: Effect on Growth and Geldanamycin Production

In order to study the effect of PhoP on growth and production of geldanamycin, the PhoP gene
was disrupted by an apramycin resistance gene in cosmid Cos17-D1 in E. coli and the disrupted phoP
gene was then replaced in S. hygroscopicus by the REDIRECT technique. The mutation was confirmed
by PCR amplification and sequencing of a 2.6 kb XhoI fragment containing the gene replacement.
The nucleotide sequence of this fragment confirmed the disruption of phoP.

To study the effect of the inactivation of phoP on phosphate utilization, growth and geldanamycin
production, the phoP mutant was grown in SPG, a medium that is an excellent nutrient for polyketide
antibiotics production.

Interestingly, the disruption of phoP had a very strong effect on growth of S. hygroscopicus.
The mutant was unable to grow in SPG medium in the absence of phosphate supplementation,
although the SPG medium contains organic phosphate i.e,. it behaved as an inorganic phosphate
auxotroph. When SPG medium was supplemented with 2.5, 5, 9, or 15 mM phosphate, there was an
increasing recovery of growth at the 5-, 9- and 15-mM concentration, but the mutant showed very
limited growth in 2.5 mM phosphate supplemented medium. This strong dependence of growth has
not been observed in S. coelicolor or S. natalensis phoP mutants using the same medium. These two
Streptomyces species grow in the absence of inorganic phosphate because they were able to hydrolyze
organic phosphate present in the soy-peptone medium, whereas S. hygroscopicus seems unable to do so.
This might be due to the absence of some extracellular phosphatases in S. hygroscopicus, as described
also in S. tsukubaensis [62]. Although S. hygroscopicus phoP mutant grows well at 5 mM phosphate,
the production of geldanamycin was higher at 15 mM which is a phosphate concentration normally
inhibitory for antibiotic biosynthesis, as is the case in S. natalensis for pimaricin biosynthesis [55],
suggesting that the phoP mutant is deregulated in PhoP mediated control of geldanamycin biosynthesis.

6.3. Identification of PhoP Binding Sequences in S. hygroscopicus Genes

It is known that PhoP binds an 11 nucleotides direct repeat sequence in the genome of different
Streptomyces species [56,60,65]. Although the genome of S. hygroscopicus var geldanus was not available,
we searched for PhoP binding boxes in the promoter regions of phoU, phoRP, and pstS genes that were
cloned as indicated above. Bioinformatic analysis of the promoter regions of these genes allowed us to
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identify the putative PHO boxes in these promoters. The intergenic sequence phoRP-phoU (Figure 5A)
was divided in three segments (regions I, II, III) that were subjected to EMSA analysis using S. coelicolor
PhoPDBD linked to-GST (0.2 to 3.2 pMols) obtained as a recombinant protein in E. coli [60]. The results
showed a clear retardation in the mobility assays of the DNA fragments in regions II and III but
no gel shift was observed in region I. Bioinformatic analysis of these regions and of the pstS gene
promoter showed the presence of putative PHO boxes for PhoP binding. To confirm the nature of these
PhoP binding sequences, a DNAse-footprinting analysis was performed on a 389 bp DNA fragment
carrying the regions II and III upstream of the phoRP-phoU promoter and PhoPDBD-GST protein at 2
µM concentration. A DNA protection footprinting analysis showed two protected regions (Figure 5B)
containing the 11-nucleotides repeats (PHO boxes) detected also by bioinformatic analysis. Alignment
of the PHO boxes of phoU-phoRP and pstS genes provided a DNA-binding sequence (GTTCACCCGCC),
similar to that of S. coelicolor and S. avermitilis [56], although with minor differences in the frequency of
alternative nucleotides.
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geldanus NRRL 3602. (A) Sequence of the intergenic region phoRP-phoU showing in red the nucleotides
belonging to the phoP and phoU genes. The regions I, II, and III used in EMSA analysis are indicated.
(B) Footprinting analysis of DNA containing regions II and III. The upper line (in red) corresponds to
the parental strain DNA without the PhoPDBD-GST protein. The lower line (in blue) corresponds to the
same DNA sequence protected by addition of PhoPDBD-GST protein. PhoPDBD-GST protein (2 µM)
was used in the assay as described by Sola-Landa et al. [66].

In summary, our studies on the phosphate control of geldanamycin biosynthesis indicate regulation
by the phosphate concentration in the medium as occurs with many other polyketides, but it is clearly
more sensitive to the inorganic phosphate concentration than other polyketides.
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7. Future Outlook

The ansamycin geldanamycin and its derivatives have great potential as antitumor agents
due to their interaction with the Hsp-90 chaperone in human cells. Clinical assays have shown
that geldanamycin produces hepatoxicity and side effects affecting healthy human celIs. Novel
geldanamycin derivatives obtained by metabolic engineering have been developed. Research on novel
strains producing less toxic geldanamycin analogs is required. Moreover, at this time geldanamycin is
an important tool for research in human tumorigenesis, tumor cell dissemination and cell apoptosis [67].
Biosynthesis of geldanamycin is well known but the regulatory mechanisms that control expression of
geldanamycin biosynthesis genes needs further research. There are several regulatory mechanisms
that control gene expression limiting the production of this antitumor agent; expression of the three
positive regulators gdmRI, gdmRII, and gdmRIII need to be optimized to obtain maximal geldanamycin
production; the nucleotide sequences recognized by each of these transcriptional regulators have to
be elucidated in order to search for additional target genes. Geldanamycin biosynthesis is extremely
sensitive to the phosphate concentration in the culture medium. Phosphate is limiting for growth
but, at high concentration, strongly represses the biosynthetic genes and therefore it has an important
regulatory role both in growth and geldanamycin production. Moreover, other pleiotropic regulators
that control nitrogen metabolism, carbon source utilization, and coordination of metabolism are not
known in these Streptomyces species and need to be investigated. The balance between utilization of
nitrogen and carbon sources is very important in the biosynthesis of geldanamycin because of the
involvement of the mC7N precursor unit that requires an amino group to form the AHBA starter unit.
The availability of the genome sequence of both S. hygroscopicus XM-201 [21] and S. autolyticus CGMCC
0516 [23] provides new useful “omics” information to dissect the genome of these geldanamycin
producing strains. Transcriptomic analysis of expression of different genes involved both in the
biosynthesis of structural components of geldanamycin and in the control of the biosynthesis of
this antitumor agent needs to be emphasized. Finally, metabolomic studies leading to removal of
side-product contaminants are also required to further increase the production of geldanamycin
and related.

8. Conclusions

The biosynthesis of geldanamycin in different producer strains is regulated by several
transcriptional factors. Three of them gdmRI, gdmRII and gdmRIII are situated close to the geldanamycin
gene cluster. Moreover, the biosynthesis of geldanamycin is strongly regulated by phosphate;
this regulation is mediated by the two-component system PhoR-PhoP. The PhoP binding sequence in
S. hygroscopicus have been identified in this article.
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