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1  | INTRODUC TION

The heart undergoes adaptive changes in response to long‐term 
overload, namely myocardial hypertrophy. Physiological hypertro‐
phy usually happens to pregnant women or athletes. 1 However, 
pathological cardiac hypertrophy is usually induced by stress stimu‐
lation or disease and is a typical pathological stage of diseases such 
as cardiomyopathy, myocardial infarction and diabetes.2 Therefore, 
pathological cardiac hypertrophy is a predictor of many cardiovascu‐
lar diseases and death in humans.

At the cellular level, the typical characteristics of pathological 
cardiac hypertrophy are increased cardiac muscle cell size, segrega‐
tion of sarcomere structures, enhanced protein synthesis and foetal 
gene re‐expression.3 Cardiac hypertrophy is an adaptive response 
mediated by regulation at multiple levels, including the transcrip‐
tion, processing and translation of mRNAs and post‐translational 

modifications (PTMs).4 PTMs are more flexible and economical than 
regulation at the transcriptional level. PTMs usually regulate the ac‐
tivation/inactivation or degradation of pre‐existing transcripts and 
proteins covalently modified by enzymes, resulting in rapid changes 
in the functions of pre‐existing proteins, multiprotein complexes and 
subcellular structures in response to various physical and chemical 
stimuli.5 Owing to PTMs, cardiomyocyte does not trigger de novo 
synthesis of proteins at the transcriptional level, which provides 
an approach to the saving of energy and material resources and 
compensates for the temporal‐and‐spatial weaknesses caused by 
transcriptional regulation. In addition, PTMs act as key regulators 
of proteins, contributing to changes in their diversity, localization, 
structure, interaction, roles etc, thus providing substantial complex‐
ity and elaborate regulation to the control of cardiac hypertrophy. 
In the last decade, PTMs, including phosphorylation, polyubiquitina‐
tion, SUMOylation, O‐GlcNAcylation methylation and acetylation, 
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Abstract
Pathological cardiac hypertrophy involves excessive protein synthesis, increased car‐
diac myocyte size and ultimately the development of heart failure. Thus, pathological 
cardiac hypertrophy is a major risk factor for many cardiovascular diseases and death 
in humans. Extensive research in the last decade has revealed that post‐translational 
modifications (PTMs), including phosphorylation, ubiquitination, SUMOylation, O‐
GlcNAcylation, methylation and acetylation, play important roles in pathological car‐
diac hypertrophy pathways. These PTMs potently mediate myocardial hypertrophy 
responses via the interaction, stability, degradation, cellular translocation and activa‐
tion of receptors, adaptors and signal transduction events. These changes occur in 
response to pathological hypertrophy stimuli. In this review, we summarize the roles 
of PTMs in regulating the development of pathological cardiac hypertrophy. 
Furthermore, PTMs are discussed as potential targets for treating or preventing car‐
diac hypertrophy.
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were reported to play essential roles in myocardial hypertrophy 
pathways. These signalling pathways include Ca2+/calmodulin, mi‐
togen‐activated protein kinase (MAPK), JAK‐STAT, protein kinase 
C, phosphatidylinositol 3‐kinase (PI3K)/Akt, inflammation, nuclear 
factor‐κB (NF‐κB) and adenosine‐activated protein kinase (AMPK). 
Therefore, comprehensive knowledge of PTMs involved in the de‐
velopment of myocardial hypertrophy will provide a better under‐
standing of the molecular regulatory mechanism of pathological 
hypertrophy. This, in turn, will greatly benefit rational drug utiliza‐
tion and provide new treatment strategies for heart failure.

2  | PHOSPHORYL ATION

MAPKs, consisting of extracellular signal‐regulated kinases (ERKs), 
c‐Jun N‐terminal kinases (JNKs) and p38 MAPKs, are well known to 
play important roles in mediating overload or pathological insult‐in‐
duced cardiac hypertrophy.6 For example, cardiomyocyte‐specific 
expression of MEK‐1 significantly induced ventricular concentric 
hypertrophy by phosphorylating ERK1/2 in the heart (Table 1).7 
ERK5 was also shown to play an essential role in the development 
of cardiac hypertrophy.8 The Ca2+/calmodulin signalling pathway 
reportedly plays an important role in the occurrence of ventricular 
arrhythmias in hypertrophic cardiomyopathy and cardiac hypertro‐
phy.9 Ersilia et al showed that the CaMKII‐ERK pathway was essen‐
tial for developing cardiac hypertrophy and the impairment of their 
interaction provided a promising therapeutic modality to attenuate 
myocardial hypertrophy.10 Recently, activation of ERK/glycogen 
synthase kinase‐3(GSK3) induced by angiotensin II was shown to 
phosphorylate heat shock factor 1 (HSF1), resulting in degradation 
of	RNF126,	which	promoted	 the	 expression	of	 insulin‐like	 growth	

factor II receptor (IGF‐IIR) and ultimately induced myocardial hyper‐
trophy (Table 1).11 Thus, targeting HSF1 could be a promising strat‐
egy to prevent pathological cardiac hypertrophy.

Kojonazarov et al showed that inhibition of p38 MAPK activity 
improved heart function in response to pressure‐loaded right ven‐
tricular hypertrophy by suppressing transcriptional pathways, in‐
cluding serum response factor and myocardin‐related transcription 
factor A.12	Regulator	of	G	protein	signalling	6	(RGS6)	was	reported	
to promote cardiac hypertrophy by activating apoptosis signal‐regu‐
lating kinase1/p38 MAPK/JNK1/2 signalling.13 A deficiency of JNK‐
interacting protein 3 could alleviate cardiac hypertrophy through 
inactivating the JNK pathway and might become a promising ther‐
apeutic target for treating cardiac hypertrophy and heart failure.14

AKT, a serine/threonine kinase, is activated and phosphorylated 
by PDK1 and PDK2 at residues Thr308 and Ser473 respectively.15 As 
a key molecule for cardiac hypertrophy, AKT activation can further 
phosphorylate many downstream proteins and thereby positively 
and negatively regulate diverse signalling pathways. AKT has been 
shown to promote cardiac hypertrophy through regulating several 
signalling pathways, such as PI3K/AKT/GSK3β, PI3K/AKT/mTOR 
and the FAK/AKT signalling.16,17 Knockdown of protein kinase D 
(PKD) was shown to attenuate pressure overload‐induced cardiac 
hypertrophy by promoting autophagy via AKT/mTOR pathway.19 
Dimethyl fumarate, a methyl ester of fumaric acid, is approved by 
the Food and Drug Administration for the treatment of relapsing/
remitting multiple sclerosis and psoriasis. Dimethyl fumarate was 
shown to protect against ISO‐induced cardiac hypertrophy by de‐
creasing the levels of p‐ERK1/2 and increasing the level of p‐AKT.20

AMPK, a serine/threonine kinase, is activated and phosphor‐
ylated by LKB1 at residue Thr172 (Table 1).21 AMPK activation 
can further phosphorylate numerous downstream proteins and 

Name Target Result Role in heart Reference

MEK1 ERK1/2 Activation Induced pathological 
cardiac hypertrophy

7

MEK5 ERK5 Activation Exacerbated pathological 
cardiac hypertrophy

8

CaMKII ERK1/2 Activation Induced pathological 
cardiac hypertrophy

10

ERK/GSK3 HSF1 Inactivation Exacerbated pathological 
cardiac hypertrophy

11

RGS6 ASK1 Activation Exacerbated pathological 
cardiac hypertrophy

13

PI3K AKT Activation Induced pathological 
cardiac hypertrophy

16

MEK3	and	MEK6 p38 Activation Contributed to cardiac 
hypertrophy

13

MEK4 and MEK7 JNK Activation Contributed to cardiac 
hypertrophy

14

FAK AKT Activation Contributed to cardiac 
hypertrophy

17

LKB1 AMPK Activation Inhibited cardiomyocyte 
hypertrophy

21,23

TA B L E  1   Roles of phosphorylation in 
myocardial hypertrophy
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thereby positively and negatively regulate diverse signalling path‐
ways. AMPK has been shown to protect against cardiac hypertro‐
phy by inhibiting protein synthesis and its development through a 
lot of downstream proteins, such as eukaryotic elongation factor‐2 
(eEF2),	AKT/mTOR/p70S6	kinase,	SIRT1/eNOS/p53	and	transcrip‐
tional regulation factors including NFAT, PPAR‐α and FOXO.22,23 
Notably, a lot of pharmacological AMPK activators, such as met‐
formin,	berberine,	AICAR	and	A‐769662,	have	been	shown	to	pro‐
tect against cardiovascular diseases.26,27 For example, berberine 
was reported to activate AMPK in diabetic rats, resulting in im‐
provement of cardiac dysfunction and attenuation of cardiomyo‐
cyte hypertrophy.28

NF‐κB, a key transcription factor, plays an important role in di‐
verse cellular processes, including cell survival, apoptosis, growth 
and differentiation.29 NF‐κB is tightly regulated by the inhibitory 
protein IκB, which is phosphorylated by the upstream IKK kinase 
to degrade IκB and release NF‐κB. Subsequently, activated NF‐κB 
is translocated to the nucleus where it activates gene expression.30 
NF‐κB activation was shown to promote cardiac hypertrophy via 
activating foetal gene re‐expression. RasGAPSH3 domain‐binding 
proteins (G3BPs) were shown to promote isoproterenol‐induced car‐
diac hypertrophy via the activation of NF‐κB signalling pathway.31 
Recently, auranofin, a 19S proteasome‐associated deubiquitinase 
inhibitor, was shown to attenuate cardiac hypertrophy by blocking 
NF‐κB activation.32

Many protein kinase‐mediated autophagies were shown to be 
involved in the development of cardiac hypertrophy. The protein 
kinase AKT, ERK1/2, PKA, MAPK and AMPK are related to auto‐
phagy. For instance, in the presence of growth factors, AKT inhibits 
initiation of autophagy by phosphorylating numerous downstream 
proteins, including TSC2, PRAS40, GSK3, FOXO and Beclin‐1.33 In 
contrast, AMPK is shown to induce autophagy by inhibiting mTOR 
signalling.34 However, the role of autophagy in pressure stress‐in‐
duced cardiac hypertrophy remains controversial.1 Xu et al showed 
that autophagy activated by mTOR signalling protects against car‐
diac hypertrophy.35 But Zhu et al indicated that excessive auto‐
phagy accentuates pressure stress‐induced cardiac hypertrophic 
responses.36 Therefore, the exact regulatory network followed by 
protein kinase‐mediated autophagy in cardiac hypertrophy needs 
further investigation in the future.

Together, the above‐mentioned findings suggest that phosphor‐
ylation is essential for promoting or attenuating cardiac hypertrophy 
in various signal pathways.

3  | DUAL‐SPECIFICIT Y MAPK 
PHOSPHATA SES

A previous study has shown that DUSPs act as critical regulators 
of cardiac growth and remodelling by dynamically regulating the 
MAPK signalling pathway (Table 2).37 DUSP12 ameliorates cardiac 
hypertrophy via inhibiting JNK1/2 activity.38 DUSP8 is involved 
in cardiac ventricular remodelling by activating ERK1/2 signalling. 
Cardiac‐specific overexpression of DUSP8 causes spontaneous 
eccentric remodelling and ventricular dilation with heart failure.39 
DUSP14 prevents cardiac hypertrophy and dysfunction induced by 
aortic banding by inactivating the TAK1/p38MAPK/JNK1/2 signal‐
ling pathway.40 In addition, heat shock protein 90 regulates cardiac 
ventricular hypertrophy through the activation of MAPK pathway.41 
In brief, phosphorylation modifications play important roles in the 
regulation of cardiac hypertrophy and may prove to be promising 
targets for therapeutic development.

4  | UBIQUITINATION

Ubiquitination, a widely distributed PTM of proteins, regulates 
the timely functions of proteins. Recently, ubiquitin‐proteasome 
system (UPS) proteins, E3 ligases and deubiquitylation enzymes 
(DUBs) were found to play important roles in the development 
of cardiac hypertrophy (Figure 1; Table 3).42 Studies found that 
K63‐linked	polyubiquitination	of	TAK1	triggered	by	the	E3	ligase,	
TRIM8, leads to pathological hypertrophy. Thus, suppression of 
cardiac TRIM8 expression could attenuate the induction of cardiac 
hypertrophy.43,44	Li	et	al	reported	that	the	 level	of	TRAF6	in	hy‐
pertrophic human and mouse hearts was increased. Furthermore, 
heart‐specific	 overexpression	 of	 TRAF6	 aggravated	 myocardial	
hypertrophy in response to pressure overload or stimulation with 
angiotensin II. In terms of the mechanism, auto‐ubiquitination 
of	 TRAF6	 triggered	 by	 reactive	 oxygen	 species	 promoted	 TAK1	

DUSP Target Role in heart Reference

DUSP1 ERK1/2,JNK1/2,p38 Attenuated cardiac 
hypertrophy

42

DUSP4 ERK1/2 Positively regulated cardiac 
hypertrophy

43

DUSP8 ERK1/2,JNK1/2,p38 Positively regulated cardiac 
hypertrophy

39

DUSP12 JNK1/2 Attenuated cardiac 
hypertrophy

38

DUSP14 JNK1/2,p38 Attenuated cardiac 
hypertrophy

40

TA B L E  2   Role of DUSPs in myocardial 
hypertrophy
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ubiquitination, which induced cardiac hypertrophy.45 Recent stud‐
ies reported that DUB was involved in regulating the development 
of cardiac hypertrophy through the TAK1 signalling pathway.46 
For example, ubiquitin‐specific protease 4 (USP4) inhibited patho‐
logical cardiac hypertrophy and dysfunction by hydrolysing the 
K63	ubiquitination	of	TAK1,	resulting	in	the	suppression	of	TAK1‐
JNK1/2/p38 signalling.47 In addition, Ying et al reported that 
ubiquitin‐specific protease 18 (USP18) attenuated cardiac hyper‐
trophy	by	specifically	removing	the	K63‐linked	polyubiquitination	
of TAK1, bringing about inactivation of TAK1‐p38/JNK1/2 signal‐
ling pathway.48 USP14, a DUB of the 19S proteasome subunit, 
was shown to promote cardiac hypertrophic responses through 
enhancing GSK‐3β phosphorylation, suggesting that USP14 may 
be a potential therapeutic target to treat cardiac hypertrophy.49 
Previous studies have shown that UPS plays an important role 
in quality control mechanisms of protein production and UPS in‐
sufficiency may lead to heart failure.50,51 Notably, whether UPS 

regulates heart failure by activating or inhibiting the autophagy 
pathway remains controversial.52 Recently, proteasome inhibitors, 
MG132 and bortezomib, were shown to attenuate cardiac hyper‐
trophy induced by cholesterol through inhibiting the activation of 
ERK and Akt signalling.53 Rapamycin, an inhibitor of mTOR, was 
shown to protect against cardiac hypertrophy by promoting myo‐
cardial autophagy through the MEK/ERK/Beclin‐1 pathway.54

Cardiac fibrosis‐induced pressure overload is an important step 
of	maladaptive	hypertrophy	and	ubiquitination	of	TRAF6	and	RIP1,	
mediated by ligase E3 Pellino1, contributes to the activation of 
NF‐κB and AP‐1, resulting in increased expression of transforming 
growth factor‐β1 in cardiac fibroblasts (Figure 1).55 In addition, pres‐
sure overload‐induced cardiac maladaptive remodelling and dys‐
function were mediated by deubiquitinating enzyme CYLD, which 
contributes to interrupt the ERK‐ and p38‐/AP‐1 and c‐Myc path‐
ways, resulting in suppressing expression of Nrf2 and Nrf2‐operated 
antioxidative capacity.56 Furthermore, deubiquitinating enzyme 

F I G U R E  1   Ubiquitination‐mediated signalling pathways of cardiac hypertrophy. Ubiquitination plays an important role in cardiac 
hypertrophy by regulating the TAK1‐JNK1/2/p38, NF‐κB signalling, Ca2+/calmodulin, oxidation stress, ERK signalling pathways. In these 
pathways, pressure overload or other hypertrophic stimuli can induce E3 ligases or DUBs to activate MAPKs or other signalling pathways, 
ultimately regulating nuclear transcription factors to promote growth
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USP14 suppressed the progression of cardiac hypertrophy by in‐
creasing phosphorylation of glycogen synthase kinase‐3β.49

Recently, the E3 ubiquitin ligase, Muscle‐specific RING finger 
protein‐1 (MuRF1), was reported to mono‐ubiquitinate thyroid hor‐
mone receptor α (TRα) to enhance its interaction with CAP350 and 
transcriptional activity in the nuclear compartment.57 MuRF1 was 
also reported to attenuate pathological cardiac hypertrophy via pro‐
moting degradation of calcineurin A.58 In addition, TCAP, which is 
down‐regulated by the E3 ubiquitin ligase, MDM2, is involved in car‐
diac hypertrophy (Figure 1).59 Moreover, Hauck et al observed that 
cardiac‐specific knockout of MDM2 resulted in spontaneous cardiac 
hypertrophy and early death in mice through the generation of re‐
active oxygen species (ROS).60 Consistent with this, cardiomyocyte 
hypertrophy induced by therapy with the alpha‐agonist, phenyleph‐
rine or endothelin‐1, was attenuated by overexpression of MDM2.61 
Therefore, MDM2 may be a promising and effective target for treat‐
ing heart failure. Likewise, E3 ligase tripartite motif 32 (TRIM32) has 
a protective role in aortic banding‐induced pathological cardiac hy‐
pertrophy by interrupting Akt signalling pathways.62 TRIM32 atten‐
uates cardiomyocyte hypertrophy by regulating dysbindin protein 
levels, whereas the effect of TRIM24 is the opposite (Table 3).63

Overall, these findings show that ubiquitination modifications 
play an essential role in the development of cardiac hypertrophy 
progression and have important implications for the development of 
antihypertrophy drugs targeting E3 ligases and DUBs.

5  | SUMOYL ATION

The small ubiquitin‐like modifier (SUMO) system catalyses classical 
ubiquitin‐like post‐translational protein modifications that are uni‐
versally involved in cellular activities such as cell cycle regulation, 
genome stabilization, chromatin remodelling and transcription.64 
SUMOylation is also involved in cardiovascular diseases including 
cardiac hypertrophy.65 For example, SUMO‐1 is involved in heart 
failure by specifically mediating SUMOylation of SERCA2a (Table 4). 
Interestingly, SUMO‐1 is significantly reduced in mice and human 
patients with heart failure and heart failure was observed in mice fol‐
lowing the deletion of cardiomyocyte‐specific SUMO‐1. As a result, 
the SUMOylation of cardiac SERCA2a was significantly decreased 
(Figure 2). Studies have also shown that cardiomyocyte‐specific 
overexpression of SUMO‐1 with AAV9 reduced the cardiac hyper‐
trophy phenotype.65,66 Targeting SERCA2a with adeno‐associated 
vector type 1 encoding SERCA2a (AAV1.SERCA2a) is considered as 
a new therapeutic target to treat heart failure.67 The initial Phase II of 
the Calcium Upregulation by Percutaneous Administration of Gene 
Therapy in Cardiac Disease (CUPID) trials delivering the SERCA2a 
gene for treatment of heart failure has shown potential clinical ben‐
efits. Although subsequent CUPID‐2 studies did not meet the pri‐
mary or any secondary endpoints, overexpression of SERCA2a via 
gene transfer continues to be a promising therapeutic strategy for 
the treatment of heart failure.68 It is to be noted that SUMOylation 

TA B L E  3   Roles of E3 ligases and DUBs in myocardial hypertrophy

Name Target Result Mechanism Role in heart Reference

TRIM8 TAK1 Activation K63‐linked	polyubiquitination	of	TAK1,	
activation of NF‐κB, (TAK1)‐p38/JNK 
signalling pathways

Contributed to pathological 
cardiac hypertrophy

45,46

TRAF6 TAK1 Activation K63‐linked	polyubiquitination	of	TAK1	and	
activation of TAK1 signalling pathways

Exacerbated pathological cardiac 
hypertrophy

47

USP4 TAK1 Inactivation Deubiquitination of TAK1 and suppression of 
(TAK1)‐(JNK1/2)/P38 signalling

Negatively regulated pathological 
cardiac hypertrophy

49

USP18 TAK1 Inactivation Deubiquitination of TAK1and inhibition of 
TAK1‐p38/JNK1/2 activation

Inhibited cardiomyocyte 
hypertrophy

50

Pellino1 RIP1 and TRAF1 Activation K63‐linked	polyubiquitination	of	RIP1	and	
TRAF1, activation of NF‐κB, p38 and AP‐1 
signalling pathways

Contributed to cardiac fibroblast 
activation

57

CYLD unknown unknown Inactivation of ERK and p38/AP1 and 
suppressed Nrf2 expression

Inhibited cardiac maladaptive 
remodelling and dysfunction

58

USP14 unknown Activation Phosphorylated GSK‐3β Contributed to cardiac 
hypertrophy

51

MuRF1 TRa Inactivation Mono‐ubiquitinated TRα and inhibited TRα 
activity

Inhibited T3‐induced cardiac 
hypertrophy

59

MuRF1 Calcineurin A Degradation K48‐linked polyubiquitination and degradation 
of Calcineurin A

Negatively regulated pathological 
cardiac hypertrophy

60

MDM2 TCAP Degradation K48‐linked polyubiquitination and degradation 
of TCAP

Attenuated cardiac hypertrophy 61,62

TRIM24 Unknown Activation Stabilized dysbindin Contributed to pathological 
cardiac hypertrophy

65

TRIM32 dysbindin Degradation Degraded dysbindin Prevented pathological cardiac 
hypertrophy

64
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of SERCA2a was shown to be reduced along with low SUMO1 ex‐
pression in the failing heart. Thus, SUMOylation of SERCA2a acti‐
vated via small molecules or enforced expression of SUMO1 with 
gene transfer may be a new therapeutic approach to treat heart 
failure.69 The SUMOylation of HSF2 mediated by SUMO‐1 was 
reported to attenuate myocardial hypertrophy. The expression of 
MEL‐18 is up‐regulated in response to treatment with angiotensin II, 
resulting in the deSUMOylation of HSF2 by the removal of SUMO‐1. 

This increases the expression of IGF‐IIR and induces hypertrophy 
(Table 4).70 In addition, Wang et al reported that the overexpres‐
sion of myofibrillogenesis regulator 1(MR‐1) directly induced myo‐
cardial hypertrophy by enhancing the SUMOylation of myomesin‐1 
(Figure 2).71

In contrast to these findings, the activation of calcineurin/
nuclear factor of activated T cell (NFAT) signalling, and cardio‐
myocyte hypertrophy induced by SUMO2, are independent of 

Name Target Result Role in heart Reference

SUMO1 SERCA2a Activation Induced pathological cardiac 
hypertrophy

65,66

SUMO1 HSF2 Activation Induced pathological cardiac 
hypertrophy

70

SUMO1 Myomesin Activation Exacerbated pathological 
cardiac hypertrophy

71

SUMO2/3 Calpain Activation Exacerbated pathological 
cardiac hypertrophy

72,73

TA B L E  4   Roles of SUMOylation in 
myocardial hypertrophy

F I G U R E  2   SUMOylation‐mediated signalling pathway of cardiac hypertrophy. SUMOylation plays an important role in cardiac 
hypertrophy by regulating the Ca2+/calmodulin, NF‐κB and other signalling pathways
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SUMOylation. SUMO2 tethers calcineurin activation to the nu‐
cleus in cardiomyocyte, facilitating the activation of NFAT to in‐
duce higher expression levels of hypertrophy‐related genes and 
significantly increase the cell surface area (Figure 2).72 Recently, 
Kim et al demonstrated that the SUMO2‐3 conjugation promoted 
the degradation of calpain‐calpastatin in failing human hearts 
(Table 4).73 Calpain mediates myocardial hypertrophy and re‐
modelling mainly through two signalling pathways: hydrolysing 
calcineurin (CaN) to generate its active fragments or hydrolysing 
the CaN endogenous inhibitor, Cain/Cabinl, to activate the CaN 
signalling pathway and cleavage of IκBα to activate myocardial 
NF‐κB (Figure 2).74,75 UBC9 and SUMO E2 ligase play important 
roles in enhancing the expression of several proteins that reside 
in the endoplasmic reticulum.76 Furthermore, the cardiomyocyte‐
specific expression of UBC9 significantly improves cardiac func‐
tion by increasing SUMOylation and autophagic flux in transgenic 
mice.77 In general, SUMOylation is essential for cardiac function 
and E3 SUMO‐protein ligases and SUMO conjugating enzymes 
are potential antihypertrophy drug targets.

6  | O ‐ GLCNACYL ATION

O‐GlcNAcylation is the O‐linked attachment of the monosaccharide, 
β‐linked N‐acetyl‐glucosamine (O‐GlcNAc), to cytoplasmic, nuclear 
and mitochondrial proteins. It is a PTM that regulates cardiovascular 
disease.78 O‐GlcNAcylation induced by high glucose is essential for 
the progression of cardiac hypertrophy via increased expression of 
ERK1/2 and cyclin D2.79 The activation of AMPK pathway inhibits 
cardiac hypertrophy by reducing O‐GlcNAcylation in vivo.80 Global 
cardiac protein O‐GlcNAc signalling is increased in various aetiolo‐
gies of cardiac hypertrophy and failure.81

Olson et al showed that overexpression of c‐Myc promoted car‐
diac hypertrophy and increased O‐GlcNAc levels.82 While c‐Myc 
knockout repressed pressure overload‐induced cardiac hypertro‐
phy and decreased O‐GlcNAc levels. O‐GlcNAcylation stabilized 
c‐Myc and thus increased its transcriptional activity, consequently 
activating the foetal gene program to induce cardiac hypertrophy.83 
Sp1, a transcription factor involved in the development of myocar‐
dial hypertrophy, has multiple O‐GlcNAcylation sites.84 It has also 

F I G U R E  3   Acetylation‐ and methylation‐mediated signalling pathways of cardiac hypertrophy. Chromatin modifications are essential for 
regulating gene expression. Gene transcription can be regulated by acetylation and methylation of chromatin histones. Through remodelling 
the structure of chromatin, epigenetic modifications mediate the accessibility of DNA to regulate gene expression
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been shown that insulin‐induced O‐GlcNAcylation of Sp1 triggers its 
nuclear translocation where it is partially or wholly deglycosylated, 
then phosphorylated to activate foetal gene expression.85

O‐linked‐β‐N‐acetylglucosamine (O‐GlcNAc) transferase (OGT) 
is an enzyme that catalyses O‐GlcNAc to various cellular pro‐
teins. Cardiomyocyte‐specific deletion of OGT is characterized 
by cardiac hypertrophy in adult mice, suggesting that decreasing 
O‐GlcNAcylation induces hypertrophy development.86 However, 
emerging studies show that an increase in O‐GlcNAc levels was 
observed in pathological cardiac hypertrophy in the mice hearts 
induced by phenylephrine treatment.87,88 Therefore, according to 
current reports, we cannot get a definite conclusion whether O‐
GlcNAcylation induces or attenuates hypertrophy development 
and heart failure. Taken together, these findings further support our 
conclusion that O‐GlcNAcylation plays an important role in cardiac 
function and may be a therapeutic target.

7  | ACET YL ATION AND METHYL ATION

Emerging evidence suggests that epigenetic modifications of his‐
tones, such as acetylation and methylation, are essential for the 
regulation of gene expression during the progression of cardiac hy‐
pertrophy.89 The correct expression of genes in cardiomyocyte is 
the basis for normal cardiac function. Thus, abnormal gene expres‐
sion may cause heart dysfunction. Papait et al found that histone 
methyltransferase G9a regulated key epigenetic changes during the 
progression of cardiac hypertrophy (Figure 3). Hence, methylation 
was essential for cardiomyocyte homoeostasis and hypertrophy.90 
Likewise, the histone trimethyllysine demethylase, JMJD2A, pro‐
moted cardiac hypertrophy in response to hypertrophic stimulation 
in mice and induced an increase in the expression of hypertrophy 
markers including B‐type natriuretic peptide and natriuretic peptide 
A in pluripotent stem cell‐derived cardiomyocyte (Table 5).91,92 The 
histone demethylase, PHF8, was also observed to attenuate cardiac 
hypertrophy upon cardiac overload 93 (Figure 3).

In the following section, we focus on the roles of acetylation 
in the development of cardiac hypertrophy progression (Figure 3). 
Previous studies reported the key function of histone deacetyl‐
ases (HDACs) in the regulation of pathological heart growth. Class 
II HDACs maintain normal cardiac function and size by mediating 
the expression of MEF2 transcription factors and other factors.94 
Recent studies reported that Class II HDACs were essential for vas‐
cular smooth muscle cell hypertrophy and hyperplasia through the 
CaMKIIα/protein	kinase	D1/HDAC4/GATA6	pathway.56 In addition, 
cardiomyocyte hypertrophy was attenuated by transcription factor 
3 (ATF3), binding with the Map2K3 promoter, resulting in recruiting 
HDAC1 and suppressing MAP2K3‐p38 Signalling.95 Furthermore, the 
class III HDAC, sirtuin 1 (SITR1), reportedly prevented cardiomyo‐
cyte hypertrophy by negatively regulating the acetylation and phos‐
phorylation levels of protein kinase C‐ζ (Table 5).96 Likewise, Class 
I HDACs attenuated cardiac hypertrophy by repressing the TSC2‐
dependent mammalian target of rapamycin pathway.97,98 Besides TA
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that, histone 3 at Lys9 (H3K9) was hyperacetylated upon ethanol ex‐
posure, inducing cardiac hypertrophy and ethanol‐induced cardiac 
hypertrophy was attenuated by an acardic acid in mice.99,100 As the 
most abundant cells in mammalian heart tissue, cardiac fibroblasts 
contribute to cardiac remodelling and heart failure.101 In recent re‐
ports, HDAC inhibitors, in particular Class I HDAC inhibitors, were 
shown to attenuate pathological cardiac fibroblasts and ameliorate 
systolic and diastolic heart function in animal models.102,103 For ex‐
ample, MGCD0103, a Class I HDAC inhibitor, was shown to inhibit 
cardiac fibrosis induced with angiotensin II via repression of ERK1/2 
signalling.104 HDAC inhibitors were also shown to attenuate patho‐
logical cardiac hypertrophy.98,105 These reports suggest that HDAC 
inhibitors may be the promising therapeutic drugs to treat heart fail‐
ure. Although several reports show that pre‐clinical HDAC inhibitors 
are efficient in animal models of heart failure, no clinical trials using 
HDAC inhibitors are ongoing in heart failure patients. Four HDAC 
inhibitors (vorinostat, romidepsin, belinostat and panobinostat) have 
been approved by the FDA to treat cancer.98 In a recent systematic 
review, cancer patients treated with pan‐HDAC inhibitors exhibited 
mild cardiac side effects.106 Therefore, future work in this field is 
needed to delineate global cardiovascular safety of treatment with 
HDAC inhibitors in cancer patients.

SIRT2 was reported to act as a cardioprotective deacetylase by 
deacetylating liver kinaseB1 (LKB1) in pathological cardiac hyper‐
trophy, resulting in activating AMPK signalling pathway.107 In ad‐
dition, SIRT2 attenuated agonist‐induced cardiac hypertrophy by 
deacetylating NFATc2 transcription factor, leading to transcriptional 
suppression of hypertrophic genes.108 Recently, hypertension‐in‐
duced cardiac hypertrophy was reported to be protected by sirtuin 
3 (SIRT3), deacetylating Pink1/Parkin, resulting in mitophagy and 
reduction of ROS production.109	Notably,	sirtuin	6	(SIRT6)	regulated	
the progression of cardiac hypertrophy by deacetylating H3K9 to 
inhibit IGF‐Akt signalling pathway (Table 5).110	SIRT6	also	reported	
to prevent cardiomyocyte hypertrophy by inhibiting the expres‐
sion of transcription 3 (STAT3).111	Finally,	in	SIRT6‐deficient	hearts,	
SIRT1 was observed to be deacetylated and activated Akt signalling 
pathways.112

In conclusion, these findings highlight the critical role of both 
methylation and acetylation in the initiation, progression and out‐
come of maladaptive cardiac remodelling and dysfunction and 
HDAC inhibitors are promising drugs to target cardiac hypertrophic 
signalling for heart failure treatment.

8  | THE MULTIFACETED CONTROL OF 
PTM

It is well recognized that cardiac hypertrophy is mediated at several 
levels, including gene transcription, processing and translation of 
mRNAs and PTMs. PTMs act as key regulators of proteins, occurring 
as a modification at a single residue or combining effects over multiple 
sites undergoing the same or different modifications.113 Cells need 
to be connected to various PTM signals and coordinated with each 

other to properly regulate cardiac hypertrophy. Furthermore, emerg‐
ing evidence has highlighted important roles for crosstalk between 
different pairs of PTMs, such as ubiquitylation‐phosphorylation,21 
SUMOylation‐phosphorylation,65 acetylation‐phosphorylation,114 
O‐linked glycosylation‐phosphorylation,80 and acetylation‐methyla‐
tion.63 For example, TAK1, an important signal transmitter, transmits 
the upstream signal from the receptor complex to the downstream 
signalling molecules. Recently, phosphorylation of TAK1 activated 
by NF‐κB	was	 reported	 to	 contribute	 to	 further	 K63‐linked	 poly‐
ubiquitination modulated by TRIM8 in pathological hypertrophy 21 
(Figure 1). SUMO‐1 is involved in heart failure by specifically me‐
diating SUMOylation of SERCA2a. However, phosphorylation of 
SERCA2a is essential for SUMOylation of SERCA2a mediated by 
SUMO‐1 in mice and human patients with heart failure (Figure 2).65 
AMPK is a hetero‐trimeric complex, which is activated by phos‐
phorylation on the residue Thr172.115 In addition, AMPK inhibits 
O‐GlcNAcylation by mainly regulating phosphorylation of GFAT 
and AMPK activation counteracts cardiac hypertrophy by reducing 
O‐GlcNAcylation of proteins such as troponin T.80 Acetylation and 
trimethylation on H3K27 play opposing roles at the promoter re‐
gions of genes involved in cardiac hypertrophy.116 A previous study 
has shown that SIRT1 attenuated the PKC‐ζ activity via mediating 
the interplay of acetylation and phosphorylation in cardiac hypertro‐
phy 96 (Figure 3). In conclusion, these findings suggest that crosstalk 
between different pairs of PTMs is essential for cardiac function. 
Future work in this field is needed to determine the global mechanis‐
tic actions of these PTMs in the heart.

9  | CONCLUSIONS AND PERSPEC TIVES

A considerable number of studies have shown that myocardial hy‐
pertrophy is a phenomenon in which cardiac cells transform from a 
mature ‘contractile state’ to an ‘embryonic synthesis state’ and is the 
primary pathophysiological process in the development of heart fail‐
ure.117 Myocardial hypertrophy can lead to reduced blood pressure, 
cardiac cell hypertrophy and apoptosis, decreased ventricular com‐
pliance and impaired ejection function, resulting in a vicious cycle 
of worsening cardiac functions. Overall, myocardial hypertrophy has 
become an increasingly important factor in the field of cardiovas‐
cular disease. Therefore, it is particularly important to explore its 
mechanism.

As reported in the studies reviewed in this article, myocardial 
hypertrophy is connected with various cellular signalling pathways 
and PTMs. PTMs of proteins can precisely regulate and improve the 
stability and activity of diverse signalling pathways. PTMs are closely 
related to the occurrence and developmental process of cardiac hy‐
pertrophy, but their molecular mechanisms and regulatory network 
still remain elusive and require further investigations. Therefore, a 
thorough investigation of the regulatory mechanisms of PTMs in the 
process of cardiac hypertrophy can help us better understand the 
basis of myocardial hypertrophy and develop improved drugs to pre‐
vent or reverse this disorder.
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