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Abstract: “Biochar” (BC) is the solid residue recovered from the thermal cracking of biomasses in an
oxygen-poor atmosphere. Recently, BC has been increasingly explored as a sustainable, inexpensive,
and viable alternative to traditional carbonaceous fillers for the development of polymer-based
composites. In fact, BC exhibits high thermal stability, high surface area, and electrical conductivity;
moreover, its main properties can be properly tuned by controlling the conditions of the production
process. Due to its intriguing characteristics, BC is currently in competition with high-performing
fillers in the formulation of multi-functional polymer-based composites, inducing both high mechani-
cal and electrical properties. Moreover, BC can be derived from a huge variety of biomass sources,
including post-consumer agricultural wastes, hence providing an interesting opportunity toward
a “zero waste” circular bioeconomy. This work aims at providing a comprehensive overview of
the main achievements obtained by combining BC with several thermoplastic and thermosetting
matrices. In particular, the effect of the introduction of BC on the overall performance of different
polymer matrices will be critically reviewed, highlighting the influence of differently synthesized BC
on the final performance and behavior of the resulting composites. Lastly, a comparative perspective
on BC with other carbonaceous fillers will be also provided.

Keywords: biochar; zero-waste approach; circular economy; polymer-based composites; mechanical
properties; electrical properties

1. Introduction

Environmental safety and the progressive depletion of fossil fuel-based sources are
currently a great concern for both academic and industrial research. As a result, there
is an increasing interest in sustainable manufacturing [1–3]. The investigation of new
eco-sustainable and bio-based composites has gained great attention, especially concerning
eco-friendly systems derived from waste and renewable resources [4]. Accordingly, a
promising alternative to conventional carbonaceous fillers is biochar (BC), a carbonaceous
and renewable material produced by the thermo-chemical conversion of biomasses in an
oxygen-limited environment [5–7]. Unlike other carbon-based materials, BC is derived
from sustainable biomass resources and possesses high thermal stability and hardness, high
surface area, good chemical stability, and electrical conductivity [8–11]. Up to now, BC has
been widely investigated for environmental remediation [12–14], as catalyst support [15],
and for energy storage applications [16]. Nevertheless, BC-based composites still require
optimization to reach performance comparable to traditional carbon-based fillers such as
graphene and carbon nanotubes. These materials can be used to reach great composites
performance, but they are costly. In 2020, the price of single layer graphene was higher than
USD 230/cm2, while for graphene oxide the price was USD 140/kg. Conversely, carbon
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black was sold for around USD 1.2/kg [8]. Compared to a cheap carbon filler such as
carbon black, BC has a lower cost and is derived from biomass.

In this context, investigations dealing with the formulation of BC-containing poly-
meric systems based either on thermoplastic or thermosetting matrices have been increasing
exponentially in recent years. Considering its intriguing characteristics, along with the pos-
sibility to tailor its structure and functionalization, BC represents an attractive alternative
to traditional carbonaceous fillers for improving the mechanical, electrical, and physical
properties of polymer-based composites [4,17,18].

Nevertheless, the relation between the properties of BC and those of its composites is
hard to establish, mainly due to the great BC variability [19]. The spread of the use of BC
for the production of polymeric composites brings about the need of a reference point for
both the specialists and the newcomers in the field. The present review aims at providing a
comprehensive overview of BC-containing composites based on both thermoplastic and
thermosetting polymers, highlighting the main achievements reached in the last decade. In
particular, we discuss the relationship between BC properties (i.e., particle size, functional-
ization, and graphitization degree) and the properties of resulting composites. Finally, a
comparative perspective on BC with other carbonaceous fillers will also be provided.

2. A Brief Overview of BC Production and Properties

BC is produced through thermochemical cracking of biomasses following three main
routes named hydrothermal liquefaction, pyrolysis, and gasification.

Hydrothermal liquefaction is a thermochemical conversion operating in a temperature
range up to 350 ◦C, in a water medium, and under moderate pressure. This procedure
promotes advanced depolymerization of biomass giving rise to highly functionalized BC
named hydrochar [20].

Proper pyrolytic processes take place at temperatures above 400 ◦C in an oxygen-
limited [21] or inert atmosphere [7]. By using the pyrolytic approach, it is possible to
achieve a fast and advanced cracking process of each biomass component (lignin, cellulose,
and hemicellulose) with the simultaneous production of BC, bio-oils, and non-condensable
gases [22] with a wide variation in fraction yields based on heating technologies [21,23–26]
and plant design [7,27].

Gasification is the other route for BC production that is run in an oxidant atmosphere
by using air [28], oxygen, or even steam [29] with temperatures higher than 800 ◦C. The com-
bination of high temperature and oxidant atmosphere induces the conversion of biomass
into a gas mixture mainly composed of hydrogen, methane, carbon dioxide, carbon monox-
ide, and steam. The solid output of gasification is a BC with a very high ash content and
low carbon percentage. In a common pyrolytic process, biomass undergoes proper car-
bonization at temperatures ranging from 300 ◦C to 400 ◦C with cracking of its components
through complex reaction routes and forming. In this stage, BC is massively tailored with
oxygen-based functionalities (i.e., hydroxyl, carbonyl, and carboxylic residues) and displays
a highly defective carbon structure. By increasing the temperature from 600 ◦C to 800 ◦C,
the aromatic structures further condense, forming proper graphite-like domains, still highly
disordered but with less residual groups. These materials are commonly classified as hard
carbon due to their high mechanical hardness [30]. Further temperature increments lead to
a progressive enlargement and ordering process of graphitic domains through turbostatical
rearrangement [31] that ends at about 3000 ◦C when the maximum graphitization degree is
reached [32]. As widely discussed by Weber et al. [33], the properties of BC (i.e., surface
area, porosity, grindability, etc.) originated from a complex combination of interactions
due to the morphology and chemical composition of the feedstock and can be tailored by
post-treatments such as surface tailoring or activation [34].

The technology chosen for BC production plays a crucial role in determining the final
properties of the filler, and it is related to a complex combination of economic and strategic
features. All properties of BC are simultaneously affected by all the selected process
parameters such as production temperature, reactor design, and feedstock used [35], and
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it is hard to establish systematic and general rules for their simultaneous optimization.
Nevertheless, the quality of BC can be ensured for large scale-production over time [36].

As far as the influence of feedstock is concerned, it has been demonstrated that
wood-derived BC exhibits a highly volatile content compared to materials obtained from
non-woody sources. Furthermore, depending on the type of feedstock, a variation in the
quality and amount of heteroatoms and metal elements incorporated into BC has been
observed [37].

In general, an increase in pyrolysis temperature, apart from the already discussed
structural modifications, causes a decrease in the content of functional groups, thus af-
fecting the affinity of the obtained BC toward polar moieties. In particular, a concurrent
decrease of the O/C and N/C ratios is usually observed in BC pyrolyzed at high temper-
atures due to the occurrence of temperature-induced dehydration and decarboxylation
processes [38,39]. Furthermore, pyrolysis processes performed at high temperatures induce
an improvement in the solvent absorption capability of BC, because of the formation of
nonporous structures [40].

Finally, it has been shown that the reactors employed for BC production have a
marginal effect on the elemental carbon content, surface functionalities, and thermal degra-
dation of BC. Interestingly, Das et al. reported a significant effect of the pyrolysis reactor
on the fire resistance of the resulting BC. In particular, they showed that BC obtained in
a hydrothermal reactor exhibits high fire resistance due to the presence of tarry volatiles,
which are able to seal water molecules within the BC pores, thus hindering the material
combustion [41].

3. BC-Based Composites: Properties and Applications
3.1. Polyolefins-Based Composites
3.1.1. Polypropylene (PP)-Based Composites

The first pioneering works related to the utilization of BC derived from pyrolysis
processes of organic wastes were conducted by Das et al. [42], who exploited BC in com-
bination with wood to enhance the final properties of wood–plastic composites (WPCs).
In fact, WPCs usually present some disadvantages such as thickness swelling, thermal
instability, and low interfacial bonding, which can be profitably overcome through the
addition of BC particles [17]. In particular, BC filler produced from landfill pine wood at
two different pyrolysis temperatures, namely 400 and 450 ◦C, was added to a PP matrix
through melt extrusion at different loadings (ranging from 6 to 30 wt.%), together with
30 wt.% of wood. The mechanical characterization of the composites revealed that the
material containing 24 wt.% of BC exhibits similar tensile strength and modulus but higher
flexural properties compared to conventional wood/PP composites. These findings were
attributed to the improvement of the interfacial adhesion between wood and PP because of
the BC incorporation. However, a severe reduction of the material ductility was observed
for BC loadings beyond 15 wt.%.

Aiming at assessing the possible influence of the waste feedstock on the main char-
acteristics (such as surface area, carbon and ash content, and pore volume among a few
to mention) of the obtained BC particles and, consequently, on the final properties of the
resulting PP-based composites, the same research group exploited six types of BC coming
from different waste sources to formulate WPCs containing 30 wt.% of wood and 24 wt.%
of BC [43]. From a general point of view, the incorporation of BC enhanced PP tensile
and flexural moduli and strength compared to WPC counterparts. Based on the obtained
results, the authors concluded that mineral/carbon content and particle surface area are
the main factors affecting the mechanical properties of the resulting composites. In fact, the
composites containing BCs with higher carbon content and larger surface area exhibited
higher values of tensile strength and moduli. Furthermore, the characterization of the fire
properties of the composites indicated that the systems containing BC with high CaCO3
loadings exhibited a lower heat release rate compared to other composites due to the
beneficial effect of the inorganic content in hindering the diffusion path of the oxygen in
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the composite during forced-combustion tests. This result revealed the opportunity to
impart fire retardance to polymer-based composites with the introduction of BC particles;
this finding was further verified for PP-based composites containing up to 30 wt.% of BC
obtained from landfill pine wood waste by pyrolysis at 500 ◦C and a subsequent high
temperature (900 ◦C) activation process. For these composites, the peak of the heat release
rate and the smoke production rate were lowered by increasing the BC content [44]. In
addition, in this case, the improved fire performance of the composites were attributed
to the formation of a compact carbonaceous layer, preventing the oxygen transfer toward
the PP matrix. Furthermore, the authors demonstrated that the introduction of increasing
loadings of BC caused a monotonic increase of the tensile and flexural moduli due to
the peculiar morphology of the composites. In detail, as shown by the SEM micrographs
presented in Figure 1, the molten PP chains were able to infiltrate the porous structure of
the BC particles during the processing, resulting in the formation of an extended network
of mechanical interlocking between the polymer matrix and the embedded filler, hence
increasing flexural and tensile moduli.
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Figure 1. SEM micrographs of PP/BC composites containing different amounts of filler [44]. Repro-
duced with permission from Elsevier Science Ltd. 2016, Elsevier Science, Ltd.

Further studies have documented that a fundamental role in obtaining composite
materials with superior mechanical properties was played by the physical bonding achieved
through the infiltration of the polymer chains into the BC pores, eliminating the need to
use coupling agents for the enhancement of the interfacial adhesion between BC particles
and the polymer matrix [45,46].

The beneficial effect of the BC incorporation on the fire behavior of PP was also
explored in the presence of other conventional flame retardant compounds, such as am-
monium polyphosphate and magnesium hydroxide [47,48]. In particular, composites
containing different loadings of BC particles obtained from landfill pine wood, wood fibers,
and 20 wt.% of flame retardants exhibited significantly enhanced fire retardant performance
with respect to the unfilled matrix. However, the simultaneous presence of BC and the
selected flame retardants induced some detrimental effects on the mechanical performance
of the composites, since flame retardant particles were trapped within BC pores, thus
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hindering the flow of the polymer chains and reducing the effectiveness of the mechanical
interlocking between PP macromolecules and BC particles.

An interesting study performed by Das et al. [49] demonstrated the possibility to
predict the mechanical performance of PP-based composites containing BC produced
from the pyrolysis of waste pine wood by means of a nanoindentation study on both the
individual particles and the polymer. In detail, the measured nanoindentation values
for hardness and moduli were exploited together with theoretical models to compare the
predicted and experimental results, showing a good agreement between experimental
values and theoretical predictions. It evidenced the fundamental role of the polymer
infiltration phenomenon, which is responsible for higher hardness values for the composites
compared to bare BC particles.

In a recent study, Paleri et al. [50] showed that the proper selection of the BC pyroly-
sis conditions, especially the treatment temperature, significantly affects the mechanical
performance of the resulting composites. More specifically, BC particles derived from
distillers’ dried grains with solubles, i.e., a co-product from the corn ethanol industry,
were obtained through torrefaction and pyrolysis at different temperatures and exploited
as fillers in a PP matrix. Preliminary analyses performed on the BC particles showed a
decrease in the functional groups content and an increase in the ash content by increasing
the treatment temperature. The mechanical characterization of the composites revealed that
the best performance in terms of stiffness–toughness balance were achieved for the system
containing BC pyrolyzed at 700 ◦C. In particular, the introduction of this type of BC caused
an improvement in elastic modulus (+40%), flexural modulus (+55%), and impact strength
(+27%) compared to the unfilled PP. Furthermore, the rheological characterization of the
formulated systems demonstrated the obtainment of higher complex viscosity and storage
modulus values for the system containing BC pyrolyzed at 700 ◦C with respect to the oth-
ers, indicating an improved compatibility with PP macromolecules. The best performance
achieved by BC particles pyrolyzed at 700 ◦C were ascribed to their low polarity compared
to those obtained at lower temperatures (i.e., at 500 or 600 ◦C) and to their lower ash content
and particle size with respect to the BC particles obtained at 1000 ◦C. However, Ayadi
et al. [51] demonstrated that the decrease of the number of functional groups resulting
from pyrolysis performed at high temperatures severely limited the obtainment of superior
mechanical properties. More specifically, they investigated PP-based composites containing
BC particles derived from wood at different pyro-gasification temperatures and a coupling
agent. Pyrolysis processes carried out at temperatures beyond 400 ◦C induced the presence
of progressively lower amounts of functional groups, hence preventing the achievement
of strong interfacial interactions between the coupling agent and the BC particles. On the
other hand, the modification of BC chemical structure induced by the treatment at high
temperatures promoted a remarkable increase of the dimensional stability of the composites
and an improvement of their hydrophobicity.

Despite the role of the rheological characterization in providing an indirect evaluation
of the extent of filler distribution and of possible polymer/filler interactions established
at the interface, few works discuss the effect of BC introduction on the PP rheological
response [50,52–56]. In particular, Poulose et al. [52,57] investigated the rheological prop-
erties of PP-based composites containing different loadings of BC particles derived from
date palm waste through a pyrolysis process performed at two temperatures, namely
700 and 900 ◦C. The obtained results (Figure 2) indicated a different rheological behavior
for the composites compared to unfilled PP, especially in the low frequency region; more
specifically, the flattening of the moduli curves highlighted the formation of an extended
filler–filler network within the matrix, causing the restriction of the motion of PP macro-
molecules. However, the low increment of the storage modulus values for the composites
compared to those of the unfilled matrix indicated a poor degree of interaction between the
embedded particles and PP macromolecules. Furthermore, the analysis of the tanδ curves
as a function of frequency suggested that in the formulated composites the rheological
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percolation threshold was not reached for all investigated BC loadings, likely due to the
weak PP–BC interactions.
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Furthermore, it was demonstrated that the introduction of BC within a PP matrix
remarkably affects the crystallization behavior of the resulting composites. In fact, usually
PP–BC composites show a higher crystallinity degree compared to the unfilled matrix
due to the nucleating action exerted by BC particles [58]. In this context, Elnour et al. [59]
documented a progressive increase of the crystallization temperature with increasing BC
loading, due to the rising number of nucleation sites available for the crystallization; a cor-
relation between the composite crystallization temperature and the pyrolysis temperature
of BC was observed.

Analogously, Alghyamah et al. [57] evaluated the crystallization behavior of PP–BC
composites containing different loadings (namely, 5, 10, 15, and 20 wt.%) of carbonaceous
particles prepared from waste biomass, with pyrolysis temperatures ranging from 300 to
700 ◦C. The obtained results revealed that the introduction of BC particles enhanced the
overall crystallization process of the composites. Furthermore, the assessment of the
crystallization kinetics documented that the overall crystallization and nucleation rates
were enhanced in the presence of BC particles. The analysis of the data through the Avrami
model [60] allowed discriminating two different BC characteristics, dependent on the
pyrolysis temperature, strongly affecting the PP crystal formation, namely the porous
structure and the surface area. In detail, the BC prepared at higher temperatures promoted
the growth of PP crystals having a two-dimensional disk-like shape, while the BC obtained
at lower temperatures induced the formation of rod-like structures. These differences were
associated with the highly infiltrated morphology obtained in the composites containing BC
particles prepared at higher temperatures. Additionally, the evaluation of the spherulitic
growth (Figure 3) carried out at a crystallization temperature of 120 ◦C pointed out the
formation of a significantly high number of crystalline structures having smaller dimensions
compared to those observed in unfilled PP. This phenomenon was associated with the
fast heterogeneous nucleation occurring in the presence of BC particles, resulting in the
formation of small-sized PP spherulites with imperfect morphologies.

3.1.2. Polyethylene (PE)-Based Composites

Among PEs, U\ultra-H\high M\molecular W\weight P\9olyethylene (UHMWPE)
was often selected as the polymer matrix for preparing composites containing BC, aim-
ing at obtaining conductive materials suitable for applications as antistatic materials and
sensors [61]. The use of UHMWPE as the polymer matrix for conductive polymer com-
posites is well documented in the literature and is justified by the segregated microstruc-
ture usually obtained in UHMWPE-based composites, which can effectively reduce the
interfacial electrical resistance between the filler and the polymer matrix due to the de-
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velopment of a continuous conductive path leading to an improvement of the electrical
conductivity of the material [62]. From a general point of view, conductive polymer-based
materials are often preferred to metallic conductors due to their wide range of electri-
cal conductivity and, in particular, to their lower cost. Although various carbon-based
fillers such as graphene [63,64] and carbon nanotubes [65,66] have been used to formulate
UHMWPE-based conductive polymer composites, these nanoparticles are expensive and
non-sustainable; therefore, there is a rising interest in exploiting BC as a cheap and bio-
sustainable alternative to these materials. In this context, composites systems based on
polyethylene and containing different types of BC have been designed and formulated, aim-
ing at assessing the effect of the BC introduction on the electrical and also the mechanical
properties of the resulting composites [67].
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Generally, the incorporation of BC into UHMWPE allows obtaining composite ma-
terials with high mechanical properties and high electrical conductivity [61,68]. In this
context, Li et al. [68] prepared highly filled (up to 80 wt.%) composites using commercial BC
particles derived from Bamboo charcoal, through melt extrusion. Due to its high molecular
weight and consequent very high viscosity, UHMWPE is not processable through extrusion;
for this reason, a blend of UHMWPE and linear low-density polyethylene (LLDPE) was
used as the matrix. The evaluation of the electrical properties of the obtained composites
demonstrated that the BC conductive pathways were well established for filler loadings
beyond 60 wt.%, and the electrical conductivity of the materials progressively increased
as a function of the BC loading (see Figure 4). In particular, the composite containing
80 wt.% of BC exhibited a conductivity of 107.6 S/m. This excellent electrical performance
was attributed to a mechanism involving the electron transfer between BC particles by
direct physical contact or through a special tunneling phenomenon. Furthermore, it was
demonstrated that high BC loadings are effective in providing large amounts of free elec-
trons to attenuate the electromagnetic radiation; the composite containing 80 wt.% of BC
showed a very high EMI shielding effectiveness, indicating that BC has a great poten-
tial as a filler for conductive polymer-based composites for a variety of engineering and
electrical applications.
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Flexible UHMWPE/BC composites with tunable conductivity and good mechanical
properties prepared using extrusion and hot-compression methods were obtained by
Li et al. [69] by exploiting three different types of BC particles (derived from commercial
samples of pine, apple, and bamboo charcoal) obtained through a pyrolysis process within
500 and 1100 ◦C. The assessment of the material morphology indicated the achievement of
a uniform dispersion of all kinds of BC within UHMWPE and the establishment of strong
polymer/filler interfacial interactions. It was demonstrated that an increase in the pyrolysis
temperature promotes a modification of the electrical behavior of the BC, switching from
insulating to conductive material. Finally, for the composites containing 70 wt.% of BC
obtained at the highest carbonization temperature, high values of electrical conductivity
were recorded (namely, 3.0 × 10−1, 3.7 × 10−1, and 3.9 × 10−1 S/cm for the composites
containing BC from pine, apple, and bamboo charcoal, respectively), proving the suitability
of these materials for many electrical applications. In addition, in this case, the conductive
mechanism was attributed to the formation of BC conductive networks throughout the
matrix, promoting electron transfer between contiguous particles.

Li et al. [70] demonstrated that low values of the electrical percolation threshold
can be obtained in UHMWPE-based composites showing a fully-developed segregated
morphology. More specifically, exploiting a combination of high-speed mechanical mixing
and hot compaction (see the schematic representation depicted in Figure 5), the BC particles
are distributed only at the interface between contiguous polymer granules; this way, a
segregated conductive network is achieved with lower BC content compared to similar
composites showing a uniform filler distribution, leading to the obtainment of a low
electrical percolation threshold.

A typical percolation behavior was observed from the evaluation of the electrical
conductivity of the segregated UHMWPE/BC composites as a function of the BC content,
with an increase of nearly 10 orders of magnitude between 0.8 and 2.3 vol.% of BC; for
these systems, the value of the percolation concentration was found to be 2.0 vol.%. The
formulated composites exhibited increased thermal stability and tensile strength compared
to the unfilled matrix, confirming the applicability of the proposed processing route for the
formulation of BC-based materials suitable for industrial applications.

Quite recently, UHMWPE-BC composites containing high loadings of BC obtained
from commercial bamboo charcoal particles pyrolyzed at 800 and 1000 ◦C were proposed
for orthopedic applications [71]. Composite materials containing BC pyrolyzed at 1000 ◦C
showed improved hardness and tensile modulus values. Conversely, the introduction
of BC obtained at lower pyrolysis temperature enhanced tensile strength and wettability
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due to a greater polymer/filler affinity, as well as a lower friction coefficient and higher
biocompatibility compared to unfilled UHMWPE, highlighting the potential of this material
to be exploited for orthopedic applications.
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High-density polyethylene (HDPE) was widely utilized as the polymer matrix for BC-
containing composites. In particular, HDPE–BC composites were specifically designed for
obtaining sustainable materials showing adequate mechanical properties for applications
in packaging and the automotive sector [72,73]. In this context, Zhang et al. [74] used
BC derived from agricultural wastes as reinforcing filler for melt-extruded composites,
aiming at achieving a material with superior mechanical, thermal, and flame retardant
properties. It was documented that increasing BC loadings promoted enhanced tensile
properties, creep resistance, and anti-stress relaxation ability compared to the unfilled
matrix. Furthermore, a progressive improvement of the thermal and flame retardant
properties of the composites was documented as a function of the BC content due to its
intrinsic higher stability, notwithstanding a slight decrease of the water resistance of the
composites with respect to unfilled HDPE.

Zhang et al. [75] showed that the pyrolysis conditions undergone by BC particles have
a dramatic influence on the final properties of HDPE–BC composites. More specifically,
they demonstrated that an increase of the treatment temperature from 200 to 700 ◦C
caused an increase in specific surface area and pore volume along with a decrement of
the content of polar groups and, hence, of the polarity of the BC particles. As a result,
composites containing BC particles obtained at higher temperatures exhibited improved
flexural strength due to the higher amount of HDPE macromolecules infiltrated into the
porous structure of the filler, allowing the development of an interlocking structure, which
made the stress transfer mechanism more efficient. The absence of polar functional groups
onto the BC surface led to an improvement of the BC/HDPE compatibility, further inducing
the achievement of superior mechanical properties.

The strong interactions established in HDPE–BC composites were further evaluated
by Arrigo et al. [76] through rheological analyses. In detail, BC particles obtained from
waste coffee grounds through pyrolysis at 700 ◦C were incorporated into HDPE through
melt compounding. The analysis of the rheological response of the obtained materials
documented a slowing down of the relaxation dynamics of the polymer macromolecules
due to the confinement of the polymer chains onto the filler surface and/or within the BC
porous structure. Furthermore, a weak strain overshoot behavior in the non-linear regime
was observed for the composites containing BC loadings exceeding 2.5 wt.% (Figure 6),
indicative of weak structural complexes that oppose the imposed strain. This behavior
suggested the establishment of polymer/BC interactions that hinder the motion of the PE
macromolecular chains, retarding their complete relaxation.
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3.2. Polyamide-Based Composites

BC has also been exploited as a reinforcing filler for polyamides. As for polyolefins,
BC acts as a rigid filler resulting, in general, in an increased strength and elastic modulus,
but remarkably decreasing both ductility and toughness of the composite systems.

BC-containing composites based on PA6 and the more expensive PA6,10 were the
most reported in the literature so far. Ogunsona and co-workers investigated PA6-based
composites by using pyrolyzed miscanthus fibers [77], focusing on the effect of BC pyrolysis
conditions on the properties of the composites. In detail, miscanthus fibers pyrolyzed at
500 ◦C and 900 ◦C at loadings ranging from 6 to 20 wt.% were employed as the matrix
reinforcement. The composites containing low temperature (i.e., 500 ◦C) pyrolyzed BC
showed increased tensile and flexural strength values by 19.5% and 31%, respectively,
compared to the composites containing high temperature (i.e., 900 ◦C) pyrolyzed BC.
These differences were attributed to the different interfacial adhesion between BC and PA.
Conversely, the composites containing BC treated at 900 ◦C showed lower compatibility
due to the limited functional groups present on its surface and available for interacting
with the matrix.

Using a similar approach, Watt et al. [78] analyzed the influence of corn cob BC py-
rolyzed at three different temperatures (namely, 350, 500, and 900 ◦C) on the properties of a
commercial PA 4,10. This polyamide is mainly produced by materials derived from natural
sources, showing a bio-content of about 76%. The BC employed at 10 and 20 wt.% loading



Polymers 2022, 14, 2506 11 of 30

was also ball-milled and sieved to sub-300 µm size. SEM analyses of the composites contain-
ing corn cobs pyrolyzed at 350 ◦C documented the occurrence of a particle encapsulation at
the polymer interface resulting in an overall improvement of rheological properties, while
the mechanical properties remained relatively constant compared to the other composites.
Furthermore, it was shown that the introduction of 20 wt.% of low temperature pyrolyzed
BC was optimal, leading to improvement in tensile modulus by 6% while maintaining a low
density. Conversely, higher pyrolysis temperatures led to a higher degree of carbonization
because of the degradation of functional groups with an overall more disordered structure.
This latter, generated by gas evolution, showed a very high density and was responsible
for up to a 12% improvement in heat deflection temperature (HDT) when 20 wt.% of BC
was incorporated.

In a further research effort, Ogunsona and co-workers [79] studied the influence of
the size of BC particles on the properties of PA6,10 composites containing 20 wt.% of filler.
Crushed, milled, and fractionated milled biochar particles with size ranges of <63, 213–250,
and 426–500 µm, respectively, were used. It was found that as the particle size was reduced,
the composites showed increased HDT. This finding was interpreted considering that by
reducing BC size, the interparticle distance was also reduced, limiting the freedom or radius
of gyration of the polymer macromolecules, especially in the amorphous phase. Therefore,
higher temperatures were required to activate flow within the composite, leading to a higher
HDT. A similar behavior was found for the impact strength whose value increased by 200%
for the composites containing BC particles with a size below 63 mm when compared to
those with sizes not exceeding 500 µm. Finally, the addition of big-size BC decreased
the impact strength of PA 6, 10 by 70%. More specifically, the impact strength in the
composites always remained below that of unfilled PA due to the reduction in ductility
and the hindrance in plastic deformation by restricting the dynamics of polymer chains.
Interestingly, both flexural strength and modulus were always greater than those of the
unfilled matrix but were not correlated with the BC particle size.

A few studies reported the effect of a very high concentration of BC on the thermo-
mechanical properties of polyamide 6 [9]. Zhy et al. [80] used commercial bamboo BC
pyrolyzed at 1100 ◦C as filler in PA6. Samples were prepared by melt blending and injection
molding, and the amount of BC ranged from 10 to 60 wt.%. It was demonstrated that
when the amount of BC was 30 to 40 wt.%, the PA6–BC composites exhibited acceptable
properties in terms of strength, toughness, and processing fluidity.

Ogunsona and co-workers [9] used biochar obtained by miscanthus fibers as a rein-
forcement in polyamide 6 at loadings up to 40 wt.%. The increase of BC amount was probed
to enhance the tensile modulus and HDT values of the composites. At 40 wt.% filler loading,
the flexural and tensile strengths increased by 47 and 19.6%, respectively, compared to
unfilled polyamide 6. This result was attributed to the good adhesion between BC and
polyamide 6 as revealed by scanning electron micrographs of the impact fractured surfaces
of the composites. The impact strengths of all the composites remained comparable with
that of unfilled polymer. However, when the BC loading was 20 wt.%, the impact strength
increased by 43.7% with respect to that of unfilled polyamide 6.

Furthermore, the same group investigated the influence of the BC on the water uptake
of PA6 [81] by immersing samples in water at 85 ◦C for time intervals up to 28 h. The results
were also compared with those obtained for talc-reinforced nylon composite at 20 wt.%.
The addition of BC to PA6 caused a reduction of the water uptake during the conditioning
process compared to the unfilled polymer. The impact strength remained almost unchanged
even after conditioning, suggesting that the interaction established between BC and PA6
can restrict the chain mobility, thereby eliminating the effect of moisture on the polymer.
The morphological analysis of the impact fracture surfaces, reported in Figure 7, showed
relevant differences among the samples. In fact, in the conditioned PA6, the number of ridge-
like structures and grooves with a lot of cracks increased with respect to the unconditioned
sample, confirming the plasticizing effect exerted by water after conditioning. The PA6–talc
samples after 28 days of conditioning exhibited the exposure of more talc particles on the
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surface. When the morphology of biochar–PA6 composites was observed, two distinct
phases appeared, namely: Phase 1, where debonding of some of the BC particles from PA6
and pullout of the filler during impact fracture were visible, and Phase 2 that is similar to
the unconditioned sample and in which the BC was wetted by the matrix and not clearly
distinguishable. Finally, even if the performance of PA6–BC after conditioning was reduced,
these composites presented better tensile and flexural strength values before and after
conditioning, comparable moduli after conditioning, and lower density in comparison to
PA6–talc samples, hence indicating the suitability of BC as a lightweight alternative to talc.

In another work, the accelerated thermo-oxidative aging of PA6–BC was compared
with other PA composites containing commercial talc and glass fiber used in the automotive
industry [82]. The authors found that the glass-filled composites had the best mechanical
performance, whereas both talc- and BC-containing composites displayed similar mechan-
ical properties in terms of strength and ductility, with BC-filled composites being 11%
less dense than talc-filled counterparts, the filler loading being equal. The mechanical
performance (tensile and impact strength) of all the analyzed composites decreased after
thermo-oxidative aging for 1000 h at 140 ◦C; however, the degradation of PA6–BC compos-
ites was more significant than that of the other composites. This finding was attributed to
the physical structure of BC.

3.3. Polyester-Based Composites

Among polyesters, the literature reports a significant number of publications on
the preparation and characterization of polylactic acid (PLA)–BC composites. Currently,
PLA is utilized in many fields comprising biomedicine, textiles, films, decorative panels,
electrical elements, and food packaging. However, due to its poor crystallization property,
PLA presents low thermal stability, low toughness, and high brittleness, which restrict its
extensive industrial application [83]. The use of BC as a filler can lead to growing market
demand for PLA composites for higher potential applications such as transportation,
automotive, electronics, and electromagnetic interference shielding [84].

In most of the existing research, the incorporation of BC into PLA has been consid-
ered as a method for enhancing the mechanical properties of this polymer [85–95]. In
general, regardless of the nature of BC and its amount, an increase in the elastic modulus
and a decrease in tensile strength, elongation at break, and impact strength were usu-
ally found [87–91]. The decrease in tensile strength could be attributed to stress transfer
inefficiencies and the lack of homogeneous dispersion of BC particles in the matrix.

Ho et al. [92] found that the maximum tensile strength, flexural strength, and ductility
index of PLA–bamboo char composites prepared by extrusion molding were 43%, 99%, and
52%, respectively, higher than those of unfilled PLA but only when the content of bamboo
char was below 7.5%; this finding was attributed to the homogeneous dispersion of BC
within the matrix achieved below this loading. Qian et al. [93] prepared PLA composites
reinforced with 1000 mesh ultrafine bamboo char. BC was efficiently dispersed in the PLA
matrix, and the two phases had good interfacial interaction when BC content achieved
30 wt.%. Tensile strength and modulus increased as a function of the BC loading until
30 wt.% (for which 14 MPa and 558 MPa were measured, respectively), then slightly
decreased values were registered. Similarly, for the same composite, the impact strength
reached a maximum value of 20.50 J·m−2. It was shown that the elongation at the break
of the composites was lower than that of unfilled PLA; however, the decrease in ductility
became negligible for BC loadings beyond 10 wt.%. This tendency mainly resulted from
the low aspect ratio of BC because of stress concentration during tensile deformation
and breakage.
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Some efforts were also devoted to study the influence of interfacial bonding and BC
surface area on the properties of PLA composites. In detail, some works reported the
chemical modification of BC and/or PLA macromolecules with the hypothesis that the
introduction of coupling agents, by enhancing the interfacial bonding between BC and
polymer chains, improves the physico-mechanical and thermal properties of composites [87–
89]. In general, it has been reported that the use of maleic anhydride functional groups
grafted onto PLA (3 wt.%) had only a marginal impact on the mechanical properties of
the resulting composites [88,89]. Salak et al. exploited a noncatalytic thermal esterification
reaction of BC particles derived from kudzu after its thermal pyrolysis in the presence of
phthalic anhydride, aiming at improving the compatibility of the filler with PLA [87–89].
The treatment caused further improvement in the physico-mechanical properties of PLA-
BC composites. Furthermore, the pre-treatments were effective in enhancing the water or
hydrolysis resistance of the composites. Quian et al. modified the BC surface with different
concentrations of HNO3 and NaOH solutions. The HNO3 treatment induced the grafting of
amino groups, while that with NaOH modified carbonyl and carboxyl groups on bamboo
char. It was reported that the mechanical behavior depends on the concentration of the
chemicals used for the treatment [95]. Finally, it was found that the functionalization of
ultra-fine-bamboo char with (3-mercaptopropyl) trimethoxysilane favored its dispersion in
PLA [94].

BC, in general, affected the thermal property of PLA by reducing its thermal stabil-
ity (decrease of Tonset and Tmax) and its glass transition and melting temperatures. The
detrimental effect of BC particles derived from different sources on the thermal and thermo-
oxidative stability of PLA and other bio-polyesters matrices has already been reported in
the literature and attributed to the catalytic effect of potassium, usually contained in BC, on
the decomposition of the polymer matrix [85,90]. However, both hydrolytic and “back-bite”
reaction mechanisms [96] may take place during the thermal degradation of PLA, owing to
residual hydroxyl functionalities present on the BC surface [97]. Additionally, the introduc-
tion of BC was found to improve the mobility of PLA macromolecular chains, inducing a
plasticization effect.

Finally, abrasion resistance, wear resistance, and flammability of PLA–BC composites
were thoroughly studied [98,99]. In particular, BC improved the tribological properties of
the polymer matrix, decreasing the volume loss. This finding was attributed to the high
stiffness and good dispersion of BC throughout the matrix [98]. Lastly, biochar was able to
decrease the burning rate, thanks to its charring effect during combustion and to its barrier
for the leading edge of the flame front [99].

BC was also used in combination with a third component for improving mechanical
properties [94,100]. Sheng et al. [94] investigated PLA–bamboo char–cellulose nanowhisker
composites. These ternary composites showed both mechanical strength and toughness,
thanks to the presence of BC. Furthermore, BC and bamboo cellulose nanowhiskers ex-
hibited synergistic effects, enhancing the toughness of the nanocomposites. A hypothesis
for the observed reinforcing mechanism was provided, involving the formation of core-
shell structures of ultra-fine BC particles and PLA during the tensile deformation of the
composites, resulting in synergistic toughening and reinforcing effects.

Biodegradable multiphase poly(lactic acid)-BC-graphite systems have been developed
for applications in wearable/portable devices, radiation-sensitive electronics, and sensors
and for producing EMI shielding materials [84]. Highly conductive composites (>30 S/m)
with staggering shielding effectiveness (>30 dB) at very low film thickness (0.25 mm)
were prepared. Furthermore, the potential of BC–PLA composites for fully biodegradable
foaming applications was documented [101]. Nano- and micro-particles of BC derived from
sludge, pistachio, and green waste were ground, sieved, ball-milled, and compounded
with PLA at different ratios through an extrusion process. The PLA–BC extruded films
were then foamed in a supercritical CO2 batch foaming process. The well-dispersed BC
fillers at an appropriate concentration served as preferential nucleation sites with a lower
energy barrier for nucleation, thus facilitating the cell nucleation process. In addition, the
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dispersed particles were able to simultaneously enhance the melt strength of the polymer
matrix, thereby stabilizing nucleated cells by minimizing cell coalescence.

Among polyesters, poly(butylene terephthalate) (PBT), poly(trimethylene tereph-
thalate) (PTT) and poly(ethylene terephthalate) (PET) have been considered as suitable
matrices for preparing composites with BC.

PBT composites, containing from 5 to 25 wt.% of commercial miscanthus grass py-
rolyzed at 650 ◦C, were prepared by extrusion followed by injection molding [102]. Dura-
bility (aging at 155 ◦C for 1000 h) of the mechanical properties of these composites was
evaluated and compared with that of PBT-based composites containing similar amounts of
talc and glass fibers (GF). It was found that the tensile and flexural modulus of the PBT and
its composites increased after thermo-oxidative aging. The PBT–BC composites showed
the greatest decrease in mechanical strength compared to aged PBT–talc and PBT–GF
counterparts. In general, the difference in maintaining the mechanical performance after
aging for the PBT composites was mainly attributed to the difference in structure, aspect
ratio, surface adhesion, and particle size of the used fillers. Thus, the best properties among
the three investigated fillers were exhibited by GF due to high adhesion, strength, and
stiffness.

PPT [103] and PPT mixed with PLA and ethylene-methyl acrylate-glycidyl methacry-
late (EMAGMA) [104] were also filled with BC. PTT [103] containing 20 wt.% of BC obtained
by pyrolysis of lignin, with and without a chain extender additive, was extruded and in-
jection molded. Reactive epoxy functional polymeric chains were used for improving the
performance of the composites by maintaining the molecular weight and balancing the
viscosity of PPT during processing. It was found that BC significantly improved the HDT
and stiffness of the composite, whereas impact strength and yield elongation decreased.
The chain extender improved the performance of the unfilled polymer but had no effect
on the properties of PPT–BC composites. Nagarajan et al. [104] incorporated 15 wt.% of
EMAGMA into PTT–PLA (30 wt.% of PLA) through melt compounding in an extruder,
followed by injection molding. Commercial miscanthus-based BC produced through a
low-temperature pyrolysis process was size-fractioned before use. Size ranges of 212−300,
150−212, 125−150, 75−125, 20−75, and <20 µm were obtained. In addition, an epoxy
chain extender was employed. Different morphologies were observed as a function of
the BC size and the presence of the chain extender that in turn influenced the mechanical
performance of the composites. In detail, it was reported that the blend matrix retained its
“primary sea-island” morphology with round domains of the PLA−EMAGMA dispersed
in the composites when the size of the embedded BC was in the ranges of 75−125 and
20−75 µm (Figure 8). When the particle size was above 125 µm, BC acted as a barrier to the
dispersion of the polymer components during processing. Using BC below 20 µm allowed
achieving a good dispersion of the filler that probably stabilized the morphology, and the
PLA-EMAGMA domains coalesced, as can be observed from the SEM pictures shown in
Figure 8. Finally, the addition of an epoxy-based chain extender induced the suppression
of coalescence and promoted the dispersion of the PLA−EMAGMA domains in much
smaller and finer morphologies. The latter morphologies were favorable in improving the
mechanical properties and in particular the impact strength with respect to the unfilled
blend. Furthermore, the influence of the injection mold temperature (30, 60, and 90 ◦C)
was evaluated, showing that a high temperature was responsible for the improvement in
crystallinity that, in turn, influenced the HDT and increased the flexural strength and the
stiffness of these composites.

Recently, the mechanical properties of virgin and recycled PET composites containing
10 and 20 wt.% of commercial miscanthus-based BC pyrolyzed at 650 ◦C were investi-
gated [105]. The composites also contained 20 wt.% of a toughening agent (ethylene-butyl
acrylate-glycidyl methacrylate, EBAGMA) and 1 phr of a chain extender (styrene-acrylic
glycidyl methacrylate, SAGMA). The extrusion–injection molded samples were tested for
their tensile and impact properties, and a full factorial design of experiment (DOE) was
used for evaluating the influence of recycled PET content, BC loading, and chain extender
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presence on the final properties of the composites. It was found that the chain extender
followed by the BC played the most dominant roles in influencing the Young’s modulus,
tensile strength at yield, elongation at break, and impact strength. The optimal composite
for attaining balanced properties was that containing up to 25 wt.% of recycled PET, 10 wt.%
of BC, and the chain extender. Interestingly, the combination of the chain extender and the
BC at 10 wt.% enhanced stiffness and tensile strength through a synergistic effect, providing
a 278% increase of impact toughness with respect to the composite containing BC (without
a chain extender).

3.4. Other Thermoplastic-Based Composites

The use of BC for modifying engineering amorphous polymers such as polycarbon-
ates (PC) has not found a big interest in the current scientific research. Today in the
literature, there are only two works by Andrzejewsk and co-workers [106,107], where
a mixture of miscanthus-based biochar pyrolyzed at 900 ◦C (having a size of 400 µm)
and polyacrylonitrile-based recycled carbon fibers (CF) were used as fillers. In the first
work [106], to prevent or decrease the hydrolytic process of PC during the extrusion process,
a chain extender was employed. The results indicated numerous drawbacks of the use of
biochar filler alone, whereas the use of combined BC and CF improved the mechanical prop-
erties of the polymer matrix. In detail, in the composite containing both BC (10 wt.%) and
CF (10 wt.%), the tensile modulus and strength increased by 35% and 270%, respectively,
compared to the composite containing 20 wt.% of BC. A similar behavior was observed
for the flexural properties (with increments of 16% for the modulus and of 305% for the
strength). However, without the presence of a commercial epoxy chain-extender additive,
the biochar intensified the phenomenon of hydrolytic degradation, which further worsened
the thermo-mechanical stability of the composites.

To limit the degradation of the PC during blending, the same group exploited the
addition of acrylonitrile butadiene styrene (ABS) to the PC for preparing composites [107].
First, composites based only on PC and ABS were prepared and characterized. The materi-
als were reinforced with different fillers, namely biochar, carbon fiber, and biochar–carbon
fiber mixtures. When fillers were used alone, their loading was set at 10 and 20 wt.%.
Then, biochar and CFs were used together (at 10 and 20 wt.%), and the results on the
mechanical properties were compared with those of the single-filled systems. The results
confirmed a worsening of the rheological properties, a reduction of viscosity, and a decrease
in the glass transition temperature and in the mechanical properties for the composites
due to processing. However, the addition of ABS to the PC matrix impeded the hydrolytic
degradation of the PC–BC composites. From all the investigated mechanical properties and
in particular from the impact resistance values, it was clear that the concurrent presence of
biochar and CFs provided beneficial effects to the prepared blends. Finally, the results of
the coefficient of linear thermal expansion (CLTE) measured in different directions showed
a significant improvement in structure uniformity for the composites containing biochar
and CFs, indicating a minimal risk of stress concentration for these materials.

In a further research effort, Nan et al. [108] used polyvinyl alcohol (PVA) as a model
polymer matrix for studying the electrical conductivity and mechanical properties of
biochar. In their first work, the authors prepared wood biochar–PVA composite films and
investigated their electrical, mechanical, and thermal properties. Composite films were
obtained by casting, adding 2, 6, and 10 wt.% of commercial biochar derived from wood
to a 10 wt.% PLA solution. The solution was sonicated for improving the dispersion. The
obtained results indicated that the conductivity of PVA–biochar composite films increased
with increasing the biochar loading and reached the value of 1.8 nS/m for 10 wt.% biochar
loading. The introduction of biochar increased the elastic modulus and thermal stability
but reduced the tensile strength, storage modulus, Tg, and Tm.



Polymers 2022, 14, 2506 17 of 30
Polymers 2022, 14, x FOR PEER REVIEW 17 of 32 
 

 
 

Figure 8. Morphology of composites with different size-fractionated BC (the arrows point to BC
particles) [104]. Reproduced with permission from the American Chemical Society. 2016, American
Chemical Society.



Polymers 2022, 14, 2506 18 of 30

Furthermore, Nan et al. [109] investigated the behavior of these PVA composite films
as pressure sensors; the BC loading was 8, 10, and 12 wt.%. They found that the increase in
biochar content from 8 to 12 wt.% significantly improved the conductivity and piezoresistive
effect of the PVA–biochar sensors. Then, by increasing the pressure from 0 to 358 kPa, the
resistance of the composite sensors gradually decreased, with a reduction of 99% for the
composite loaded with 12 wt.% of BC. This decrease indicated that the applied pressure
induced the film deformation, and this feature was responsible for the formation of a higher
number of conductive paths, which increase the conductivity. Similar results were achieved
by Bartoli et al. [110], who dispersed biochar derived from waste cotton into PVA, achieving
a conductivity of up to 16 S/m under a pressure of 750 bar.

Starch was mixed with biochar mainly with the purpose of biomass densification
for obtaining pellets; only Hu et al. [111] studied the nano-mechanical properties of these
composites by atomic force microscopy (AFM). The work mainly aimed at demonstrating
the feasibility of AFM for visualizing the Young’s modulus of the composite. Composites
containing rice husk biochar at different loadings (namely 0.5, 1, 2, and 5 wt.%) were ob-
tained by casting. Components were dispersed in water and mixed with glycerol and acetic
acid at high temperature for gelatinization. It was found that the Young’s modulus of the
composites decreased with increasing the BC loading because of weak bonding among the
components. In another work [112], thermoplastic starch was used with polycaprolactone
(PCL, blended with 50 wt.% of starch) for incorporating biochar obtained from waste coffee
grounds (selected loading: 10, 20, and 30 wt.%). It was found that by adding biochar
at 10 wt.%, the elastic modulus increased, and the tensile strength was slightly reduced.
By increasing the biochar content, there was no significant effect on the tensile strength
and elastic modulus of the material. However, the elongation at break was drastically
reduced with the incorporation of biochar. Interestingly, it was manufactured as a male
mold of a coffee cup lid, demonstrating the potential application of this biodegradable
composite material.

Among polyhydroxyalkanoates, only poly(3-hydroxybutyrate-co-3-hydroxyvalerate)
(PHBV) was used as a matrix for biochar composites production [113]. The authors prepared
composites of PHBV filled with miscanthus biochar (PHBV/MB) at 10, 20, and 30 wt.%
loadings with the aim of improving tensile, flexural, and impact properties. In addition,
considering that the PHBV has a high production cost, the use of biochar could reduce the
amount of polymer for preparing cheaper composites.

The authors found that the elastic and flexural modulus increased, though the tensile
and flexural strength and elongation at break decreased at any biochar loading. The biochar
slightly decreased the thermal stability of the PHBV. On the other hand, the HDT increased,
and the coefficient of linear thermal expansion decreased with increasing the biochar
loading, suggesting an enhanced dimensional stability of the material due to the addition
of the rigid biochar particles.

3.5. BC Composites: Thermosetting matrices
3.5.1. Epoxy Resin-Based Composites

Among different thermosetting hosts, epoxy resins are one of the most studied due
to the wide range of applications in many strategic industrial productions ranging from
the aeronautic to the automotive sectors [114]. These applications are generally based on
carbon, glass fibers, and CNTs reinforced materials [115,116]. The use of BC as filler for
epoxy resin should face the performance achievable with such high-tech fillers. A first
comparative and comprehensive study was reported by Khan et al. [117], who investigated
the mechanical performance through tensile tests of epoxy composites containing different
amounts of CNTs and maple-derived BC (Figure 9).

A BC concentration not exceeding 2 wt.% improved the overall mechanical behav-
ior of epoxy-based composites, showing better results compared to the incorporation of
CNTs. Nonetheless, a higher filler content was required to reach the electrical conductivity
achieved by using CNTs. A 20 wt.% of BC produced at 900 ◦C displayed a conductivity
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in AC mode higher than that observed for the composites containing 4 wt.% of CNTs.
Similarly, Giorcelli et al. [118] filled an epoxy matrix with 15 wt.% of coffee-derived BC,
measuring a conductivity of 36 S/m. This value was much higher than that achieved by
using the same amount of carbon black; however, the high filler loading decreased the
elongation at break by 47% and doubled the Young’s modulus. The increment of brittleness
was due to the limited mobility of the matrix that was unable to efficiently redistribute
the applied stresses. This was also reported in another work [119], where a simple model
to describe the properties of composites by using the mixing rule was developed. The
authors clearly demonstrated that 2 wt.% of BC was the best filler concentration for the
optimization of the mechanical behavior of the composites.
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(a) multiwalled carbon nanotubes at 2 wt.% and 4 wt.%; and (b) BC at 2 wt.%, 4 wt.% and 20 wt.% [117].
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Concentration was not the only parameter that deeply affected the outputs of epoxy
resin-BC systems. By using a filler concentration of 2 wt.%, Bartoli et al. [120] explored the
effect of feedstock used for the BC production on the stress–strain curves (Figure 10).

As observed through a rough comparison, the BC-containing composites were able to
induce greater increments in stiffness (Curve (a) in Figure 10) and in elongation (Curve (c) in
Figure 10), compared to carbon black (Curve (b) in Figure 10). Furthermore, a surprisingly
different behavior from brittle to ductile was observed for the different biochars. The
authors suggested that mechanical outputs of composites were due to the simultaneous
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effect of both size distribution and surface roughness of the particles. Accordingly, they
reported that small and rougher BC particles promoted an increment of stiffness, while big
particles with smooth surfaces induced an increment of elongation at break.
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More general studies about the influence of BC particles shape were reported by
Bartoli et al. [121,122] by using cellulose-derived micrometric carbon rods and spheres, as
shown in Figure 11.

By using these materials, the authors were able to evaluate the effect of shape exclud-
ing the influence of the porosity of wood-derived BC. In particular, the best mechanical
properties were obtained by using up to 2 wt.% of BC loading. Remarkably, the elongation
at break decreased by increasing the filler loading only when carbonaceous rods were
employed. This finding was attributed to a better dispersibility of spheres and to a network
formed by rods that reduced the macromolecular chain mobility.

The performance of BC-containing epoxy composites are also related to the thermals
stage and ramps adopted during BC production. As reported by Bartoli et al. [123], the
highest temperature reached during carbonization of olive trunks was a crucial parameter
for tuning the mechanical features of the resulting composites. The authors studied epoxy
composites containing 2 wt.% of BC produced at four different temperatures (namely,
400 ◦C, 600 ◦C, 800 ◦C, and 1000 ◦C), and using three heating rates (5 ◦C/min, 10 ◦C/min,
and 50 ◦C/min). The obtained data showed an increase of Young’s modulus of the com-
posites by about 35% when BC was produced at 400 ◦C or 600 ◦C and a heating rate of
50 ◦C/min was employed. Conversely, the incorporation of BC produced at 1000 ◦C slightly
decreased the stiffness, while the elongation at break improved by about 50%. Furthermore,
BC produced using temperatures from 400 ◦C to 800 ◦C improved the ultimate tensile
strength by about 30%. It was suggested that higher temperatures promote the formation
of greater aromatic domains on BC particles that interact with the aromatic moieties of resin
through weak interactions, while the tailored surface of BC produced at lower temperatures
is able to create hydrogen bonds with the matrix. The greater interaction promoted by low
temperature pyrolysis improved the particle–matrix adhesion with a less efficient ability of
the polymer host to redistribute the stresses due to a reduction of polymer chains mobility.
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As reported by Oral [124], the incorporation of up to 30 wt.% of BC into an epoxy
resin remarkably increased the elastic modulus (by about 90%). The authors evaluated
the elastic moduli by using for the first time the elastic constants ultrasonic pulse echo
overlap method, suggesting, without further insight, that data collected could be correlated
to interatomic forces.

Another interesting application of BC is represented by its use as a toughening agent
for fibrous-based epoxy composites. Although this application is very promising, the
literature lacks studies specifically devoted to this topic. The first research ever reported
was about BC added to a glass fiber-reinforced epoxy matrix by Dahal et al. [125]. The
authors investigated the effect of BC produced by conversion of spruce wood pellets
pyrolyzed at 450 ◦C on E-glass fibers epoxy composites. They reported a relevant increase
of storage modulus by about 4000 MPa when 10 wt.% of BC was incorporated into the epoxy
matrix. This behavior was ascribed to the modifications of interfacial properties between
glass fibers and polymer with an improvement of grip promoted by the carbonaceous filler.

Similarly, Matykiewicz [126] added BC to an epoxy matrix employed for producing
carbon fiber-based composites. The authors demonstrated a significant increase of the
storage modulus (by around 39%) through the addition of 10 wt.% of BC; meanwhile, the
elongation at break did not remarkably change with respect to BC loading. An 18% increase
of flexural strength and an 11% decrease of flexural modulus were observed. These findings
were attributed to the rigid BC with a high surface that improved the interlocking of resin
and fibers.

Zuccarello et al. [127] reported an increase of ultimate tensile stress and strain by about
55% and 250%, respectively, by adding 2 wt.% BC obtained from Mischantus pyrolyzed
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at 550 ◦C to agave fibers epoxy composites. Nonetheless, the greatest improvements
were achieved considering the specific failure energy fatigue life performance that became
5 times and 3 orders of magnitude bigger with respect to the composites without BC. These
findings were ascribed to BC that improved the grip between the fibrous filler and the
polymeric host.

3.5.2. Unsaturated Polyester Resin-Based Composites

Another relevant class of thermosetting matrices is represented by unsaturated polyester
resins [128] that are largely used as construction materials [129,130].

Akaluzia et al. [131] investigated the effect of the incorporation of hardwood BC
(loadings ranging from 5 to 30 wt.%) on hardness and impact strength of an unsaturated
polyester resin. The obtained results showed an increment of impact energy by about 15%,
while hardness increased by 100%.

A more detailed study was reported by Sundarakannan et al. [132] by using cashew
nutshell BC produced at 500 ◦C as filler for an unsaturated polyester resin, at different
loadings (from 5 up to 15 wt.%). The authors reported an appreciable increase of hard-
ness, tensile, and impact strength compared with the unfilled matrix, by 37, 21, and 41%,
respectively. The authors suggested that the brittle fracture of the materials was due to
the poor interactions between BC and the polymer network. Noticeably, the maximum
flexural strength was reached by using a BC loading of 15 wt.%. The improvement of up to
40% was due to the high uniform distribution amount of BC particles that promoted the
resistance against bending solicitation.

A tribological study on BC-based unsaturated polyester resins was reported by Ra-
jadurai et al. [133], who tried to correlate the tribological behavior with BC particle size
distribution. The authors showed that the specific wear rate and friction coefficient of
the composite decreased with increasing the BC loading and decreasing its particle size.
The best result was achieved by using 2.5 wt.% of BC with an average size of 45 nm,
which decreased the friction coefficient and wear rate by 56 and 46%, respectively. The
lubricant effect of BC was the same observed by using other carbonaceous fillers such as
nanographite [134] or graphene [135].

Similar results were achieved by Richard et al. [136] by using a finely milled red
mug-derived BC in an unsaturated polyester resin.

3.5.3. BC-Rubber Composites

BC has also been used after mixing with nanosilica as filler for poly(styrene)-poly
(butadiene) rubber by Peterson et al. [137]. The authors tried to replace carbon black
with BC derived from maple pyrolysis in a formulation very close to that used to produce
tires [138]. As reported, BC particles with an average size of over 10 µm imparted properties
far lower than a commercial carbon black, while a size reduction of the filler promoted
a general improvement of the mechanical features of composites. The authors claimed
an increase of elongation at break and of toughness by 31 and 24%, respectively, without
any loss of tensile strength compared with carbon-black-based composites. This was most
probably due to a good dispersion and the sub-micrometric size of the employed BC.

Silicon rubber was also selected as a polymer matrix for the production of BC-based
composites as reported by Giorcelli et al. [138]. The authors used an olive-derived BC
thermally annealed at 1500 ◦C to produce a highly conductive filler able to undergo a fully
reversible elastic deformation by applying a pressure strain up to 40 MPa.

4. A Comparative Perspective on BC and Other Carbonaceous Fillers

Carbonaceous fillers comprise a very wide range of materials from nanostructured
species (i.e., CNTs, graphene) to carbon fibers with unique features and both advantages
and disadvantages, as summarized in Table 1. In this vast realm, BC represents an outsider,
freshly appearing on the scene. BC has generally found applications in environmental
sciences and as electrode materials due to its surface and bulk features (i.e., conductivity,
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surface area, residual groups) [139]. The use of BC as a filler for polymer composites for
different applications (automotive, electrical, and engineering purposes, among others) is a
relatively new field opened up with by the outcomes of the Bhattacharyya research group
only in 2015 [42]. Since then, BC has faced competition with high-performing fillers that
can induce strong enhancements of either mechanical or electrical properties even at low
concentrations [140,141] in all the fields that are traditionally occupied by carbonaceous
materials. Nevertheless, materials such as CNTs and graphene are very expensive, and their
dispersion into polymeric matrices is quite often difficult [142]. An efficient dispersibility
for these fillers could be achieved only through advanced modifications that lead to further
cost increments [143,144]. Compared to these carbonaceous nanofillers, BC is far less
expensive and can easily be dispersed in almost all the polymeric matrices. Generally,
though BC requires higher loadings to reach comparable performance with CNTs and
graphene, its very low cost [145] makes it a reliable solution. In fact, despite the expected
revolution, graphene and graphene oxide do not develop from research (i.e., lab-scale)
and small productions. In 2009, Segal et al. [146] stated that the world was ready for the
ton-scale production of graphene, but in 2020, single layer graphene was still sold at USD
230/cm2, and graphene oxide costs USD 140/kg [147]. Pricing for research grade nanotubes
ranges from around USD 5/g for MWCNT to USD 75/g for SWCNT [148]. Carbon fiber
cost is around USD 18/kg. Carbon black (CB) is with a price four times higher than that of
BC. (the CB price is about USD 1.2/kg and Biochar is sold at USD 0.35/kg) [149].

Considering the abovementioned issues, BC appears to be a rising star in the materials
science field, but it is still struggling to move from lab-scale to industrial applications. This
is mainly due to the competition with the real ruler of carbon-based composites, i.e., carbon
black. Carbon black has a solid industrial reputation for plenty of commodities such as tires
and ink production [150]. Nonetheless, BC will eventually win the competition with carbon
black thanks to its greater sustainability and reduced environmental impact [151,152].

BC is able to provide the composites with sustainability combined with tailored
features. These characteristics will lead biochar to major breakthroughs in the market
because of the increased attention to environmental issues of all major stakeholders [153].

Table 1. A brief overview of the main advantages and disadvantages related to composite production
using carbonaceous fillers.

Filler Advantages Disadvantages

CNTs Increment of mechanical properties with low filler loading
Low percolation threshold

High cost
Complex production and purification

Poor dispersibility into polymers

Graphene
Increment of mechanical properties with low filler loading

Low percolation threshold
Production of transparent composite

Very high cost
Complex production and purification

Poor dispersibility into polymers

Graphene oxide Increment of mechanical properties with low filler loading
Production of transparent composites

High cost
Poor electrical properties

Carbon fibers Superior mechanical and electrical performance
Resistance to harsh environment

Very high price
Complex production

Delamination phenomena
Difficult to dispose

Carbon black

Very cheap
Great annual-based production

Tunable properties of related composites
Highly compatibility with several polymers

Oil derived

Biochar

Cheap
Tunable properties of related composites

Biomass and waste derived
Highly compatibility with several polymers

Poor annual-based production
Poorly standardized production
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5. Conclusions and Future Perspectives

The exploitation of BC as a multi-functional filler in polymer-based composites has
attracted great attention from the scientific community in recent years due to its excellent
potential in developing sustainable and high-performance materials. The main benefits
in using BC as a filler for the production of polymer-based composites are related to
the possibility of achieving improved mechanical properties, electrical conductivity and
thermal stability through the introduction of a sustainable and renewable material derived
from valorization processes of post-consumer wastes and is fully included in the new
circular economy strategies.

Studies concerning the evaluation of the final performance of BC-polymer composites
have demonstrated the effectiveness of BC derived from different sources for being used as
reinforcing filler for a wide variety of either thermoplastics or thermosets.

From a general point of view, materials with improved tensile and flexural properties,
enhanced impact strength, and increased HDT can be achieved upon the introduction of
BC particles obtained through proper production processes. Furthermore, BC was found
to be able to impart electrical conductivity and flame retardance to either thermoplastics-
or thermosets-based systems, revealing its potential in substituting traditional fossil-fuel
derived and expensive carbonaceous fillers. In fact, compared to CNTs and graphene, BC
is far less expensive and can be easily dispersed in almost all polymeric matrices. However,
though BC-containing composites with very low particle loadings (a few wt.%) showed me-
chanical properties similar or even superior to those of analogous CNT- and/or graphene-
filled systems, higher contents are required to reach comparable electrical performance.
Interestingly, the strategy of utilization of BC in polymer composites allows supporting the
global sustainable development and the circular economy approach through the valoriza-
tion of post-production and post-industrial residue wastes. Nevertheless, BC/polymer
composites are still at the development stage, and a great research effort is required to gain
further insights into the production structure properties relationships of BC particles; in
fact, the huge variability of the starting biomass sources, as well as the different exploitable
operative conditions during the production process, bring about to the obtainment of BCs
with heterogeneous characteristics, possibly affecting the uniformity of the performance of
the resulting composites. In addition, the high moisture absorption of BC limits several
of its applications. For these reasons, more research is needed to gain a complete under-
standing of the long-term performance of BC-containing composites at the molecular level.
For example, their long-term viability (i.e., weathering and UV resistance) as well as the
mechanism of degradation remain unknown.

Some possible future work perspectives in the field could include the reduction of
BC size from macro-/micro- to nano to better understand its potential as a filler and
the improved interaction of BC with polymer matrices with the addition of compatibi-
lizers or by chemical modification (which can increase the mechanical properties of the
composite afterward).

Finally, the main challenges surely include: (i) improving the process output sustain-
ability and economic feasibility so that scale production of BC in bio-composite applications
may be carried out in the future; and (ii) using BC to completely replace present crude
oil-based CB reinforced rubber materials. Indeed, the difficulty in managing the size and
shape of BC produced from different wastes and biomasses requires the development of a
more innovative pyrolysis processes comprising suitable treatments and procedures.
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