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Purpose: To develop and test machine learning classifiers (MLCs) for determining visual
field progression.

Methods: In total, 90,713 visual fields from 13,156 eyes were included. Six differ-
ent progression algorithms (linear regression of mean deviation, linear regression of
the visual field index, Advanced Glaucoma Intervention Study algorithm, Collabora-
tive Initial Glaucoma Treatment Study algorithm, pointwise linear regression [PLR], and
permutation of PLR) were applied to classify each eye as progressing or stable. Six MLCs
were applied (logistic regression, random forest, extreme gradient boosting, support
vector classifier, convolutional neural network, fully connected neural network) using
a training and testing set. For MLC input, visual fields for a given eye were divided into
the first and second half and each location averaged over time within each half. Each
algorithm was tested for accuracy, sensitivity, positive predictive value, and class bias
with a subset of visual fields labeled by a panel of three experts from 161 eyes.

Results:MLCs had similar performancemetrics as some of the conventional algorithms
and ranged from 87% to 91% accurate with sensitivity ranging from 0.83 to 0.88 and
specificity from 0.92 to 0.96. All conventional algorithms showed significant class bias,
meaning each individual algorithm was more likely to grade uncertain cases as either
progressing or stable (P≤ 0.01). Conversely, all MLCswere balanced,meaning theywere
equally likely to grade uncertain cases as either progressing or stable (P ≥ 0.08).

Conclusions:MLCs showed a moderate to high level of accuracy, sensitivity, and speci-
ficity and were more balanced than conventional algorithms.

Translational Relevance:MLCs may help to determine visual field progression.
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Introduction

Visual fields remain a crucial tool to identify and
monitor glaucomatous vision loss. As such, measure-
ment of visual field worsening is critical to both
patient care and assessment of glaucoma interventions.
However, uncertainty regarding visual field progres-
sion may delay effective treatment and stabilization
of disease. Over the years, numerous algorithms for
visual field progression have been developed. Agree-
ment among these algorithms and in comparison with
expert graders can vary widely depending on which
dataset they are applied to.1–3

Machine learning is a tool that uses artificial intel-
ligence and allows systems to learn from an experi-
ence without explicit programming. Machine learning
classifiers are computerized programs that use super-
vised learning to classify a new observation. The use of
such classifiers has grown exponentially in recent years
with numerous applications in business and medicine.4
Ophthalmology, with its emphasis on imaging and
ancillary testing, provides an ideal test case for the clini-
cal application of machine learning classifiers. Recent
work has focused on application of deep learning to
detection of diabetic retinopathy, age-related macular
degeneration, or glaucomatous-appearing optic nerves
from fundus photographs5,6

Work using artificial intelligence to classify
glaucoma first began in the 1990s with the develop-
ment of neural networks to distinguish glaucomatous
versus normal visual fields.7–9 Starting in the early
2000s, machine learning classifiers were applied to
visual field data to determine progression.10,11 This
prior work used smaller datasets and was generally
applied to patients at a single site. Development of
machine learning solutions, particularly deep learning
generally requires access to “big data.”12 Applied to
tens of thousands of visual fields, machine learning
could allow for the development of an classifier to
robustly determine visual field progression with greater
accuracy than current methods. To test this hypothesis,
we applied the most commonly used machine learning
classifiers to a dataset of 90,713 visual fields from five
different institutions. We then assessed their accuracy
and precision as compared to results from a panel of
glaucoma specialists.

Methods

Data Source: Glaucoma Research Network
Visual Field Database

We used the visual field database of the Glaucoma
Research Network which includes visual fields from

the Wilmer Eye Institute (Baltimore, MD, USA), the
Massachusetts Eye and Ear (Boston, MA, USA), the
Wills Eye Hospital (Philadelphia, PA, USA), the New
York Eye and Ear Infirmary (New York, NY, USA),
and the Bascom Palmer Eye Institute (Miami, FL,
USA). This dataset has been used in prior work charac-
terizing visual fields.13–19 This retrospective study was
approved by the Institutional Review Boards of the
participating institutions and adhered to the tenets
of the Declaration of Helsinki. Identifying informa-
tion from the visual fields was removed, but all other
information from each test was retained. No clinical
or diagnostic information was available for any of the
subjects.

Inclusion/Exclusion Criteria

Of the initial dataset of 831,240 visual fields from
177,172 patients, we included only visual fields that
were SITA Standard 24-2 with a white size III stimu-
lus on a white background. Only tests from patients
older than age 18 were included. We excluded any tests
with 20%or greater fixation losses, false-positive results
greater than or equal to 15%, or false-negative errors
of N/A or not available. A false-negative rating of N/A
indicates that there was an insufficient number of test
points eligible for presentation of false-negative catch
trials. This happens because either fewer than 6 false
negative questions are asked or more than 7% of the
test points have a threshold< 0 dB (Carl ZeissMeditec,
personal communication, November 26, 2018).We also
excluded fields in which the Glaucoma Hemifield Test
noted “abnormally high sensitivity,”“general reduction
of sensitivity,”or “borderline/general reduction.”After
these exclusion criteria were applied, only eyes with five
eligible studies were included in the analysis. Depend-
ing on which eyes met eligibility criteria, both eyes were
used in some patients and one eye in other patients.

Supervised Machine Learning

To apply machine learning classifiers to a large
set of visual fields we defined progression as progres-
sion in four of six conventional algorithms (mean
deviation [MD] slope, Visual Field Index [VFI] slope,
Advanced Glaucoma Intervention Study visual field
score, Collaborative Initial Glaucoma Treatment Study
visual field score, Pointwise Linear Regression (PLR),
and Permutation of Pointwise Linear Regression),
which we have termed “majority progression.” The
specific method of programming these algorithms
and determining majority progression is detailed
elsewhere19 and explained briefly here. We assigned
each eye a label of “progressing,”“stable,”or “unclear”
based on the following criteria: If four or more



Machine Learning Algorithms for Field Progression TVST | June 2021 | Vol. 10 | No. 7 | Article 27 | 3

Figure 1. Principal component analysis: Principal component
analysis shows that progressing cases (red) and stable cases (green)
are generally segregated with undecided cases between the two
(yellow).

algorithms classified one eye as progressing, then it was
labeled as “progressing.” If four or more algorithms
determined an eye was stable, then it was labeled as
“stable.” If an eye was rated as “progressing” by three
algorithms and “stable” by the other three algorithms,
then it was assigned a label of “unclear.” In this way,
the majority label acted as a proxy label for visual field
progression.

After labeling we analyzed the distribution of the
classifiers using principal component analysis (PCA).
PCA was applied to the dataset to confirm two distinct
regions of stable and progressing eyes with unclear eyes
in the middle of the continuum (Fig. 1). The inputs
for PCA were the six progression algorithms that result
in a six-dimensional space with each dimension being
one conventional algorithm. PCA analysis results in a
plot of each data point in this six-dimensional space
along a single dimension (the first principal compo-
nent) that contains the maximum variance in the data.
When color coded to indicate the majority vote for a
data point, we found a clear separation of progressing
and stable eyes with uncertain eyes in the middle. This
confirmed to us that majority vote of the six progres-
sion algorithms was a consistent proxy label that repre-
sented a real and important pattern in the data.

We divided the dataset into a training set consisting
of 80% of eligible eyes (selected at random) to train the
machine learning classifiers and a testing set consisting
of 20% of eligible eyes to determine how effective each
machine learning classifier was. We then had a panel

of three glaucoma specialists (M.B., R.S., and O.S.)
grade a subset of 161 eyes of 161 different patients and
compared accuracy and performance of the machine
learning classifiers as compared to the expert panel.
This is further detailed below.

Machine Learning Classifiers

We utilized the following commonly used machine
learning classifiers:20

• Logistic regression
• Random forest
• Extreme gradient boosting
• Support vector classifier
• Fully connected neural network a (sometimes
referred to as multi-layer perceptron)
• Convolutional neural network

Machine learning classifiers used here require a
fixed length input. To account for different numbers of
visual fields and varying lengths of follow up, visual
fields for a given eye were divided into the first and
second half, and each location for the first and second
half visual fields were averaged over time within each
half. In the case of an odd number of visual fields,
the points from the middle field were included in
the average of the latter “half.” The pointwise differ-
ence between the two means was then calculated and
that was then used as input into each classifier. The
dataset was then divided into a training and a test
set. The training set included 80% (7745 eyes) of the
included eyes and the test set included 20% (2631 eyes).
Details on the fully connected neural network parame-
ters, convolutional neural network parameters, and the
remainder of the machine learning classifiers can be
found in the Supplementary Material. Supplementary
Table S1 describes the structure of the fully connected
neural network and Supplementary Figure S1 describes
the loss by epoch of the fully connected neural network.
Supplementary Figure S2 shows the shape normaliza-
tion of the matrix required for the convolutional neural
network and Supplementary Table S2 shows its struc-
ture. Supplementary Table S3 lists the hyperparameters
for the remaining MLCs.

We deliberately underfit themachine learning classi-
fiers to make them more resilient against minor irregu-
larities in the training data set. The tuning was carried
out by assuming that given the large training set, there
exists for training set eyes, a normal (i.e., Gaussian)
distribution of predicted class probabilities in each
predicted class (stable and progressing). We felt that a
population of more than 13,000 eyes was sufficiently
large to give us a reasonably accurate distribution
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within each category. We fit models to the training set
using the simplest and least expressive model possible
(e.g., for a random forest, the hyperparameter we used
was the maximum depth of the trees in the forest). We
increased the max-depth hyperparameter until we had
a reasonably accurate normal (i.e., Gaussian) distri-
bution of eyes in each of the stable and progress-
ing categories. The accurate normal distribution was
determined on the basis of the output of a proba-
bility plot plotting the ordered values versus theoreti-
cal quantiles.21 In other words, we chose the simplest
model that resulted in a normal distribution of eyes in
each class. We did not use the test set at any point for
tuning the model.

Precision (positive predictive value), recall (sensi-
tivity), and F1 score (harmonic mean of precision
and recall) are commonly used metrics22 to assess
the predictive value of machine learning classifiers.
We calculated these values as well as specificity and
negative predictive value for each machine learn-
ing algorithm when applied to the test set including
“unclear” cases and used the weighted average23 for
these metrics to take into account performance on both
positive and negatives. We compared the performance
of each machine learning classifier in eyes with short-
term (< 10 years) versus long-term (>10 years) follow-
up (Supplementary Table S4). We then conducted an
extensive subanalysis assessing the performance of
each machine learning algorithm by severity. Severity
was assessed by dividing the testing set into mild (MD
> −6 dB) (n = 1854), moderate (−6 dB > MD >

−12 dB) (n = 433) and severe (−12 dB > MD) (n =

344) visual fields based on the first visual field for each
eye (Supplementary Table S5). We also calculated the
Cohen’s kappa values between pairs of machine learn-
ing algorithms as well as between the majority of six
conventional algorithms (Supplementary Table S6).

Expert Grading Panel

Three glaucoma specialists (M.B., R.S., and O.S.)
graded a subset of the test set of 161 eyes of 161 differ-
ent patients, grading themas “stable,”“progressing,”or
“unclear.” The graders were masked to the individual
algorithms’ ratings but had data that would be avail-
able in a single field analysis including VFI and MD.
Glaucoma progression analysis andMDorVFI regres-
sions were not available to the graders. The graders
were masked to the individual algorithms’ ratings but
had data thatwould be available in a single field analysis
including VFI and MD. Glaucoma progression analy-
sis and MD or VFI regressions were not available
to the graders. The 161 eyes were selected from the
test set to have a mix of eyes that were progressing,
stable, or were “unclear” (three algorithms progress-
ing and three stable). Forty eyes that were progress-
ing, 57 eyes that were stable, and 64 eyes that were
“unclear”(as determined by themajority of six conven-
tional algorithms) were chosen. If there was a disagree-
ment between specialists, then the grade that was given
by two of the three graders was assigned. If the three
graders all differed in their assessment, the assigned
label was “unclear.” Using the expert panel decision
as the “ground truth,” the overall weighted average

Figure 2. Biased and balanced classifiers: Graphical illustration displaying class bias and overfitting on the left and a balanced classifier
on the right. Yellow crosses represent progressing cases, blue dots symbolize stable cases, and blue triangles represent unclear cases. In the
biased classifier on the left, the boundary cases are all considered progressing whereas in the balanced classifier on the right, the boundary
cases are more evenly split between progressing and stable.
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of accuracy, precision (positive predictive value), recall
(sensitivity), specificity, negative predictive value, and
F1 score (harmonic mean of precision and recall)
were calculated for the each conventional and machine
learning algorithm for the stable and progressing cases.
“Unclear” cases were not evaluated in this analysis
but subsequently analyzed separately to check for class
bias, as explained below.

Given that the output of conventional algorithms is
binary, and the output of the machine learning classi-
fiers includes three potential values (progressing, not
progressing, unclear), we used the weighted average
of the progressing and stable cases for the machine
learning classifiers. This was done for accuracy, sensi-
tivity, specificity, the false-positive rate, false-negative
rate, and the F1 score. Receiver operating characteristic
curves could not be calculated given that the machine
learning classifier output was not binary.

To check for class bias, or overfitting of an
algorithm, the χ2 statistic was used to determine if the
unclear cases were split evenly between progressing and
stable cases. For example, a classifier with class bias
might classify a large proportion of unclear cases as
progressing, when one would expect that the unclear or
“boundary cases” would split evenly between progres-
sion and stable (Fig. 2). We aimed to create balanced
classifiers that did not overfit the data in this fashion.

Results

A total of 90,713 visual fields of 13,156 eyes of
9143 patients met the inclusion criteria. The average
age was 67.1 ± 12.3 years. The data set included 6479
(49.2%) right eyes and 6677 (50.8%) left eyes. The
average mean deviation of all visual fields was −5.6
± 6.3 dB. Each eye had an average of 6.9 ± 2.4
visual fields mean follow up of 6.3 ± 2.6 years, and
an average of 1.25 ± 1.35 fields per year. A total of
4669 eyes (35.5%) had five fields in the dataset, 7351
eyes (55.9%) had six to 10 fields, and 1136 (8.6%)

had more than 10 fields. Detailed information about
the features of this dataset can be found in the previ-
ously published paper using this dataset.19 In at least
four of six algorithms, 11.7% of eyes progressed. After
completion of training, each machine learning classi-
fier was compared to the majority progression as deter-
mined by six conventional algorithms. Table 1 shows
the Precision, Recall, AUC, and F1 score for each
machine learning classifier when applied to the testing
dataset. Supplementary Tables S4 and S5 show the
performance of each machine learning classifier strat-
ified by length of follow up and severity respectively.
Supplementary Table S4 shows that the machine learn-
ing classifiers generally performed similarly in short-
term and long-term follow-up. Supplementary Table S5
shows that that machine learning classifiers perform
better in mild glaucoma (MD ≥ −6.0 dB) than in
more severe glaucoma. Supplementary Table S6 shows
Cohen’s kappa values between pairs of machine learn-
ing classifiers, as well as between the majority of six
conventional algorithms. Machine learning classifiers
have a relatively high degree of concordance with each
other (Kappa range, 0.50–0.75).

Results of Grading by Expert Panel

Of the 161 cases graded by the expert panel, 53
(32.9%) were stable, 68 (42.2%) were progressing, and
40 (24.8%) were graded as “unclear.” The average age
of these selected eyes was 64.0 ± 12.4 years, average
MD was −7.5 ± 6.4 dB, and the average number of
visual fields was 6.7 ± 2.1. For the 121 that were
labeled as progressing or stable, the weighted average
of accuracy, sensitivity, specificity, positive predictive
value, negative predictive value, and χ2 values to deter-
mine whether the classifiers were balanced were calcu-
lated and listed in Table 2. The majority progres-
sion by the six conventional algorithms yielded an
accuracy of 83%, whereas the machine learning classi-
fiers had an accuracy of 87% to 90%with high values of
precision (PPV), recall (sensitivity), and F1 score.

Table1. PerformanceMetrics forMachine LearningClassifiers asCompared toMajority Progressionof SixConven-
tional Algorithms in the Testing Dataset

Sensitivity Positive Predictive Negative
(Recall) Specificity Value (Precision) Predictive Value F1 Score

Random forest 0.79 0.94 0.88 0.91 0.82
Logistic regression 0.85 0.94 0.87 0.94 0.86
Extreme gradient boosting 0.87 0.92 0.84 0.94 0.85
Support vector classifier 0.79 0.95 0.88 0.92 0.83
Convolutional neural network 0.78 0.93 0.87 0.90 0.81
Fully connected neural network 0.84 0.95 0.88 0.94 0.85
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Individual algorithms such as VFI and PLR showed
high degrees of accuracy, sensitivity, and specificity
but showed some evidence of class bias with a dispro-
portionate number of boundary cases classified as
progressing.Allmachine learning classifiers classify the
boundary values in an expected proportional distri-
bution (P ≥ 0.08), whereas using the majority of six
conventional algorithms, the χ2 value is statistically
significant and deviates from the expected distribution
(P ≤ 0.01). The dataset of expert panel results is avail-
able as supplemental material.

Discussion

Machine learning classifiers yielded close to 90%
accuracy and high sensitivity and specificity for deter-
mining glaucoma progression. Furthermore, although
all conventional algorithms showed class bias, the
machine learning classifiers were balanced, with a
proportional amount of borderline cases classified
as progressing or stable. Specifically, VFI slope and
PLR showed the greatest accuracy and sensitivity but
might “overcall” progression, which would limit their
applicability to other datasets. This study serves as
further evidence that machine learning classifiers can
be applied to visual field progression and potentially
result in equivalent or better accuracy than existing
algorithms that are more balanced and thus poten-
tially applicable to a wider dataset. In the future,
machine learning may aid clinicians in determining
which patients show progression of visual field.

Our goal in modeling visual field progression with
multiple machine learning classifiers was not to come
up with a perfect classifier for the proxy label we used.
Rather, we aimed to create a robust classifier while
accounting for an imperfect label that may incorrectly
classify a small number of samples. We did this by
tuning our hyperparameters to deliberately underfit the
noisy proxy label.

Application of different machine learning methods
is commonly used in other fields and allows for compar-
ison of different algorithms and the ultimate choice
of an optimal algorithm.24,25 Ultimately, the machine
learning classifiers, while more balanced, had compa-
rable accuracy to other algorithms. Also, like other
conventional algorithms, machine learning classifiers
tended to perform better in mild glaucoma than in
moderate or severe glaucoma. This could be poten-
tially improved with a larger dataset of visual fields,
as well as better labeling of the data. Notably machine
learning classifiers have a higher degree of concordance
(Kappa range, 0.50–0.75) with each other than conven-

tional algorithms, which we reported had relatively
poor agreement with each other (Kappa range, 0.12–
0.52), which we have shown in a previously published
article using these data.19

Prior work assessing the role of machine learning
in visual field interpretation generally included smaller
sample sizes of patients with more clinical data. In a
series of 628 eyes, Goldbaum et al.10 compared the
machine learning classifier, Progression of Patterns
(PoP) to VFI, MD, and the glaucoma progression
analysis (GPA) and found that it was comparable
or better than these algorithms and concluded that
machine learning may aid clinicians in detecting visual
field progression. Yousefi et al.26 applied variants of
the PoP algorithm to 167 eyes and showed that they
were significantly more sensitive than permutation of
pointwise linear regression, and linear regression of
MD and VFI. Similar to our analysis, these studies
used only data from the visual field as input into the
respective algorithms, but used associated disc photos
to aid in labeling progression. Our work complements
this prior work by using a different approach to labeling
(majority progression of four algorithms). Although
visual fields in our dataset come from heterogeneous
disease states as compared to prior work, this shows
the potential applicability of machine learning classi-
fiers to “real-world” data. The larger number of eyes
and visual fields in our dataset provides an advantage
over prior work.

This study incorporated only information available
in the visual field and did not include clinical informa-
tion such as intraocular pressure, optic nerve assess-
ment, biometric properties such as central corneal
thickness or axial length, or history of ocular and
systemic diseases. This information, if added to the
machine learning classifiers may improve accuracy and
performance. Given that we used the difference in
pointwise means between the average of the first and
second half of visual fields, it is possible that the
number of tests or length of follow up could influence
the performance of classifiers. One potential reason
that the convolutional neural network did not perform
better than the other MLCs is a relatively small feature
set. Another potential limitation is that the expert panel
decisionmay not be completely accurate, and it is possi-
ble that a very sensitive algorithm could detect progres-
sion in eyes that the expert panel deemed “unclear.”

Machine learning holds great promise in glaucoma
management and guiding the outcomes of glaucoma
clinical trials. Machine learning classifiers may be
useful for patients enrolled in trials across the spectrum
of disease severity, but more study is needed to test
these assertions. The development of more accurate
and precise algorithms aided by machine learning
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could be used in tele-glaucoma consultation,27 as well
as an aid for practitioners in the clinic to determine
glaucomaprogression.Ultimately thismay further help
to stratify patients as low or high risk and determine
appropriate intervals of follow-up.
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