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Abstract

Cell therapy has been intensely studied for over a decade as a potential treatment for ischaemic heart disease. While initial trials using
skeletal myoblasts, bone marrow cells and peripheral blood stem cells showed promise in improving cardiac function, benefits were found
to be short-lived likely related to limited survival and engraftment of the delivered cells. The discovery of putative cardiac ‘progenitor’ cells
as well as the creation of induced pluripotent stem cells has led to the delivery of cells potentially capable of electromechanical integration
into existing tissue. An alternative strategy involving either direct reprogramming of endogenous cardiac fibroblasts or stimulation of resi-
dent cardiomyocytes to regenerate new myocytes can potentially overcome the limitations of exogenous cell delivery. Complimentary
approaches utilizing combination cell therapy and bioengineering techniques may be necessary to provide the proper milieu for clinically
significant regeneration. Clinical trials employing bone marrow cells, mesenchymal stem cells and cardiac progenitor cells have demon-
strated safety of catheter based cell delivery, with suggestion of limited improvement in ventricular function and reduction in infarct size.
Ongoing trials are investigating potential benefits to outcome such as morbidity and mortality. These and future trials will clarify the opti-
mal cell types and delivery conditions for therapeutic effect.
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Introduction

Ischaemic heart disease, in the form of acute myocardial infarc-
tion (MI) and resultant ischaemic cardiomyopathy, remains the
leading cause of morbidity and mortality worldwide [1]. Despite
significant improvements in cardiac care over the past 50 years
especially in primary and secondary prevention, approximately
1 million MIs still occur each year in the United States. Many of
these patients go on to develop heart failure, which now affects
over 5 million patients [2]. While medications such as beta-block-
ers, angiotensin-converting enzyme inhibitors, and aldosterone

antagonists can ameliorate decline in heart function, end-stage
heart failure frequently necessitates complete or partial replace-
ment of cardiac function with either heart transplant or a mechan-
ical assist device [3].

With a MI, the heart can lose over a billion cells, approximately
25% of its mass [4]. To compensate for the loss of cells, the
affected area forms fibrotic scar tissue by activated fibroblasts and
the immune response. Although tissue regeneration is a phenome-
non occurring in adult mammalian tissues such as liver, skeletal
muscle, bone and skin, the ability of the adult heart to renew itself
is limited [5]. This is not the case for lower vertebrates that are
able to fully regenerate cardiac tissue following substantial injury
[6]. Until recently, the heart itself was thought to be a terminally
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differentiated organ. Bergmann et al. utilized the increased global
levels of 14C from Cold War atomic bomb testing to date cardio-
myocytes in patients who lived during that time period, and found
evidence based on mathematical modelling for renewal of cardio-
myocytes of up to 1% per year for a 20 year old [7]. This renewal
rate gradually decreased with age, to a yearly rate of 0.4% by age
75. Through these and other studies [8–10], it is now understood
that endogenous repair mechanisms do exist in the adult mamma-
lian heart, albeit at a capacity which is unable to fully counteract
the damage caused by a MI.

Cardiac cell therapy, either through transplantation of exogenous
cells or stimulation of endogenous resident cells, has been widely
studied as a potential method for repair and regeneration of cardiac
tissue. This manuscript explores the translational aspects of cardiac
cell therapy, including cell source selection for exogenous delivery,
strategies to regenerate cardiac tissue through direct reprogramming
of endogenous cells, and enhancement of native cardiomyocyte pro-
liferation through delivery of growth and transcription factors. We will
also explore future directions in the field including combination cell
therapy and bioengineering techniques.

Exogenous cell delivery

A wide variety of stem cell types have been evaluated for therapeu-
tic delivery for cardiac repair, ranging from unipotent skeletal myo-
blasts to pluripotent embryonic stem cells (Figure 1). Starting with
early studies utilizing skeletal myoblasts and bone marrow stem
cells, the rationale for stem cell delivery was predicated on the
speculation that ‘plasticity’ of adult stem cells may lead to transdif-
ferentiation of these cell types into cardiomyocytes to ‘regenerate’
native damaged tissue. Although it is now understood that the
positive effects of cell delivery on cardiac function in these early
studies may have resulted from a paracrine effect rather than true
cell engraftment and differentiation into cardiomyocytes, multiple
pre-clinical and clinical studies have been performed demonstrating
relative safety and modest efficacy of these cell types. With the dis-
covery of cardiac ‘progenitor’ cells as well as advancements in plu-
ripotent stem cell (PSC) derivation, there is now the possibility for
delivery of cardiomyocyte progenitors and cardiomyocytes capable
of true engraftment and regeneration of cardiac tissue. Many ques-
tions remain with exogenous cell delivery techniques, including the
choice of the best cell type for therapeutic effect as well as proper
delivery method, given the low engraftment rates as well as the
propensity for arrhythmogenesis.

Skeletal myoblasts

Initial studies using a cell-based strategy for ischaemic heart dis-
ease relied on skeletal myoblasts, based on its ability to regenerate
skeletal muscle through proliferation of quiescent satellite cells
located under the basal lamina [11]. Advantages of using this cell
type include easy expansion ex vivo, and the ability to use an autol-
ogous source. Although preclinical studies demonstrated potential

for intramyocardial injection of skeletal myoblasts to improve LV
function likely through a mechanical scaffolding effect [12, 13], mul-
tiple clinical trials including MAGIC [14] and MARVEL [15] have
since revealed lack of efficacy when compared to placebo. Further
studies showed that the injected cells do not integrate electrome-
chanically with the surrounding myocardium (as they do not
express connexin 43) [16], have a propensity to induce arrhythmias
(especially dangerous ventricular tachyarrhythmias) [17], and do
not regenerate myocardium [18]. Considering lack of significant
clinical improvement and their potential arrhythmogenic hazards,
skeletal myoblasts have fallen out of favour as a therapeutic
candidate.

Bone marrow cells

As a result of decades of experience in the haematological realm for
bone marrow transplants, bone marrow cells have been closely exam-
ined as a therapeutic option for cardiac cell therapy (Table 1). These
cells contain many inherent advantages, including ease in harvesting
pure cell populations in large numbers, ability to be used allogeneical-
ly, and composition including fractions of stem and progenitor cells
of different types. For these reasons, unselected bone marrow mono-
nuclear cells have been the most widely tested in pre-clinical and clin-
ical trials for cardiac therapy. Although an early study by Orlic et al.
supported the idea that unselected bone marrow cells have the capa-
bility to differentiate into cardiomyocytes [8], this has since been dis-
credited by a number of independent investigations [19, 20]. Several
selected studies did, however, demonstrate improvement in cardiac
function as well as decrease in infarct size [21, 22]. Other studies
specifically examined the haematopoietic stem cell (HSC) subset of
the unselected bone marrow population. Characterized by multiple
distinct markers including CD133 and CD34 [23]. HSCs were shown
in some pre-clinical studies to promote neovascularization and pre-
vent LV remodelling [24]. This subset of cells (accounting for less
than 0.1% of unfractionated bone marrow mononuclear cells) may
partially account for the positive effects of unselected bone marrow
cell therapy [25].

Closely related to HSCs is the subset of circulating bone marrow
mononuclear cells that are thought to specifically differentiate into
endothelial cells. Endothelial progenitor cells (EPCs) were first char-
acterized in 1997 by Asahara et al. [26] as expressing the HSC mar-
ker CD34 as well as an endothelial marker protein (most commonly
VEGF-R2), and are thought to play a major role in neovascularization
and maintenance of endothelial integrity under conditions of myocar-
dial ischaemia [27]. Initial animal studies using intramyocardial deliv-
ery of CD34+ cells in both rat [28] and porcine [29] models of MI
showed promising improvements in cardiac function. These results
led to several clinical studies specifically investigating cardiac
transplantation of autologous CD34+ cells in chronic ischaemia
(ACT34-CMI) [30], acute MI (TOPCARE-AMI) [31], and post-MI
(TOPCARE-CHD) [32]. All demonstrating safety of the therapy with
some evidence of efficacy. The ongoing RENEW study will examine
the efficacy of intramyocardial autologous CD34+ cell transplantation
in patients with refractory angina [33].
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More recently, it has been reported that there may be both ‘early’
and ‘late’ types of EPCs. Early EPCs are obtained from early 4–7 day
in vitro cultures and express specific endothelial markers CD31 and
TIE2, while late EPCs are cultured for at least 2–3 weeks in vitro and
then express additional markers such as VE-cadherin and von Wille-
brand factor [34]. It still remains unclear whether a specific EPC sub-
set may promote substantial neovascularization in the injured
myocardium, or whether the distinction exists purely in vitro.

Besides exogenous transplantation of bone marrow cells, a
related therapeutic strategy has been the use of haematopoietic
growth factors including granulocyte colony-stimulating factor [35],
granulocyte macrophage colony-stimulating factor [36] and macro-
phage colony-stimulating factor [37] in the setting of myocardial
injury. Their beneficial effect is predicated on mobilization of endoge-
nous bone marrow stem cells including HSCs and EPCs which may

then improve cardiac function through putative paracrine effects as
well as a direct angiogenic effect on ischaemic tissue [38–40]. Initial
pre-clinical murine studies utilizing these factors demonstrated
reduced LV remodelling as well as improved cardiac function [37, 41,
42]. However, a number of pilot clinical trials have since shown vari-
able outcome in terms of efficacy, with most of them unable to repro-
duce the favourable outcome seen in the animal studies [43–46].

A wide heterogeneity exists in the specific bone marrow cells used
for the pre-clinical and clinical studies in this field, with differences in
the cell isolation, storage and enrichment processes [47]. The wide
clinical experience with bone marrow cells for cardiac therapy has
had mixed results, likely because of this heterogeneity. Ongoing trials
with specific populations of purified bone marrow cells as described
above will shed light on the promise of this cell type for future cardio-
vascular therapy.

A B C

D E F

Fig. 1 Cell and tissue sources of cells for exogenous cell delivery. Multiple clinical trials have investigated non-cardiac cells including (A) skeletal

myoblasts, (B) adipose-derived stem cells, and (D) bone marrow-derived stem cells, with limited evidence of cell engraftment or clinical efficacy.

Clinical trials utilizing cells obtained from biopsied cardiac tissue (C) including cardiac ‘progenitor’ cells and cardiosphere-derived cells have provided
the strongest evidence to date for clinical efficacy of exogenous cell therapy. Embryonic stem cells (E) and induced pluripotent stem cells (F) can
be used as a source of cardiomyocytes potentially capable of electromechanical integration into native cardiac tissue.
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Mesenchymal stem cells

Another source for allogeneic cell therapy consists of mesenchymal
stem cells (MSCs), also known as mesenchymal stromal cells or
colony forming unit-fibroblasts. These were first isolated from bone
marrow stroma and described by Friedenstein et al. [48] more than
40 years ago, and have been shown in the intervening decades to be
a multi-potent source of mesoderm (as well as some non-mesoderm)
derived tissues including osteoblasts, chondrocytes, adipocytes, skel-
etal muscle, hepatocytes and even neurons [49, 50]. The ability of
MSCs to differentiate into cardiomyocytes is somewhat in dispute,
however, with some studies demonstrating transdifferentiation of
MSCs to cardiomyocytes [51, 52] while many others showing very
limited cardiomyogenic potential [53, 54]. Despite this controversy,
MSCs have been eagerly pursued as a cell-based source for cardiac
repair, because of their many other favourable properties including
their immunomodulatory properties and their easy isolation and
amplification from an allogeneic source [55].

The main role of the MSC is thought to be as a controller of stem
cell niches, most importantly that of the HSCs in the bone marrow,
but also in other tissues including the gut and hair follicles [56]. There
is no uniform definition for MSCs, but the International Society of Cell
Therapy has proposed criteria for MSCs including: (i) the ability to
adhere to plastic under normal culture conditions and display a fibro-
blast-like morphology, (ii) the ability to differentiate into osteoblasts,
adipocytes, and chondrocytes in vitro and (iii) expression of surface
markers CD73, CD90 and CD105, in the absence of CD11b, CD14,
CD19, CD34, CD45, CD79a and HLA-DR (Human leukocyte antigen)
[57].

Mesenchymal stem cells produce their immunomodulatory effects
through their unique immunophenotype, the secretion of soluble fac-
tors, and through interactions with both the innate and adaptive
immune cells. As they are negative for MHC II (Major Histocompat-
ibility Complex), B7, and CD40, MSCs are tolerated well when allo-
geneically transplanted. By secreting factors such as interleukin-6,
transforming growth factor (TGF)-b1, and prostaglandin E2, MSCs
suppress innate immune cell inflammatory responses such as the
respiratory burst function of neutrophils [58] and production of INF-c
(Interferon alpha) by natural killer cells [59]. In addition, MSCs have
been shown to modulate the adaptive immune system as well, mainly
through suppression of T cell proliferation [60]. It is thought that
these properties may ameliorate ischaemic cardiac damage especially
during the initial immune response to injury.

Mesenchymal stem cells have been isolated from many different
tissue types including bone marrow, adipose tissue, lung tissue,
umbilical cord blood and peripheral blood, but are most easily
harvested from the bone marrow and adipose tissue. In particular,
adipose-derived mesenchymal stem cells (ADCs) have the attractive
feature of being easily harvested and isolated from an allogeneic
source through liposuction with a high yield. Thus, most pre-clinical
and clinical studies have focused on delivery of MSCs isolated from
these two sources. Large-animal studies reported the ability of MSCs
to decrease infarct size and improve ventricular function [61, 62].
These studies used multiple delivery methods including intravenous
injection, intracoronary infusion, catheter-based intramyocardial

injection and direct surgical myocardial injection [49]. As with other
cell types studied for cardiac repair, the exact mechanisms for the
improvement in heart function are unclear, but are likely related to
possible anti-inflammatory effects as well as paracrine signalling to
recruit endogenous stem cells and promote healing by minimizing
fibrosis.

Based on the promising initial pre-clinical results, multiple clini-
cal trials have evaluated the use of bone marrow and ADCs both in
acute cardiac ischaemia as well as ischaemic cardiomyopathy.
Studies involving intravenous [63] intracoronary infusion [64] and
intramyocardial injection [65] of bone marrow derived MSCs as
well as intracoronary infusion of ADCs (APOLLO) [66] have demon-
strated safety of autologous and allogeneic cells in acute and sub-
acute MI, with modest improvement in LV ejection fraction. Early
clinical trials using MSCs in ischaemic cardiomyopathy, most nota-
bly TAC-HFT (Transendocardial Autologous Mesenchymal Stem
Cells and Mononuclear Bone Marrow Cells in Ischemic Heart Failure
Trial) [67] comparing MSCs with BM mononuclear cells and POSEI-
DON [68] comparing allogeneic with autologous MSCs appear to
confirm the safety of this cell type, although determination of clini-
cal efficacy will necessitate larger trials. The PROMETHEUS study
[69] utilizing autologous MSCs in patients with chronic ischaemic
cardiomyopathy undergoing coronary artery bypass grafting (CABG)
points to efficacy based on improvement in ventricular contractile
function and decrease in scar size. Two clinical studies looking at
safety and efficacy of adipose-derived MSCs have recently been
completed for both acute ischaemia [195] and chronic ischaemic
cardiomyopathy [196], and the results of these studies will delin-
eate the potential regenerative efficacy of this particular cell type in
cardiac repair.

Cardiac progenitor cells

Until recently, it was thought that the heart was a fully differentiated
organ without the capacity for regeneration. Multiple groups [9],
including ours [10], have since found that post-natal generation of
new cardiomyocytes does indeed occur, albeit at a very low rate.
Many types of putative ‘cardiac progenitor cells’ (CPCs) have been
reported, with the shared definition that they are clonal multi-potent
cells capable of self-renewal and differentiation into the three major
cardiac cell types. The most clinically relevant, of these types for cell
therapy have been the c-kit+ cell [70] and the cardiosphere-derived
cell (CDC) [71], while Sca-1+ cells [72], Isl-1+ cells [73, 74], SSEA-1+

cells [75, 76], side-population cells [77] and telocytes [78, 79] have
also been the subject of research interest.

Cardiac progenitor cells with the ability to differentiate into cardio-
myocytes, endothelial cells and smooth muscle cells were first
reported in the rat heart by Beltrami et al. in 2003 [70], and later in
the human heart [80]. These cells reportedly expressed the tyrosine
kinase receptor c-kit (CD117), a marker of stemness, lacked hemato-
poetic lineage markers, and were found to be multi-potent, clonal and
self-renewing [81]. Early studies utilizing human c-kit+ CPCs in an
infarction model of immunodeficient mice reported successful
engraftment, differentiation into the three major cardiac cell types,
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and improvement in cardiac function by echocardiography [80]. In a
porcine chronic infarct model, c-kit+ CPCs were first isolated and
expanded from right atrial appendage resections, and then delivered
via coronary artery infusion through a catheter [82]. Results showed
successful engraftment of delivered cells and improvement in LV
function, setting the stage for translation into human clinical trials.
The SCIPIO [83] trial utilized autologous c-kit+ CPCs harvested and
expanded from the right atrial appendage at the time of CABG, with in-
tracoronary infusion at a mean of 113 days after CABG. At 1 year
after infusion, LV function by echocardiography was found to
increase by 12.3% � 2.1% compared to the control group, while the
infarct size by magnetic resonance imaging (MRI) was found to
decrease significantly.

Another CPC type under intense investigation has been the CDC
[84]. First isolated from mice and human biopsy samples in 2004
[71] and later in dogs [85, 86], these cells were expanded using
spheroid culture technique. These cells were then found to form
aggregates of a heterogenous cell population that expressed stem cell
markers such as c-kit, Sca-1 and CD34. Further characterization
revealed multi-potentiality and clonogenicity of the cells, with cells at
varying stages of differentiation (based on expression of cardiac line-
age markers such as cardiac Troponin-I, atrial natriuretic peptide and
CD31) depending on their location within the cell mass. The cells in
the core were found to be mainly proliferating c-kit+ cells, with more
differentiated cells as well as MSCs (characterized by expression of
CD90 and CD105) towards the periphery, potentially indicating a role
for MSCs in promoting CPC differentiation and renewal. The mediator
for CDC-induced regeneration may be related to exosome delivery of
miR-146a [87, 88]. More recently, it was found that THY-1 (Thymo-
cyte antigen 1) (CD90) receptor expression could also be used to
delineate CDCs with divergent cardiac differentiation potential into
either mesenchymal/myofibroblast cells or cardiomyocytes [89]. Ini-
tial pre-clinical studies involving injection of CDCs in an immunodefi-
cient murine infarction model showed improvement in
echocardiographic cardiac function [90]. This led to a porcine study
[91] using intracoronary delivery of CDCs which demonstrated reduc-
tion in relative infarct size by MRI. Soon thereafter, the initial human
clinical trial (CADUCEUS) [92] studying autologous CDCs obtained
through endomyocardial biopsy reported decreased scar size by MRI
in patients receiving intracoronary infusion of CDCs after AMI.

The demonstration of clinical safety in both SCIPIO and CADU-
CEUS (along with suggestion of efficacy) has been encouraging for
the field, but efficacy will have to be confirmed after longer time peri-
ods and through larger clinical trials involving sample sizes powered
for such a determination. The ALLSTAR trial [191] investigating the
delivery of allogeneic CDCs in patients with LV dysfunction after MI
will shed more light on the future of this cell type as a therapeutic
option.

Pluripotent stem cells

Pluripotent stem cells have the ability to differentiate into all cell lin-
eages, and hence offer novel treatment options for many intractable
diseases including end-stage heart failure. Human embryonic stem

cells (hESCs) have been investigated as a source of cells for cardiac
repair through ex vivo differentiation into either cardiac ‘progenitors’
[76] or into mature cardiomyocytes [93]. However, limitations include
the inability to isolate pure tissue-specific progenitors capable of
robust engraftment and regeneration, potential risk of teratoma for-
mation from residual PSCs in the transplanted cells [94], and ethical
concerns with their generation.[95] In addition, it is uncertain that
hESCs can functionally engraft and electromechanically couple into
the surrounding myocardium. These concerns have limited the clini-
cal translation of hESCs for cardiac therapy.

The report by Yamanaka in 2006 [96] that terminally differentiated
murine fibroblasts could be ‘reprogrammed’ to a primitive embryonic
stem cell-like state through introduction of four specific transcription
factors (Oct3/4, Sox2, c-Myc and Klf4) brought new hope to cardiac
regenerative medicine. These cells, called induced PSCs (iPSCs), may
bypass the ethical concerns associated with ESCs, and serve as a
potentially unlimited source of cells for transplantation. While murine
studies reported engraftment of iPSCs into infarcted myocardium
[97], concerns for tumourgenicity have greatly limited further investi-
gation using direct transplantation of iPSCs.

The most promising application of PSCs in cardiac regenerative
medicine has been their use as a cell source for derivation of adult
cardiomyocytes for transplantation. While early protocols for differen-
tiating ESCs into cardiomyocytes generated less than 1% yields [93],
more recent differentiation protocols have achieved yields of up to
70% [98]. Further enrichment for ESC-derived cardiomyocytes can
be accomplished through use of a cardiac-specific promoter for
expression of a fluorescent protein [99], sorting for cell surface mark-
ers [100–102] or sorting via Raman spectroscopy [103]. Our group
has reported on hESC-derived ROR2(+)/CD13(+)/KDR(+)/PDGFRa(+)
cells that give rise to cardiomyocytes [104] as well as endothelial
cells and vascular smooth muscle cells. To date, ESCs, iPSCs [105]
and even parthenogenetic PSCs [106] have been successfully differ-
entiated into cardiomyocytes. Investigation into the electrical-
mechanical properties of derived cardiomyocytes have found them to
exhibit significant automaticity with immature action potential [107]
and contractile [108] properties, highlighting the need for further
development of differentiation conditions capable of producing car-
diomyocytes of more mature phenotype compatible with native myo-
cardium.

In vivo studies utilizing PSC-derived cardiomyocytes have been
promising, with early rodent studies in acute [93] and chronic [109]
infract models demonstrating improvement in ventricular contractile
function. More recently, hESC-derived cardiomyocytes have been
shown in a primate model of ischaemia-reperfusion injury to engraft
into infarcted host tissue, ‘remuscularize’ the infarct region, and elec-
tromechanically couple to surrounding host cardiomyocytes [110].
However, the presence of arrhythmias were reported in all animals
receiving cell therapy, highlighting the potential problem with the ar-
rhythmogenicity of transplanted cell Whether these cells are inher-
ently arrhythmogenic or serve as a nidus to induce arrhythmias is still
not entirely clear. Future translation of this approach will require
further understanding to eliminate the arrhythmogenicity inherent
in transplanted cardiomyocytes before human clinical studies can be
initiated.
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Endogenous cell therapy

Cell therapy relying on exogenous delivery of cells has provided great
promise for the treatment of cardiovascular diseases. However,
issues such as low cell survival, poor engraftment and limited func-
tional maturation have emphasized the need to develop novel thera-
peutic alternatives. Regeneration of cardiac tissue through use of
endogenous cardiac cells, as with direct reprogramming of resident
cardiac fibroblasts or stimulation of native cardiomyocyte prolifera-
tion, can potentially sidestep the inherent limitations of exogenous
cell delivery.

Direct reprogramming of endogenous cells

Shortly after Yamanaka’s report of reprogramming of somatic cells to
iPSCs [96], the ability of these cells to differentiate into functional car-
diomyocytes was readily demonstrated [105]. However, as with ESCs,
the utilization of iPSC-derived cardiomyocytes raised a number of
concerns such as potential differentiation towards alternative cell
fates and teratoma formation once introduced to the heart. Direct
reprogramming of fibroblasts to cardiomyocytes bypassing the plu-
ripotent state was proposed as a method overcoming such hurdles
[111, 112]. The abundance of fibroblasts in the heart [113] as well as
their role following injury highlight the therapeutic potential of this
approach. Direct conversion of fibroblasts into cardiomyocytes was
first reported by Ieda et al. [112]. The authors showed that the com-
bination of three transcription factors, GATA4, MEF2C and TBX5
(referred to as GMT) was able to convert mouse dermal and cardiac
fibroblasts into cardiomyocyte-like cells, termed induced cardiomyo-
cytes (iCMs). iCMs exhibited a gene expression profile similar to
native cardiomyocytes while the fibroblast gene program was
silenced, and a small fraction was able to spontaneously contract.
However, the efficiency of the conversion was very low and the
majority of iCMs was only partially reprogrammed. Similarly, Protze
et al. demonstrated time-dependent conversion of mouse embryonic
fibroblasts into cardiomyocyte-like cells through lentiviral expression
of myocardin, MEF2C and TBX5 [114], while Song et al. reported the
requirement of four factors GATA4, HAND2, MEF2C and TBX5
(GHMT) [115]. Although in the setting of the experiments by Ieda
et al. [112], miRNAs were not required for reprogramming, Jayawar-
dena et al. demonstrated that a panel of four miRNAs (miR-1, miR-
133, miR-208 and miR-499) and a JAK inhibitor were sufficient for
direct conversion of mouse fibroblasts into cells with characteristics
of cardiomyocytes [116]. Muraoka et al. demonstrated that addition
of miR-133 to the GMT combination resulted in a sevenfold increase
in the generation of beating cardiomyocytes [117]. More recently,
Addis et al. utilized a reporter system carrying the calcium indicator
GCaMP under a Troponin-T promoter, and found that the combination
of Hand2, Nkx2.5, Gata4, Mef2c and Tbx5 (HNGMT) was the most
efficient in reprogramming of embryonic and adult mouse fibroblasts
into functional cardiomyocytes [118]. It was then shown that small
molecule inhibition of TGF-b using SB432542 in combination with
HNGMT further increased reprogramming efficiency [119]. Besides
the specific combination of factors, the stoichiometric expression of

GMT factors significantly affects the efficiency of reprogramming and
the quality of the iCMs [120]. In an effort to develop clinically applica-
ble strategies for direct reprogramming, Wang et al. identified a cock-
tail of small molecules that was sufficient to reprogram mouse
fibroblasts to ventricular-like cardiomyocytes in the presence of only
one transcription factor, Oct4 [121].

However, the need for the development of regenerative strategies
that do not require cell transplantation, as well as the low efficiency of
direct reprogramming in vitro moved the field towards in vivo conver-
sion of fibroblasts to cardiomyocyte-like cells [115, 116, 122, 123].
Retrovirus-mediated intramyocardial delivery of the GMT [122] or
GHMT [115] combinations of transcription factors following MI
resulted in successful direct reprogramming of fibroblasts into car-
diomyocytes. The fraction of iCMs exhibiting characteristics of endog-
enous cardiomyocytes was significantly increased in the in vivo
setting compared to in vitro reprogramming. Importantly the authors
reported a decrease in infarct size and improvement in heart function
[115, 122]. More recently, it was found that lentiviral-mediated
administration of miR-1, miR-133, miR-208 and miR-499 into
infarcted mouse hearts resulted in direct reprogramming of resident
fibroblasts into cells with cardiomyocyte morphology and function,
resulting in decreased infarct size and improved cardiac function
[124].

Consistent with the findings in mice, recent studies have demon-
strated the conversion of human fibroblasts to cells with cardiomyo-
cyte characteristics [125–127]. Although human cells have been
proven to be more challenging, various combinations of transcription
factors and miRNAs (GATA4, HAND2, TBX5, myocardin and the miR-
NAs miR-1 and miR-133 [125], GMT, together with Myocardin,
ZFPM2 (Zinc finger protein multitype 2) and TGF-b [126], and GMT in
addition to Mesp1 and Myocd) [127] have successfully produced
human cardiomyocyte-like cells. Further studies in larger animals are
required to explore their in vivo reprogramming potential.

Activation of endogenous cardiomyocytes

Mammalian cardiomyocytes have long been considered as post-
mitotic, terminally differentiated cells unable to re-enter the cell
cycle. A number of studies have challenged this dogma, providing
evidence of cardiomyocyte division in the adult heart [7, 9]. How-
ever, although the neonatal heart exhibits a robust regenerative
capacity following injury [128, 129], in adults, the rate of cardiomyo-
cyte proliferation is low and inadequate to replenish the lost tissue.
In an effort to ‘re-activate’ mature cardiomyocytes, a number of
studies have suggested a variety of molecules ranging from growth
and transcription factors, to cell cycle genes, to miRNAs, as poten-
tial therapeutic means to promote endogenous cardiomyocyte prolif-
eration [130].

Administration of periostin, an extracellular matrix (ECM) protein
produced by fibroblasts, has been shown to improve cardiac function
and decrease infarct size following MI [131–133]. The beneficial
effects of periostin have been attributed to increased cardiomyocyte
DNA synthesis, mitosis and cytokinesis as well as increased angio-
genesis [131–133]. However, the use of periostin as a therapeutic
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agent remains controversial [133, 134], and further investigation is
required.

Neuregulin is another protein that has exhibited strong therapeutic
potential. This growth factor has been shown to promote cardiomyo-
cyte cell cycle re-entry and cytokinesis in a mouse infarction model in
addition to a pro-angiogenic and anti-apoptotic function [135]. Neu-
regulin treatment resulted in reduced scar size, ameliorated heart
function and decreased hypertrophy [136]. More recently, Polizzotti
et al. reported the existence of a ‘therapeutic window’, confined to the
first postnatal days in mice and the first 6 months in humans, during
which neuregulin treatment has remarkably higher efficiency in pro-
moting cardiomyocyte regeneration [137]. Similarly, expression of
the neuregulin co-receptor ERBB2 (human epidermal growth factor
receptor 2) was shown to be sufficient for cardiomyocyte proliferation
and tissue regeneration following injury [138]. Phase II clinical trials
examining neuregulin administration as a therapeutic alternative for
heart failure, have produced very promising results [139].

Insulin growth factor 1 (IGF1) and fibroblast growth factor 1
(FGF1) have also been proposed to promote cardiomyocyte prolifera-
tion [140–142]. Mice over-expressing IGF1 specifically in cardiomyo-
cytes exhibited larger hearts as a result of cardiomyocyte hyperplasia
[140], while in a recent report it was suggested that activation of the
IGF1/Akt pathway coincides with a ‘proliferative burst’ of cardiomyo-
cytes in preadolescent mice [141]. Likewise, Engel et al. demon-
strated that a combination of FGF1 and a p38 inhibitor improved heart
function and cardiomyocyte cycling in rats following MI [142].
Growth factor pathways such as IGF, Hedgehog and TGF-b were also
identified through an in vivo screening of cardiomyocyte proliferation
modifiers [143].

In addition to the administration of exogenous proteins, alteration
in the expression of transcription factors [144] as well as cell cycle
genes [145, 146] represents an alternative therapeutic option.
Namely, cardiomyocyte-specific deletion of a member of the TALE
family of transcription factors (including Meis1) extended the prolifer-
ative window of postnatal cardiomyocytes from 7 to 14 days, while
its overexpression reduced cardiomyocyte proliferation and
decreased neonatal cardiac regeneration [144]. In the same context,
Cheng et al. showed that constitutive myocardial expression of Cyclin
A2 in mice resulted in enhanced cardiac function explained by cardio-
myocyte cell cycle re-entry and increased regeneration [145]. More
recently, adenovirus mediated delivery of Cyclin A2 in the peri-infarct
area of pig hearts produced similar results [146].

Finally, several miRNAs involved in the regulation of cardiomyo-
cyte proliferation have been proposed as potential therapeutic can-
didates [129, 147]. Porrello et al. elegantly demonstrated that
inhibition of the miR-15 family results in cardiomyocyte prolifera-
tion and improved cardiac function following infarction in adult
mice [129]. High-throughput screening of human miRNAs revealed
forty miRNAs regulating cardiomyocyte DNA synthesis and cytoki-
nesis in vitro while two of these (has-miR-590 and has-miR-199a)
promoted cardiac regeneration and restored cardiac function in a
mouse infarction model [147]. Similarly, the microRNA cluster
miR-302-367 was shown to activate cardiomyocyte cell cycle re-
entry and proliferation as well as decrease scar formation following
MI in mice, partly because of inhibition of the organ size control

signalling pathway Hippo [148]. These recent data are in agreement
with a number of studies which indicated that inactivation of the
Hippo pathway promotes cardiomyocyte proliferation and cytokine-
sis after injury in both neonatal and adult mice [149], and that acti-
vation of the Hippo pathway effector protein Yap stimulates
cardiomyocyte regeneration and improves cardiac function after
injury in mice [150–152].

Development of novel therapies based on the delivery of mole-
cules that are able to stimulate the endogenous cardiac cells to
undergo proliferation offers significant advantages. Myocardial regen-
eration strategies, whether they involve fibroblast reprogramming or
cardiomyocyte cell cycle re-entry would circumvent issues associated
with more invasive cell-based therapies such as cell survival, engraft-
ment and electromechanical coupling with resident cells.

Future directions

As described in previous sections, the transplantation of several cell
types has been shown in multiple pre-clinical and clinical studies to
be a safe technique for potentially improving cardiac function,
although evidence for true cardiac regeneration through successful
engraftment of exogenous cells has been limited. This perhaps should
not be surprising given the complexity of cardiac tissue. Multiple fac-
tors likely play a role in early cell death after intramyocardial delivery
of exogenous cells, including the absence of necessary survival fac-
tors in the transplanted cells [153], loss of physiological signalling
through interactions with the ECM [154], limited vascular supply in
the local microenvironment [155], an inflammatory milieu in the after-
math of cell delivery [156] and inability to electromechanically couple
with the host cardiomyocytes [16]. Strategies to improve cell reten-
tion and proliferation have thus focused on improving the immediate
microenvironment into which the cells are delivered. One approach
has investigated simultaneous delivery of pro-survival growth factors
[93, 131, 157], of which the ideal combination has yet to be identified.
Another technique being studied is the ‘pre-conditioning’ of cells into
a pro-survival state through exposure to ischaemia, cytokines or heat
shock [156].

Of particular interest are two approaches that seek to more closely
recapitulate the particular microenvironment of a cardiac stem cell
‘niche’ to improve cell engraftment and survival. First, the co-delivery
of two (or more) different types of cells takes advantage of potential
synergistic and complimentary interactions between different cell
populations. Second, bioengineering approaches such as the seeding
and delivery of tissue engineered scaffolds could potentially enhance
survival of delivered cells by providing the microstructural framework
and extracellular cues necessary for cell viability.

Combination cell therapy

The ‘niche’ model of adult stem cell self-renewal and differentiation,
originally developed by Schofield in 1978 [158], describes a local
microenvironment in which tissue (including cardiac tissue) is gener-
ated, maintained and repaired by stem cells under the regulation of a
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complex interaction between the stem cells and surrounding niche
support cells, soluble signalling molecules, and interactions with the
ECM [159, 160]. As a large percentage of heart volume is comprised
of interstitial tissue, it is thought that cardiac niches within the inter-
stitial compartments of the myocardium and epicardium are responsi-
ble for potential cardiac regeneration. In particular, MSCs have been
found to be involved in regulation of the cardiac as well as HSC niches
[161]. Combination cell therapy builds upon this framework by co-
delivering stromal support cells with stem cells to enhance cell sur-
vival and engraftment into the surrounding tissue. An early demon-
stration of this concept involved co-transplantation of satellite cells
and MSCs in a murine model of Chagas cardiomyopathy, a combina-
tion which was found to improve cardiac function compared to con-
trol [162]. In another study, the combination of EPCs and MSCs was
found to synergistically form functional vascular networks in Matrigel
that remained patent at 4 weeks in vivo [163].

Another stromal support cell called the telocyte has been found to
closely relate to CPCs at the level of the stem cell niche [164, 165] by
directing progenitor cell differentiation via microRNA vesicular trans-
fer [166, 167], making it another potential cell type for combination
therapy. Separate from cardiac fibroblasts [168], these cells have
been studied to improve cardiac function in rat models of MI [169,
170].

More recently, it has been found that MSCs induce proliferation
and differentiation of c-kit+ CPCs via interactions through connexin-
43 gap junctions [161]. Based on this understanding, a combination
approach using both MSCs and c-kit+ CPCs was found to be synergis-
tic in reducing scar size and improving cardiac function in a porcine
model of MI when compared to either cell type alone [171]. A clinical
trial to further evaluate this approach (AIRMID) is currently in the
planning stage, and may further advance this field.

Another potential approach combines c-kit+ CPCs with pericytes,
a support cell thought to play an important role in vascular growth
and angiogenesis through paracrine mediators [172]. An early-stage
murine study demonstrated improved cardiac contractility by echo-
cardiography as well as improved vascular proliferation and arterio-
genesis [173], but further study will be required before such an
approach can be translated to clinical trials.

Bioengineering approaches

Normal functioning myocardium relies on a complex and dynamic
interaction between multiple cell types, the ECM, and soluble signal-
ling factors. In particular, an adult CPC ‘niche’ is governed by diverse
interactions between surface-bound integrins (such as a1b1, a2b1,
a10b1, a11b1 integrins) [174] and the ECM proteins collagen, elas-
tin, laminin and fibronectin [175, 176]. The low rates of cell survival
and engraftment in exogenous cell therapy is thus likely related in part
to the dearth of these important physiological cues necessary for
homeostasis immediately during and after delivery [177].

The ideal biomaterial complement to cell therapy should provide a
proper three-dimensional structure with appropriate biological, bio-
electrical, biomechanical and biochemical features specific for the cell
type [178, 179]. Much attention has been focused on the incorpora-

tion of signalling molecules to influence cell biology. Strategies to
date have ranged from co-delivery of ECM components such as colla-
gen [180], Matrigel [181], fibrinogen [182], and de-cellularized ECM
[183, 184], to non-ECM biological materials such as chitosan [185],
to in vitro construction of seeded tissue-engineered scaffolds trans-
planted as cardiac patches [186]. Synthetic materials can be designed
for specific properties; poly(lactic-co-glycolic acid) microcarriers can
release growth factors in concert with co-delivered cells [187], and
self-assembling peptide nanofibers can be co-delivered with cells to
improve cell retention, direct differentiation and deliver protein [188–
190]. However, further study regarding materials biocompatibility and
biodegradation will be required prior to further clinical translation of
this technology. Future efforts to develop resorbable, electrically con-
ductive and biologically active materials with minimal modulus mis-
match and adequate immunomodulatory properties would
significantly advance this field. In addition, advances in tools and
technologies to promote targeted delivery of progenitor cells to is-
chaemic and infarcted tissues as well as improvements in non-inva-
sive cell tracking will reveal new insights on cell survival and
integration.

Conclusions

Cell-based therapy for amelioration and regeneration of cardiac tis-
sue has been widely studied as a novel approach for the treatment
of ischaemic heart disease. Multiple cell types have been intensely
characterized and investigated as potential candidates for exoge-
nous delivery. Initial studies using skeletal myoblasts, while
encouraging in animal models, highlighted the inherent arrhythmo-
genic potential of exogenous cells that do not integrate electrically
with the surrounding myocardium. Bone marrow cells, in both
unselected and purified forms, have been under wide clinical inves-
tigation despite inconsistent outcomes. The unique immunomodu-
latory properties of MSCs may make them excellent candidates for
combined therapy with another cell type. Pluripotent stem cells
have emerged as an almost limitless source for derivation of dif-
ferentiated cardiomyocytes with the potential to physiologically
integrate with host myocardium both electrically and mechanically.
Perhaps the cell types with some potential for cardiac repair have
been the c-kit+ and cardiosphere-derived CPCs, although indepen-
dent large clinical trials are needed to confirm the preliminary
results.

Despite these advances, significant obstacles remain in the
field; low cell survival, poor engraftment and limited functional
maturation (of progenitor cells) have blunted potential therapeutic
benefit. While from a putative standpoint one would expect cell
therapy to exert its beneficial effect by repopulating the damaged
myocardium by the exogenous cells, others have argued that the
delivery of exogenous cells may lead to recruitment of intrinsic
cells capable of regenerating the damaged muscle; hence the
loss of transplanted cells after a short time does not preclude
the promise of stem cell therapy. Cell therapy strategies involving
direct reprogramming of endogenous cardiac fibroblasts into car-
diomyocytes and stimulation of endogenous cardiomyocyte
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expansion through growth and transcription factor delivery have
the potential to sidestep the inherent limitations of exogenous
cell delivery. Ultimate success with cardiac cell therapy will likely
necessitate a combined strategy involving exogenous delivery of
multiple complementary cell types, soluble factors for enhanced
cell survival, concurrent stimulation of endogenous cardiomyocyte
regeneration, recruitment and transdifferentiation of endogenous
cardiac fibroblasts into cardiomyocytes through direct reprogram-
ming, and the use of biomaterial scaffolds to provide structural
support and biochemical cues during delivery (Figure 2).

Acknowledgements

This work was supported by grants from the California Institute of Regenera-
tive Medicine RC1-00354-1, the National Institutes of Health (NIH) DP2

HL127728 (R.A.) and NIH T32 HL78915 (C.H.C.).

Conflicts of interest

The authors confirm that there are no conflicts of interest.

A

B

C D E

Fig. 2 A combined approach for amelioration of injury and rejuvenation of cardiac tissue. Successful cardiac regeneration will likely necessitate a
combination of therapeutic approaches. (A) Delivery of exogenous cells has been demonstrated via epicardial, intramyocardial (endocardial), intra-

coronary and intravenous routes. (B) Fibroblasts directly reprogrammed into cardiomyocytes either in vitro or in vivo can potentially serve as an

abundant source of cells for cardiac regeneration. (C) Stimulation of native cardiomyocyte proliferation may be possible using a number of protein-

and nucleic acid- based factors. Delivery of multiple cell types (E) along with delivery of biomaterials-based scaffolding (D) may be necessary for
optimal cell engraftment and tissue regeneration.
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