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Background: Frail older adults have an increased risk of adverse health outcomes
and premature death. They also exhibit altered gait characteristics in comparison with
healthy individuals.

Methods: In this study, we created a Fried’s frailty phenotype (FFP) labelled casual
walking video set of older adults based on the West China Health and Aging Trend
study. A series of hyperparameters in machine vision models were evaluated for body
key point extraction (AlphaPose), silhouette segmentation (Pose2Seg, DPose2Seg, and
Mask R-CNN), gait feature extraction (Gaitset, LGaitset, and DGaitset), and feature
classification (AlexNet and VGG16), and were highly optimised during analysis of gait
sequences of the current dataset.

Results: The area under the curve (AUC) of the receiver operating characteristic (ROC)
at the physical frailty state identification task for AlexNet was 0.851 (0.827–0.8747) and
0.901 (0.878–0.920) in macro and micro, respectively, and was 0.855 (0.834–0.877)
and 0.905 (0.886–0.925) for VGG16 in macro and micro, respectively. Furthermore, this
study presents the machine vision method equipped with better predictive performance
globally than age and grip strength, as well as than 4-m-walking-time in healthy and
pre-frailty classifying.

Conclusion: The gait analysis method in this article is unreported and provides
promising original tool for frailty and pre-frailty screening with the characteristics of
convenience, objectivity, rapidity, and non-contact. These methods can be extended to
any gait-related disease identification processes, as well as in-home health monitoring.
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INTRODUCTION

Frailty is a state of increased vulnerability to stress, which
may lead to a diminished homeostatic capacity across multiple
physiological systems (Fried et al., 2009). Frail older adults are at
an increased risk of premature death and various adverse health
outcomes, including falls, fractures, disability, and dementia, all
of which could result in a poor quality of life and an increased
cost of healthcare resources, such as emergency department visits,
hospitalisation, and institutionalisation (Kojima et al., 2019).
The comprehensive geriatric assessment (CGA), which serves
as the basis for geriatric medicine and research, is primarily
aimed at identifying and quantifying frailty by examining
various risk-prone domains and body functions (Lee et al.,
2020). Fried’s frailty phenotype (FFP), the most acceptable
face to face evaluation for frailty, includes five components,
namely weakness, slowness, exhaustion, low physical activity, and
unintentional weight loss; trained personnel takes up 20 min for
one case (Fried et al., 2001). The Rockwood frailty index (RFI),
involving 70 clinical deficits, which is usually generated from
comprehensive health records, was less available for seniors with
limited medical resources (Rockwood et al., 2005).

Human locomotion is a common daily activity and is also an
acquired yet complex behaviour. It requires the involvement of
the nervous system, many parts of the musculoskeletal apparatus,
and the cardiorespiratory system (Adolph and Franchak, 2017).
Individual gait patterns are influenced by age, personality, mood,
and sociocultural factors. Some age-related neurological cases,
such as sensory ataxia and Parkinson’s disorders, lead to unique
gait disorders (Pirker and Katzenschlager, 2017). Furthermore,
the preferred walking speed in older adults is a sensitive marker
of general health and survival (Pirker and Katzenschlager, 2017).

However, recent researchers have focused on understanding
the impact of the frailty state on various gait parameters beyond
speed, because only the gait speed might not be sufficient
to classify the frailty state of an individual. An improved
classification can be achieved by referring to parameters such as
the signal root mean square and total harmonic distortion instead
of simply relying on the gait speed (Martinez-Ramirez et al.,
2015). Previous studies have suggested that transitionally frail
individuals exhibit a reduced locomotive speed, cadence, stride
length, increased stride time, double support (as a percentage of
the gait cycle), and stride time variability as compared to healthy
individuals (Schwenk et al., 2014). Artificial neural networks
might also help to further investigate the frailty of gait. Dawoon
recently analysed the gait statistics gathered from gyroscopes
placed on the feet using a long short-term memory network-
based classifier (Jung et al., 2021). Akbari performed a Kinect-
sensor machine learning methodology as a frailty classifier
via functional assessment exercises including a walking test
(Akbari et al., 2021).

Different approaches have been implemented to determine
the gait characteristics in clinical research. Numerous studies
were based on signals from floor sensors or wearable
sensors, which can relatively provide precise time and
space information. However, these accessory devices have
limited their applicability, specifically in developing districts

(Muro-de-la-Herran et al., 2014). Human gait recognition and
behaviour understanding (GRBU), mostly without the use
of contact sensors, has become a major research branch of
machine vision using artificial neural network tools and has
a wide range of applications in the field of anti-terrorism,
intelligent monitoring, access control, criminal investigation,
pedestrian behaviour analysis, reality mining, and medical care
(Luo and Tjahjadi, 2020).

Gait recognition and behaviour understanding are primarily
divided into data-driven (model-free) and knowledge-based
(model-based) methods, based on the requirement of any
relevant human pose parameters for feature extraction. The
idea underlying model-based methods is the application of
mathematical constructs to analyse walking movement as a
representation of gait appearance using several ellipses or
segments (Yoo et al., 2002). The main advantages of the
model-based approach are that it can reliably handle occlusion
(particularly human body self-occlusion), noise, scale, and
rotation, as well as overcome poor robustness and its dependence
on precise modelling of the human body. A model-free GRBU
method extracts the statistical information of gait contours in a
gait cycle and matches the contours reflecting the same shape
and motion characteristics. A gait energy image (GEI) (Li et al.,
2018), which is a classical representation of gait features, derives
many energy images of related features, such as the frame
difference energy images (Chen et al., 2009), gait optical flow
images (Lam et al., 2011), and pose energy images (Roy et al.,
2012). The advantages of these approaches are that: (1) they
can obtain more comprehensive spatial information, focusing
on each silhouette; and (2) they can gather more temporal
information because specialised structures are utilised to extract
sequential information. However, the GEI-like method requires a
high computational power.

A huge demand for telemedical care emerged owing to the
increasing spread of the corona virus disease 2019 (COVID-
19), particularly among the older adults. The application of deep
learning algorithms introduces real-time health analysis via video
recording devices, such as a monitoring camera, web camera,
or smartphones (Banik et al., 2021). A machine vision-based
self-reporting method has the potential to significantly enhance
accessibility and reduce costs in frailty evaluation. A deep
learning gait assessment, conducted in a recent trial, based on a
wearable sensor or force plates, is promising for disease screening
and in-home monitoring (Zhang et al., 2020). However, older
adults’ resistance to wearable devices and the additional cost of
equipment might limit the scenarios of these technologies.

This study is aimed at developing a machine vision driven
geriatric disease gait identification method without using a
contact sensor or index and at exploring its potential as a frailty
screening tool possessing the characteristics of convenience,
objectivity, rapidity, and non-contact (Figure 1). In this study,
a multidimensionally labelled gait video set of an older adult
was established. Then, a series of hyperparameters in machine
vision networks were optimised and evaluated for gait feature
extraction and identification. The predictive power of the frailty
and pre-frailty (patients at risk for frailty who fulfil some, but not
all, criteria for frailty) evaluation was measured using the area
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FIGURE 1 | Visualised abstract. FFP, Fried Frail phenotype evaluation.

under the curve (AUC) of the receiver operating characteristic
(ROC). These methods may be generalised to any gait-related
disease identification processes. The current approach provides
unreported frailty and pre-frailty screening tools, which may
potentially be generalised to gait-related diseases or in-home
health monitoring, with the characteristics of convenience,
objectivity, rapidity, and non-contact.

MATERIALS AND METHODS

Participants
The current study involved a cross-sectional analysis of baseline
data from the West China Health and Aging Trend (WCHAT)

observational study that was designed to evaluate factors
associated with healthy aging among community-dwelling adults
aged 50 years and older in western China. From July to August
2019, we included a subset of 485 participants from five different
locations in the Sichuan province. The final analysis consisted
of 222 participants, excluding 205 individuals aged <60 years,
31 individuals who have difficulty in completing FFP evaluation
safely, 24 individuals with a medical history of Parkinson’s disease
or stroke (usually in a unique gait manner), and 3 individuals with
incomplete walking video records. The recordings of participants
who did not meet the criteria were used for an early-stage
modification of the current pattern, such as the analysis of the
body key points and a segmentation of the gait silhouettes.
All participants (or their proxy respondents) were recruited by
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convenience, and they provided a written informed consent to the
researchers, and our institutional ethics review boards approved
the study. All researchers followed the local law and protocol to
protect the rights of privacy, portraits, or other interests of the
study participants.

Frailty and Pre-frailty
Frailty and pre-frailty are defined using the FFP scale (Fried
et al., 2001), comprising the following five elements: shrinking,
slowness, weakness, exhaustion, and low physical activity.
Subsequently, those who meet three or more of the above criteria
are termed as frail, those who meet one or two are termed as
pre-frail, and those who meet none of the criteria are called as
non-frail or healthy older adults. In this study, a low physical
activity was determined by the total amount of kcal/week spent
on commonly performed physical activities as measured using
a validated China Leisure Time Physical Activity Questionnaire
(CLTPAQ) (Yanyan et al., 2019). Supplementary Table 1 presents
more details on these criteria.

Recording of Walking Video
Gait videos can be better shot in spacious, warm environments,
on flat grounds, and in well-lit indoor environments. The green
screen; two yellow parallel benchmarks, which were placed 4 m
apart from each other; and five security cameras (F = 4 mm, DS-
IPC-B12V2-I, Hikvision, Zhejiang, China) were properly fixed,
as shown in Figure 2. The height of the cameras from the
ground was approximately 1.3 m, and their angles were adjusted
to ensure that the body of the entire gait process between the
aforementioned benchmarks could be filmed and stored by the
recorder (DS-7816N-R2/8P, Hikvision, Zhejiang, China) in an
MP4 format at a 1080p resolution. Participants were requested
to start walking 2 m ahead of the first benchmark and stop 2 m
behind the second benchmark, at their usual speed. A complete
recording of each participant included six 4 m-walking sequences
and synchronised video segment shots from five different camera
stands for each sequence, if possible. All the walking videos were
manually edited, and only the footage consisting of the walking
movement between the inner pair of benchmarks was collected
for the end results. Subsequently, video files of every walking
sequence were converted into frames of a static image.

Machine Vision Approach and Analysis
There were two primary tasks underlying the gait identification
process namely, gait feature extraction and feature classification.
Feature extraction plays an important role in the identification
and recognition processes, and directly affects their accuracy.
Gaitset, a network that inputs a 64 × 64 walking silhouette
sequence of a walking person recognition task, was used as a
fundamental feature of the extraction network in the current
study (Chao et al., 2021). In this study, the body key points
were extracted before the silhouettes owing to their possession
of different gait features, which were used as input for some
silhouette segmentation modules. Then, the original silhouette
segmentation and feature extraction methods were optimised
and evaluated. Two classic pre-trained feature classifier networks
were applied for the final frailty state identification.

Approach for Body Key Points Extraction
AlphaPose, an open-source pose estimation network, was used
to extract the spatial information of the body key point from
the original gait video (Fang et al., 2017). The performance of
full-trained AlphaPose in key point extraction was evaluated by
the quality of the merged image with the original image and the
visualised body key point image in the current set. The framework
of AlphaPose is presented in Supplementary Section 2 and
Supplementary Figure 3. After evaluation, the body key point
information of all walking image sequences was extracted via a
pre-trained AlphaPose network. The operating system used was
Ubuntu 16.04, and the graphics processing unit (GPU) was an
NVIDIA GeForce GTX1080Ti graphics card. The trained model
and setting were downloaded from GitHub and Google Drive
(Supplementary Table 2).

Development and Treatment of Silhouettes
Segmentation
Pose2Seg (Zhang et al., 2019) is a posture-based approach
to solve the segmentation problem of occluded human body
instances (Figure 3). Firstly, the feature pyramid network (FPN)
(Lin et al., 2017) extracts features from inputted standard
image and the key point coordinates. After an affine-align
operation based on human posture templates, two types of
skeleton features are generated for each human instance, namely
confidence maps and part confidence maps (Cao et al., 2017).
The segmentation module is designed based on the same residual
unit in Resnet (He et al., 2016). Finally, a reverse affine-align
operation is performed on each instance to obtain the final
segmentation results.

Our main optimisation of Pose2Seg was replace the
original segmentation module with a module applicated
fully convolutional DenseNets (Huang et al., 2017), and was
named DPose2Seg. The concept of DenseNets is based on the
observation that if each layer is directly connected to every other
layer in a feed-forward fashion, the accuracy of the network will
be improved (Jégou et al., 2017). We also experimented with
another widely applied human body segmentation algorithm,
Mask R-CNN (He et al., 2017).

The average precision (AP) (Yilmaz and Aslam, 2006),
a pixel-level evaluation index in the image processing field,
used the Mean value from 10 intersections over union
thresholds, starting at 0.5 up to 0.95 with an interval of
0.05 steps. The mean average precision (mAP), which is
defined as the AP values averaged over all the different
classes, and with an AP larger than 962 pixel (AP large)
was used to measure the silhouette predictive power via
the human body segmentation task in the opensource
sets OCHuman (Zhang et al., 2019) and COCO2017
(COCO Consortium, 2017).

After evaluation, spatial information of the body key
points and silhouettes of all packages were extracted
and segmented by the best performance network in the
trained status. The study environment for extraction and
segmentation was as follows: the operating system used
was Ubuntu 16.04, NVIDIA GeForce GTX1080Ti graphics
card was the GPU, and PyTorch was tool programming
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FIGURE 2 | Recording of walking video.

FIGURE 3 | Frame structure of Pose2Seg and DPose2Seg. FPN, feature pyramid network; 7 × 7: 7 × 7 convolution kernel; 1 × 1: 1 × 1 convolution kernel;
DC3 × 3: 3 × 3 deconvolution kernel; SegModule, segmentation module; BN, batch normalisation; DB, dense block; US, up sample; TD, transition down; TU,
transition up; C, concat.

the deep learning framework. The settings and parameters
were as follows: 16 for batch size, 55 epochs for the entire
training stage, 0.0002 for the initial learning rate, 0.00002
for the learning rate after the 33rd epoch, and the Adam

algorithm was used to optimise the remaining parameters. The
pre-trained Pose2Seg model (trained with COCO2017 and
OCHuman) and setting files were downloaded from GitHub
(Supplementary Table 2).
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Development and Treatment of Gait Features
Extraction
In the training model of original Gaitset (Chao et al., 2019), a
convolutional neural network (CNN) was used to extract frame-
level features from each frame of the silhouette independently
(Figure 4). Second, an operation called max pooling was
performed to aggregate frame-level features. Third, after three
repetitions of two previous steps and a concatenation of all frame-
level outputs, a structure called horizontal pyramid mapping
(HPM) (Fu et al., 2019) was implemented to map the sequence-
level feature into a more discriminative space to obtain the final
representation. Triplet loss was computed to the corresponding
features among different samples and employed to train the
network (Chao et al., 2021).

The first stage optimisation of Gaitset, named as LGaitset,
included renewal of the loss function at the sequence level,
and application of the attention module and residual units at
the frame level (both were mentioned in the Gaitset study
as alternative optimisations). To improve the convergence and
performance of the model, LGaitset replaced triplet loss with the
weighted sum of softmax loss and hard triplet loss (Taha et al.,
2020). The attention module (Chao et al., 2019; Chaudhari et al.,
2019) replaced the max function for an enhanced learning and the
extraction of global features. The residual units partly replaced
the convolution operation in the original network to improve
the feature extraction ability and avoid the vanishing gradient
problem (He et al., 2016; Chao et al., 2019).

The second-stage optimisation, DGaitset, a dual-channel
input (silhouettes and body key point sequence) manner network
structure based on LGaitset, was designed to achieve a better
performance in feature extraction, focusing on the manner of
imputation. Cause gait parameters, such as stride length, stride
variation, and stride symmetry, are contained in the key point
sequence and have been used as biomarkers in frailty evaluation.

The performance of these three methods was evaluated using
an individual recognition task in the current walking dataset.
The analysis set of the recognition task comprised data from
222 annotated individuals (1332 walking sequence) or from 6660
walking recordings, which were then shuffled and randomly
separated into a 4/1 training/validation set split (Supplementary
Figure 1). Recordings from an individual would enter in the
training or validation set only, but not both sets to avoid a
bias evaluation metrics. The validation set was maintained static
during this experiment. Every gait recording in the validation set
was input as a probe alternately to the three trained networks with
a frozen weight and parameter; then, the remaining recording in
validation would be regarded as a gallery and compared with the
probe. In every epoch of the learning period, the system randomly
split a few participants into the first four walking sequences,
and the remaining recordings in the training set were regarded
as the gallery set. The loss function’s objective was to calculate
the distance from the probe recordings to a positive sample
(belonging to the same individual) and a negative sample (not
belonging to the same individual) in the gallery, and to adjust the
wright and value in the model. A successful recognition refers
to those recordings which exhibited the highest probabilities in
the gallery, and belonged to the same individual who filmed the

probe recording. The Chi-square test was conducted to test the
significance of the recognition ratio between the models.

The hardware and software environments were similar to
the previous silhouette sections. The settings and parameters
of the Gait-set and LGaitset are batch size (8, 4), and every
epoch takes 32 silhouette sequences (eight participants, four
camera stands for every participant). The settings and parameters
of DGaitset are batch size (6, 4), every training epoch takes
24 silhouettes and key point sequences (six participants, four
camera stands for every participant), 80,000 epochs for the entire
training stage, and 0.0001 for the initial learning rate. The Adam
algorithm was used to optimise other parameters. Pre-trained
Gaitset models were downloaded from the onedrive platform
(Supplementary Table 2).

The sequence-level feature extraction part of the best
performance-trained method was saved to generate a
convolutional auto-encoder (CAE) (Masci et al., 2011) to
compress the silhouettes and/or key point sequence into a
64 × 64 matrix for classification tasks in the next section.

Identification of Gait Features (Frailty State)
The project consists of two classic pre-trained image
identification networks, AlexNet (Krizhevsky et al.,
2017) and VGG16 (Simonyan and Zisserman, 2015),
from the PyTorch platform for the purpose of gait
feature classification (Supplementary Table 2). A three-
class classification for frailty, pre-frailty, and health gait
features was designed to evaluate the performance of
AlexNet and VGG16 as frailty classifiers for the current
dataset. The ground truth state for all gait features
in this experiment was labelled using a previously
performed FFP assessment.

The analysis set comprised data from 222 annotated individual
or 6660 gait sequence features (64 × 64 resolution matrix) from
each walking sequence, which were then shuffled and randomly
separated into an 80/20% training and test set/validation set
split. As depicted in Supplementary Figure 2, after the first
split, the training and test sets contained 184 participants’ gait
features, and the validation set contained 38 participants. The
validation set was kept static throughout the experiment, and
the testing set was used to evaluate the model performance at
the end of each epoch during training and for hyperparameter
optimisation. Data from the training and testing sets were
randomly split in a 60/20% ratio by the units of sequence
at the beginning of every training epoch to maximise the
training effect. During the training process, the parameter of
the lower convolutional layer was frozen. Only the last three
fully connected neural layers of both AlexNet and VGG16
were customised. All weights of the identification model were
frozen after 200 training epochs. The environment was similar
to that described in the previous section. The settings and
parameters of AlexNet and VGG16 are batch size 32 and
0.001 for the initial learning rate. The Adam algorithm was
used to optimise the other parameters. The training epochs
for AlexNet and VGG16 were 300 and 1000, respectively.
The learning effect of the model during the training period
was measured by calculating the accuracy in the test set
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FIGURE 4 | Overview of network structure of feature extraction methods. C, concat; HPM, horizontal pyramid mapping, attention: attention module, 3 × 3: 3 × 3
convolution kernel; CAE, convolutional auto-encoder.
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TABLE 1 | Characterisation and physical status of participants among 222 older adults aged >60 in the three-class identification experiment.

Characteristic Prevalence, n (%) Within physical frailty status, n (%) Within analysing set, n (%)

Healthy Pre-frailty Frailty Training and testing Validation

All participants 222 107 (48.2) 82 (36.9) 33 (14.9) 184 (82.9) 38 (17.1)

Age, years (Means ± SD) 68.9 ± 6.0 67.4 ± 5.0 69.2 ± 6.4 72.8 ± 6.3 69.0 ± 6.0 68.6 ± 6.2

Gender

Male 117 (52.7) 61 (57.0) 41 (50.0) 15 (45.5) 98 (53.3) 19 (50.0)

Female 105 (47.3) 46 (43.0) 41 (50.0) 18 (54.5) 86 (46.7) 19 (50.0)

Physical frailty status

Healthy 107 (48.2) – – – 89 (48.4) 18 (47.4)

Pre-frailty 82 (37.0) – – – 68 (37.0) 14 (36.8)

Frailty 33 (14.9) – – – 27 (14.7) 6 (15.8)

Education level

Primary or illiterate 169 (76.1) 78 (72.9) 60 (73.2) 31 (93.9) 142 (77.2) 27 (71.1)

Junior high 40 (18.0) 25 (23.4) 14 (17.1) 1 (3.0) 32 (17.4) 8 (21.1)

Senior high or higher 13 (5.9) 4 (3.7) 8 (9.8) 1 (3.0) 10 (5.4) 3 (7.9)

Marital status

Married 171 (77.0) 90 (84.1) 60 (73.2) 21 (63.6) 146 (79.3) 25 (65.8)

Others 51 (23.0) 17 (15.9) 22 (26.8) 12 (36.4) 38 (20.7) 13 (34.2)

Positive prevalence for frailty phenotype

Shrinking 12 (5.4) 0 6 (7.3) 6 (18.2) 8 (4.3) 4 (10.5)

Slowness 65 (29.3) 0 34 (41.5) 31 (93.9) 56 (30.4) 9 (23.7)

Weakness 57 (25.7) 0 28 (34.1) 29 (87.9) 44 (23.9) 13 (34.2)

Exhaustion 32 (14.4) 0 23 (28.0) 27 (81.1) 27 (14.7) 5 (13.2)

Low physical activity 50 (22.5) 0 23 (28.0) 27 (81.1) 43 (23.4) 7 (18.4)

Body measurement (Means ± SD)

BMI, Kg/m2 25.3 ± 3.5 26.0 ± 3.1 25.2 ± 3.6 23.7 ± 4.3 25.3 ± 3.6 25.6 ± 3.4

Time of 4 m walking, s 7.3 ± 2.2 6.2 ± 0.7 7.4 ± 1.6 9.6 ± 3.3 7.3 ± 2.0 7.5 ± 3.2

Grip strength, Kg 26.9 ± 8.9 31.0 ± 8.0 25.2 ± 7.8 18.2 ± 6.2 27.2 ± 9.0 25.7 ± 8.5

and the loss function in the training set. The full-trained
AlexNet and VGG16 output a series of probabilities for gait
features in the validation set according to the classification
of these features.

All details of the statistical analysis process were given in
Supplementary Section 1.

RESULTS

Characterisation of Participants in the
Physical Frailty Status Subgroup and
Analysing Set
We compared participants’ background information of the
training and test set/validation sets (Table 1). We found no
significant differences in age, gender, education level, marital
status, and physical frailty status prevalence between the
training/test and validation sets.

Body Key Points and Silhouettes
Figure 5A demonstrates the outcome of AlphaPose-applicated
senior gait footage. The sample of merged images with the
original image and key points in the current set evaluated by
human vision presented satisfactory performance in body key
point recognition for the current method. The body key point
information or skeleton information, obtained as output from
AlphaPose, was used as a part of the input in the segmentation
and feature module customisation process.

Figures 5B,C and Supplementary Videos 1–6 presents the
silhouette segmentation samples in the open dataset and target
dataset via DPose2Seg and Pose2Seg. In the comparison of
the precision of segmentation methods, DPose2Seg presents
an advantage to Pose2Seg and Mask R-CNN in testing of
labelled human image datasets, OCHuman and COCO2017
(Supplementary Table 3). Thus, trained DPose2Seg, though the
current segmentation task, would generate the silhouettes needed
in the following experiments.
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FIGURE 5 | Results of key point extraction, silhouette segmentation, and gait
feature extraction. (A) Sample of body key points extraction (original image
and visualisation of key points parameters merged with original). (B) Sample
of silhouette segmentation in current dataset. (C) Sample of silhouette
segmentation in COCO dataset. (D) Results of Gait identification task via
different method. Include: validation set includes the gait sequence filmed
from the same camera stand with the probe. Exclude: validation set excluding
gait sequence filmed from the same camera stand with probe; NS, P-value for
difference of successful identification ratio between methods ≥0.05;
*P < 0.05; **P < 0.01; ***P < 0.005; ****P < 0.001.

The computational time consuming for different machine
vision analysis task was presented in Supplementary Table 4.

Reorganisation and Feature Extraction
A reorganisation comparison was conducted to examine the
performance of deep-learning models with respect to the
gait feature extraction in the target dataset (Figure 5D).
DGaitset had both better included and excluded the same
camera stand with a probe at the gallery in an individual
reorganisation test than the LGaitset and original Gaitset
methods. Thus, the sequence level feature extraction part of
the CAE was customised as DGaitset trained in the current
experiment. All gait features contained in the body key points
and silhouette sequence were arranged in a 64 × 64 matrix
via the CAE.

Performance of Gait Classification
In the three-class classification test, the AUC of ROC
for AlexNet was 0.851 and 0.901 for macro and micro
(Table 2 and Figures 6A,B), respectively, 0.872 for health
state identification, 0.965 for pre-frailty identification,
0.715 for frailty; AUC of ROC for VGG16 was 0.855 and
0.905 for macro and micro, respectively, 0.866 for health
state identification, 0.972 for pre-frailty, and 0.728 for
frailty. The ROC AUC was found to be above 50% in
all three classification tasks via AlexNet and VGG16 (all
P-values < 0.0001).

The machine vision gait feature classification methods
(AlexNet and VGG16) performed a non-inferiority physical
frailty state prediction using characteristics comparable to
the 4 m walking time, as well as a better prediction than
those carried out by considering the participant’s age and
grip strength characteristics. By converting the three-class
classification task to three different binary-classification tasks,
the AUC of ROC for grip strength, age, and 4 m walking
time to predict the physical frailty state in participants of
the validation set were calculated as a contrast. A 4 m
walking time exhibited a better predictive power than other
methods in frailty identification (0.906, 95% CI 0.807–0.999),
but not in pre-frailty identification (0.552, 95% CI 0.365–
0.739). However, both machine vision methods showed superior
advantages in pre-frailty classification compared to other
methods. Grip strength showed a significant predictive value in
healthy identification. The age of participants did not present
a significant predictive value in any of the three classifications
(P > 0.05).

The accuracy in the initial training period for the test
set of both models was around 0.71–0.72, and a high
classification accuracy for the test set was achieved during
the 152nd epoch for AlexNet (0.862) and 158th epoch
for VGG16 (0.856) (Figures 6C,D). The loss function for
both models was approximately 0.45 at the beginning of
learning, and it was below 0.1 mostly after the 130th
epoch for both methods. The lowest loss was 0.0332 and
0.0327 for VGG16 (182nd epoch) and AlexNet (191st epoch),
respectively (Figure 6E).
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TABLE 2 | Predictive performance of physical frailty state classification via different method.

Classification Performance Method

AlexNet VGG16 Grip strength 4 m walking
time

Age

Global ROC (macro) 0.851 (0.827–0.8747)**** 0.855 (0.834–0.877)**** – – –

ROC (micro) 0.901 (0.878–0.920)**** 0.905 (0.886–0.925)**** – – –

Kappa 0.636 (0.593–0.679) 0.659 (0.617–0.702) – – –

Accuracy 0.855 0.847 – – –

Healthy ROC 0.872 (0.846–0.898)**** 0.866 (0.831–0.889)**** 0.754
(0.602–0.907)**

0.765 (0.615–
0.916)***

0.629
(0.447–0.812)

NS

Sensitivity 98.40% (97.22–99.17%) 98.14% (96.89–98.98%) – – –

Specificity 63.85% (58.86–68.62%) 65.30% (60.33–70.02%) – – –

PPV 83.96% (82.10–85.66%) 84.52% (82.64–86.22%) – – –

NPV 95.40% (92.17–97.34%) 94.78% (91.48–96.84%) – – –

Pre-frailty ROC 0.965 (0.951–0.980)**** 0.972 (0.961–0.987)**** 0.695
(0.521–0.869)*

0.552
(0.365–0.739)

NS

0.624
(0.433–0.814)

NS

Sensitivity 87.69% (82.24–91.95%) 89.80% (84.68–93.65%) – – –

Specificity 95.24% (93.68–96.51%) 95.87% (94.40–97.05%) – – –

PPV 79.17% (73.98–83.55%) 81.86% (76.78–86.03%) – – –

NPV 97.40% (96.27–98.20%) 97.84% (96.76–98.56%) – – –

Frailty ROC 0.715 (0.672–0.759)**** 0.728 (0.677–0.773)**** 0.635
(0.392–0.878)

NS

0.906 (0.807–
0.999)***

0.526
(0.262–0.790)

NS

Sensitivity 22.05% (16.44–28.53%) 25.91% (19.88–32.69%) – – –

Specificity 99.79% (99.24–99.97%) 99.68% (99.08–99.93%) – – –

PPV 95.56% (84.01–98.88%) 94.34% (84.01–98.14%) – – –

NPV 86.12% (85.20–86.99%) 86.84% (85.86–87.77%) – – –

Kappa for kappa coefficients, PPV for positive predictive value, NPV for negative predictive value, ROC for area under the curve of the receiver operating characteristic,
(95% CI), NS for P ≥ 0.05 for ROC AUC > 50%, *P < 0.05 for ROC AUC > 50%, **P < 0.01 for ROC AUC > 50%, ***P < 0.005 for ROC AUC > 50%, ****P < 0.0001
for ROC AUC > 50%.

DISCUSSION

In the current study, a machine vision method without using
a contact sensor was implemented to identify frailty and pre-
frailty among older adults based on their walking behaviour. First,
an FFP-state-labelled senior walking video dataset consisting of
222 participants was created. All images of their gait sequences
were treated using the body key point information extraction
application AlphaPose. DPose2Seg, with a fully convolutional
DenseNets segmentation module, also trained by an open-
source human body image set, was the silhouette segmentation
measure for the previous gait set. Gait body key points and
silhouette information were used in a trained recognition
network, DGaitset. The sequence-level feature extraction part
in the trained DGaitset generated a customised CAE to
compress the gait feature in a 64 × 64 matrix using the key
points and silhouette sequences. We found that both machine
vision methods (AlexNet and VGG16) equipped with better
predictive performance globally than age and grip strength,
as well as than 4-m-walking-time in healthy and pre-frailty
classifying task.

In the pre-treatment stage, opensource AlphaPose and
optimised Pose2Seg were used as tools for body key point
extraction and silhouette segmentation. The first step of body
key point extraction was the location of the human body,
i.e., bounding the human within boxes. The inevitable small
errors in body localisation can cause failures in a single-person
body key point extraction. AlphaPose can handle inaccurate
bounding boxes and redundant detections (Fang et al., 2017). The
key point information output from the pre-trained AlphaPose
not only provides mathematically constructed pose information
to three silhouette segmentation methods but also provides
part of the input for DGaitset and customisation of CAE.
The replacement of layers of the residual unit with a fully
convolutional DenseNets structure increased the precision of
segmentation, which introduces the candidacy of DPose2Seg
along with AlphaPose to function as a silhouette-generated
method for other gait research.

As gait motion was a one-circle period, all silhouette
clouds were represented in a single period. Our fundamental
network, Gaitset, a model-free GRBU method, directly learns
the representation of every frame silhouette independently via
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FIGURE 6 | Results of gait feature classification. (A) ROCAUC of validation set
via AlexNet. (B) ROCAUC of validation set via VGG. (C) Accuracy via AlexNet.
(D) Accuracy via VGG16. (E) Loss function of training set.

a CNN and set pooling instead of measuring the similarity
between a pair of silhouette templates or sequences (Chao
et al., 2019). Furthermore, a structure called HPM was used
to map the set-level feature into a more discriminative space.
Thereafter, the recognition was completed by calculating the
distance between the representations of different samples. Gaitset
exhibited a faster and more effective performance in individual
re-identification tests in comparison with the previous model-
free methods. The three major optimisations of DGaitset were
as follows: replacement of max function with the attention
module (in frame and sequence level), replacement triplet loss
to weighted sum of softmax loss and hard triplet loss (in
sequence level), and dual-channel input manner network (in
global structure). DGaitset, a hybrid of model-based and model-
free GRBU manner, performed better than the Gaitset and
LGaitset approaches in the recognition task, and also suggests
that DGaitset is a better candidate for the gait feature extraction
and compression using the original video.

AlexNet used the residual unit activation function after the
convolutional layers and softmax for the output layer, as well as
applied max pooling instead of average pooling (Gu et al., 2018).
VGG uses very small convolutional filters and very deep (16 and
19 layers) models (Bajić et al., 2019). The design decisions in the
VGG models have become the starting point for the simple and
direct use of CNNs in general.

The limitation of the current programme was the gait feature
labelled by the FFP assessment excluding the prognosis events
such as death, major cardiovascular events, or re-hospital, which
directly point to a state of frailty because follow-up data of
the WCHAT study is currently unavailable. The scale of the
current walking video database and the unbalanced physical
frailty state prevalence in the community-based cohort also
limited the performance of the machine vision frailty classifier.
As the potential clinical-gait-machine vision applications based
on the current research may focus more on disease screening than
accurate diagnosis, discarding random samples from the healthy
group in the data compilation stage, or increasing the cost of the
frailty group in the algorithm modification stage could increase
the sensitivity to frailty state in the future development (Van
Hulse et al., 2007; Krawczyk, 2016).

Although AlphaPose is a reliable method for building body
key point images, its 17 key points (nose, left and right eyes,
ears, shoulders, wrists, hips, knees, and ankles) did not include
any points on the feet (Task Force Members et al., 2013). This
deficit might cause an increase in noise around the feet compared
with other body parts in silhouette segmentation. The latest body
point extraction algorithm could label ankle, heel, and foot index,
such as BlazePose and Zou’s method, which might provide a
better choice for the machine vision body reconstruction model
in this field (Bazarevsky et al., 2020; Zou et al., 2020). As
most non-linear machine learning methods (Horst et al., 2019),
part of the analysis processes in the current program were not
straightforward, understandable, and interpretable.

Our methodology performs unique advantages in identifying
the pre-frailty state, which might provide a clue for developing
a novel biomarker. Pre-frailty is usually not as typical as
frailty, which limits the proper preventive treatment, such as
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physical exercise, nutritional interventions, and implements
(Serra-Prat et al., 2017). Furthermore, the current camera-based
identification methods might extend their potential applications
from frailty to other geriatric syndromes, such as cognitive
impairment (Amboni et al., 2013).

A contact-free self-reported frailty assessment tool, based on
this method, might help healthcare personnel (HCP) minimise
their exposure to SARS-CoV-2-contaminated environment and
equipment. It is well known that frailty status is a better predictor
of prognosis than age in the COVID-19 therapy process (Hewitt
et al., 2020). The evaluation of FFP depended on the face-to-
face evaluation of HCPs, and HCP might not be able to enough
detailed information within 30 min to make a comprehensive RFI
evaluation for elderly patients diagnosed with hearing, visual or
cognitive impairment. However, the cumulative exposure time
of HCP to SARS-CoV-2 would increase the risk of transmission
[National Center for Immunization and Respiratory Diseases
(NCIRD), 2021].

After further mobile optimisation, our methodology might
also expand in-home application scenarios with the rapid growth
of smart device owners, globally (Silver and Taylor, 2019).
With the rapid and large-scale growth of the elderly population
in the world, there is a huge gap between the supply and
demand of health monitoring and disease screening. Solutions
aimed at reducing the strain on elderly care facilities and
promoting independence, such as technology-enabled home-care
services, will become the major part of the elderly care model
in the near future (Mesko et al., 2018). Machine vision with
artificial neural network tools has produced opportunities for
convenient at-home screening of geriatric diseases such as frailty
(Ahmed et al., 2020).
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