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Abstract
A class of discrete-time models of infectious disease spread, referred to as individual-level

models (ILMs), are typically fitted in a Bayesian Markov chain Monte Carlo (MCMC) frame-

work. These models quantify probabilistic outcomes regarding the risk of infection of sus-

ceptible individuals due to various susceptibility and transmissibility factors, including their

spatial distance from infectious individuals. The infectious pressure from infected individu-

als exerted on susceptible individuals is intrinsic to these ILMs. Unfortunately, quantifying

this infectious pressure for data sets containing many individuals can be computationally

burdensome, leading to a time-consuming likelihood calculation and, thus, computationally

prohibitive MCMC-based analysis. This problem worsens when using data augmentation to

allow for uncertainty in infection times. In this paper, we develop sampling methods that can

be used to calculate a fast, approximate likelihood when fitting such disease models. A sim-

ple random sampling approach is initially considered followed by various spatially-stratified

schemes. We test and compare the performance of our methods with both simulated data

and data from the 2001 foot-and-mouth disease (FMD) epidemic in the U.K. Our results indi-

cate that substantial computation savings can be obtained—albeit, of course, with some

information loss—suggesting that such techniques may be of use in the analysis of very

large epidemic data sets.

Introduction
Modeling the spread of infectious diseases is a research area of great importance to public
health and agriculture. Particularly, studies involving data-driven spatial models have recently
been used in a number of applications. Work by [1], for example, illustrate the importance of
incorporating spatial and temporal data in the mathematical modeling of infectious diseases.
Studies have also investigated factors that influence disease persistence/extinction such as
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infection rate (e.g., [2]). In addition, disease control policies and vaccination policies can be
better developed as a result of the understanding of the spread of infectious disease gained
from using such models [3]. The increase in computational power over the last several years
and the availability of spatio-temporal data have been key factors driving growth in this area of
statistics [4].

Significant computational prowess is required for models utilizing large-scale spatial data,
such as recent studies performed on the 2001 foot-and-mouth disease (FMD) epidemic in the
U.K. (e.g., [5–8]). These can all be considered examples of modeling infectious disease
dynamics at the individual-level, although the individuals of concern may vary between stud-
ies (e.g., plants, humans, farms, etc.). [8] describe a framework of discrete-time individual-
level models (ILMs) that are capable of modeling the spread of infectious diseases in such dis-
ease systems. These models can incorporate various heterogeneities within a population; for
example, [9] consider the spread of human influenza allowing for vaccination status, age, and
the disease status of fellow household occupants in the model. Although ILMs are flexible
and intuitive, inference for these and other similar models, especially when dealing with large
data sets, can be computationally prohibitive. In fact, even for moderately sized populations,
obtaining meaningful results can require running these models for a considerable amount of
time.

For such models, parameter estimation is typically carried out in a Bayesian framework via
Markov chain Monte Carlo (MCMC) methods (e.g., [10]), wherein the likelihood function (a
primary source of the computational problem) is calculated numerous times. An obvious way
to reduce the extent of this problem would be to make a simplifying assumption, such as
homogeneous mixing (e.g., [11]). However, by allowing for heterogeneity within the popula-
tion, we hope to draw more sound inferences.

Numerous studies have focused on speeding up the likelihood calculation to reduce the
time required to carry out parameter estimation in such models. For example, [8] introduce an
approach using a Taylor series expansion of the non-linear spatial infection kernel, allowing
for the decomposition of a substantial part of the likelihood function into a small parameter-
dependent part and a larger data-dependent part. [12] expand on this by exploring the use of a
piecewise linear kernel to carry out the linearization. In both cases, time-saving ensues from
the fact that the data-intensive component of the likelihood does not require re-calculation at
each step of the MCMC algorithm. However, the resulting model is an approximation of the
true model we might actually want to fit. These approaches are also limited to situations where
infection event histories of individuals are assumed known.

[13] explore several variations of a random-walk Metropolis algorithm to achieve computa-
tional efficiency in the context of infectious disease modeling. Their approach involves pre-cal-
culating and storing quantities that are used repeatedly (something vital to the approaches of
[8] and [12]), performing calculations in parallel, and refining the calculation of the likelihood
ratio in the Metropolis-Hastings MCMC algorithm.

Other approaches to decreasing computation time in the context of fitting infectious disease
models to data—in these cases, homogeneous-mixing models—are based around so-called
approximate Bayesian computations, as explored in [14] and [15], and pseudo-marginal
approaches, as discussed by [16]. In such approaches, explicit likelihood calculation is
completely avoided. An alternative approach is given by [17], not within the context of infer-
ence for infectious disease transmission models, but for mixture models. They explore methods
basing inference on carefully selected subsamples of data, constructed to provide the most rele-
vant information to the parameters of interest.

In this paper, we consider an approach similar in nature to that of [17] that replaces the like-
lihood calculation with a faster likelihood approximation based upon data sampling. We also
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include infection time uncertainty in our modeling via a data augmented Bayesian analysis.
The method works by selecting samples from the infected set of individuals at every discrete
time point when calculating the infection rate for susceptible individuals, thereby avoiding the
need to use the entire infectious set. We show how the resulting approximated likelihood func-
tion-based analysis can require significantly less time to carry out and compare the approxi-
mate posterior inference to the full Bayesian analysis. Whereas the aforementioned
approximate methods of [8] and [12] for parameterizing ILMs cannot be used in a data aug-
mented framework in which infection times are considered unknown, we show how our
approach, with careful algorithm development, can allow such uncertainty in the analysis. This
is of obvious importance in infectious disease systems because infection event times are very
rarely observed with any certainty in practice [18]. We begin by considering a simple random
sampling (SRS) approach, followed by a series of spatially-stratified sampling schemes. As a
proof of concept, we test our methodology through the use of both simulated data and a rela-
tively small subset of the 2001 UK FMD epidemic data. Note that we consider infectious dis-
ease models in a susceptible-infectious-removed (SIR) framework, although extension of the
methods to other frameworks (e.g., SEIR) would be relatively straight forward.

Our paper is structured as follows. TheMethodology section summarizes the general ILM
framework of [8], the specific models used in this paper, and the MCMC algorithm used to
carry out a full Bayesian MCMC analysis. Our algorithms are presented in the Sampling-Based
Likelihood Approximations section. The Epidemic Data section describes the data used to test
our methods and the Results section presents our findings. The Discussion section concludes
this paper and presents possible avenues of future work.

Methodology

General Model
We utilize the modeling framework of [8], which defines a class of flexible discrete-time disease
transmission models that include covariate information at the individual level. With a finite
population of a total of n individuals (each individual represented as i = 1, . . ., n), we observe
epidemic data at discrete time points, t = 1, . . ., tmax, where tmax is the last observation time.
Under a susceptible-infectious-removed ðSIRÞ framework, each individual i is in only one of
these three states at any given time t. If i 2 St , then i is susceptible to the disease and has not
yet contracted it at time t; if i 2 I t , then i has contracted the disease and can now infect others
at time t; and if i 2 R, then i has been removed from the population at time t; e.g., due to recov-
ery combined with acquiring immunity. Once an individual is in this final state, they cannot
become infected again or transmit the disease to others. Over the course of the epidemic, indi-
viduals move through the three states in the order S ! I ! R.

As described by [8], the general ILM calculates the probability a susceptible individual i will
become infectious to the disease at time t, and this is given by

PitðθÞ ¼ 1� exp �OSðiÞ
X
j2I t

OTðjÞkði; jÞ
( )

� �ði; tÞ
" #

; ð1Þ

where OS(i) is a susceptibility function that includes risk factors for individual i contracting the
disease; OT(j) is a transmissibility function describing risk factors for individual j transmitting
the disease to others; κ(i, j) is an infection kernel describing shared risk factors between suscep-
tible and infectious individuals; �(i, t) describes external infectious pressure not explained by
the rest of the model and is commonly referred to as the ‘sparks term’; and θ is the set of ILM
parameters we want to estimate.
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Spatial ILM
In this section, we present a simplified version of the general ILM such that OS(i) = α, OT(j) =

1, and kði; jÞ ¼ d�b
ij . Here, dij represents the Euclidean distance between susceptible i and infec-

tious j and β represents the power law rate of decay. We also set the sparks term, �(i, t) = 0. We
refer to this model as the Spatial ILM. Under this model, the probability of infection for suscep-
tible i at time t is given by

PitðθÞ ¼ 1� exp �a
X
j2I t

d�b
ij

" #
; a > 0; b > 0: ð2Þ

FMD-ILM
We also modify the general ILM in order to model data from the 2001 U.K. FMD epidemic.
Using a simplified version of the model found in [8] and by modeling at the farm-level, we can
determine the probability that susceptible farm i is infected at time t using

PitðyÞ ¼ 1� exp � asN
s
i þ acN

c
i

� �X
j2I t

�sN
s
j þ �cN

c
j

� �
d�b
ij

 !
� �

" #
;

ac > 0; �s > 0; �c > 0; b > 0; � > 0;

ð3Þ

where αs and αc are susceptibility parameters and ϕs and ϕc are transmissibility parameters, for
sheep and cattle, respectively. The terms Ns

x and N
c
x represent the number of sheep and cattle

on farm x, respectively. To avoid identifiability issues, we set αs = 1 × 10−7, which is an arbitrary

constant reference level and is not estimated. Once again, the power-law kernel, kði; jÞ ¼ d�b
ij ,

is used with dij being the Euclidean distance between farms. The sparks terms is set as a con-
stant such that �(i, t) = �, which represents a constant infectious pressure from outside the
study area. We refer to Model 3 as our FMD-ILM.

Bayesian Computation
Our parameter estimation is here carried out under a Bayesian framework. Assuming known
infection and removal times, the likelihood function for ILMs is the product of all infection and
non-infection events over the entire observed epidemic period (t = 1, . . ., tmax), and is given by

pðxjθÞ ¼
Ytmax

t¼1

Y
i2Stþ1

1� PitðθÞð Þ
Y

i2I tþ1 nI t
PitðθÞ

" #
; ð4Þ

where x is the observed epidemic data set (including the infection times), Stþ1 is the set of all
susceptible individuals at time t + 1, and I tþ1nI t is the set of newly infectious individuals at
time t + 1. Using our likelihood function and by placing a prior, π(θ), on our parameter set, θ,
we can obtain the posterior distribution, π(θ|x), up to a constant of proportionality. To explore
the posterior distribution, we can use the random-walk Metropolis Hastings (RWMH) algo-
rithm [19–21].

We assume here a disease system such as foot-and-mouth as seen in the U.K. in 2001, in
which the disease is reported after infection and then individuals are later removed from the
population through some intervention (see Fig 1). Thus, we assume that removal times are
known and fixed (although this assumption could quite easily be relaxed—see Discussion).
However, we do not assume to know when individuals become infectious and so utilize
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Bayesian data augmentation, treating the infection times as unknown nuisance parameters (see
also sectionsMCMC Algorithm and Data Augmentation). We determine the infection time
indirectly by inferring the incubation period (the time between infection and disease reporting/
diagnosis/observation) of each individual. Given the aforementioned assumption that removal
times are known, the incubation period thus defines the infection time for each individual. The
incubation period, plus a further delay until removal (e.g., through quarantine or animal cull-
ing), thus define the infectious period.

We denote the unknown incubation periodsZ ¼ ðZ1;Z2; . . . ;ZvÞ, where v is the number

of infected individuals in [1, tmax], and assume Zc �i:i:d DExpðlzÞ (discretized exponential distri-
bution), where the rate parameter, λz, is also to be estimated. We augment the model parameter
set to includeZ. Under the spatial ILM, our parameter vector is thus θþ ¼ fa; b; lz;Zg; and
under the FMD-ILM, the parameter set is θþ ¼ fac; �s; �c; b; �; lz;Zg.

In general, we define an augmented parameter set, θþ ¼ ðθ;ZÞ, and assuming indepen-
dence between θ andZ derive the posterior distribution up to proportionality as

pðθþjx�Þ / pðx�jθþÞpðθþÞ
¼ pðx�jθ;ZÞpðθÞpðZÞ
¼ pðx�;ZjθÞpðθÞ;

ð5Þ

Fig 1. Average infectious period under the simulation study. Illustration of the average infectious period
under the simulation study. The average incubation period is 3 days, and the average delay to disease
recovery and removal from the population is 4 days. The ‘S’ symbol indicates the individual is susceptible to
the disease at that time point and the ‘R’ symbol indicates the individual has recovered from the disease and
has been removed from the population at that time point.

doi:10.1371/journal.pone.0146253.g001
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where x− is the epidemic data not including infection times and π(θ+|x−) is sampled from using
Metropolis-Hastings MCMC. Here, we use an independence sampler to update λz andZ and
random-walk updates for other model parameters. Note that we are only indirectly estimating
the infectious period distribution and not using any prior information on the infectious period.
This framework could easily be changed, of course, to fit the requirements of other disease
systems.

MCMC Algorithm
Here, we outline our MCMC algorithm to update the data augmented parameter set, θ+, and
obtain realizations from the posterior distribution, π(θ+|x−), in order to carry out a full gold-
standard Bayesian analysis. For our MCMC procedure, we break down our augmented param-
eter set and let Θ contain the same set of parameters as θ but without rate parameter λz; i.e., Θ
= {θ1, . . ., θb}, where b = |Θ| (the number of parameters in Θ). Hence, for our MCMC algo-
rithm below, we specify our augmented parameter set as F ¼ ðY; lz;ZÞ. There are a total of
v ¼ jZj parameters inZ, and a total of d = b + v + 1 parameters in F. We define θw as the wth

parameter in Θ and Zc as the c
th parameter inZ. Let r be a counter for the number of MCMC

iterations and let lrz represent the r
th iteration of λz. The MCMC algorithm is as follows:

1. Let r = r + 1.

2. UpdateZ:

a. Let c = 1.

b. Given the current position, Zr
c, generate a new value, Zrþ1

c � DExpðlrzÞ, using the
inverse transform method.

c. Calculate the acceptance probability,

A ¼ min 1;
pðYr; lrz;Z

rþ1
1 ;Zrþ1

2 ; � � � ;Zrþ1
c ;Zr

cþ1;Z
r
cþ2; � � � ;Zr

vjxÞ
pðYr; lr

z;Z
rþ1
1 ;Zrþ1

2 ; � � � ;Zr
c;Z

r
cþ1;Z

r
cþ2; � � � ;Zr

vjxÞ

 !
:

d. With probabilityA, accept Zrþ1
c . Otherwise, set Zrþ1

c ¼ Zr
c.

e. Let c = c + 1.

f. If c� v, then repeat from step 2b.

g. If c> v, then continue to step 3.

3. Update Θ:

a. Let w = 1.

b. Given the current position, yrw, generate a new value such that yrþ1
w ¼ yrw þ s, where s*

U[−gw, gw], gw 2 R
þ, and yrþ1

w > 0.

c. Calculate the acceptance probability,

A ¼ min 1;
pðyrþ1

1 ; yrþ1

2 ; � � � ; yrþ1

w ; yrwþ1; y
r
wþ2; � � � ; yrb; lrz;Zrþ1jxÞ

pðyrþ1

1 ; yrþ1

2 ; � � � ; yr
w; y

r
wþ1; y

r
wþ2; � � � ; yrb; lrz;Zrþ1jxÞ

 !
:

d. With probabilityA, accept yrþ1
w . Otherwise, set yrþ1

w ¼ yrw.

e. Let w = w+1.
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f. If w� b, then repeat from step 3b.

g. If w> b, then continue to step 4.

4. Update λz via the independence sampler:

a. Given the current position, lrz, generate a new value such that lrþ1
z � Gðf1; f2Þ, where f1 is

a shape parameter and f2 is a rate parameter.

b. Calculate the acceptance probability,

A ¼ min 1;
pðYrþ1; lrþ1

z ;Zrþ1jxÞ
pðYrþ1; lrz;Z

rþ1jxÞ

� �
:

c. With probabilityA, accept lrþ1
z . Otherwise, set lrþ1

z ¼ lrz.

5. Repeat from step 1 until a sufficiently large sample of realizations has been obtained.

Sampling-Based Likelihood Approximations
As stated previously, the full likelihood calculation for ILMs can be computationally taxing.
Our focus here is on the key problem of calculating the infectious pressure,

X it ¼
X
j2I t

OTðjÞkði; jÞ;

for each individual i 2 Stþ1 and i 2 I tþ1nI t at each time point for which data are observed.
The problem worsens when we attempt to incorporate infection time (or incubation period)
parameters via data augmentation. In doing so, we increase the number of parameters and,
thus, the number of parameter updates in each MCMC iteration.

We propose to alleviate this problem by estimating X it by sampling from the infectious set
I t at each time point that data are observed. We begin this section by outlining the need to
organize all infectious individuals into a matrix that can be updated in an efficient manner as
the incubation period (and, thus, infection time) parameters are updated as part of the data-
augmented MCMC. We then detail our sampling algorithms in such a data-augmented con-
text. The two algorithms considered here allow for an SRS approach and a spatially-stratified
sampling scheme, respectively, for sampling from the I t sets.

Simple Random Sampling Algorithm
For the SRS method, calculating each Pit(θ) (or 1 − Pit(θ)) in the likelihood is achieved by

replacing the full set of infectious individuals I t with a set Î t obtained through SRS with
replacement from the set I t , and scaling by the empirical sampling proportion, r̂t . This
method is shown to severely reduce the computational time required to calculate Pit in the
likelihood function. When I t is ‘small’ (i.e., jI tj � qj), we do not sample and use the entire
infectious set. Here, we set q = 10 because the time savings would be negligible for q� 10
simply due to the overhead associated with sampling. The infectious pressure is approxi-
mated as

X it ’ X̂ it ¼
P

j2I t
OTðjÞkði; jÞ jI tj � q

r̂�1
t

P
j2Î t

OTðjÞkði; jÞ jI tj > q

8<
:
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and thus the approximation of our original probability of infection is

PitðθÞ ’ P̂ itðθÞ ¼ 1� exp �OSðiÞX̂ it

� 	� �ði; tÞ
 �
; ð6Þ

which we refer to as the SRS-ILM. Initially, we will assume that all infection times (as well as
removal times) are known.

We now define notation relevant to our infection matrix,M, of dimension n × tmax. The
elements ofM take the form of integer identification numbers for each farm and thus, each
column,M½�; t1; . . . ; tmax � consists of an arbitrary ordering of farm IDs indicating their
infection times, followed by a series of zeros in the remaining elements of the column. We also
store the length of each column of the matrix up until the presence of empty cells, defined as
‘t ¼ jM½�; t�j. We use the notationM½B;C� to represent the farm ID located in row B and time
column C in matrixM. We also use the notationDU½a; b� to refer to a discrete uniform on [a,
b], a; b 2 Z, i.e., a distribution consisting of equally sized point masses on all integers within
the interval [a, b]. To calculate the likelihood function, we then use the following algorithm:

1. Let L̂t ¼ 0 8 t ¼ 1; . . . ; tmax and set t = 1.

2. If ℓt � q, calculate the full likelihood component for time t,

L̂ t ¼
Y
i2Stþ1

1� PitðθÞð Þ
Y

i2I tþ1nI t
PitðθÞ;

and go to step 6.
Else, if ℓt > q, let ξ = ρtℓt and continue to step 2.

3. Let c = 0 and v̂t be a set of “empty” vectors of length to be determined by the algorithm.

4. Let c = c + 1.

5. If c� ξ, then simulate U � DU½1; ‘t�, let v̂t½c� ¼ M½t;U �, and return to step 3.

If c> ξ, then let Î t be the set containing all c − 1 elements of v̂t and continue to step 5.

6. Calculate the approximated likelihood component for time t,

L̂t ¼
Y
i2Stþ1

exp �OSðiÞX̂ it

� 	� �ði; tÞ
 ��
Y

i2Î tþ1nÎ t

1� exp �OSðiÞX̂ it

� �� �ði; tÞ� 	
 �
;

where X̂ it ¼ r̂�1
t
P

j2Î t

OT ðjÞkði; jÞ, as before, and r̂t ¼ c�1
‘t

.

7. Let t = t+1.
If t< tmax, then go to step 1.
Else, if t = tmax, then calculate the approximated likelihood function,

p̂ðxjyÞ ¼
Ytmax

t¼1

L̂t:
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Spatially-Stratified Sampling Algorithm
In this section, we consider grouping individuals into strata based on their x−y coordinates.
From here, we sample only a proportion of the infectious set from each stratum at each time

point t when calculating P̂ itðθÞ. Let k represent the index for each stratum up to a total ofm
strata and let

Ẑ itk ’
P

j2I tk OTðjÞkði; jÞ jI tkj � q

r̂�1
tk

P
j2Î tk

OTðjÞkði; jÞ jI tkj > q

8<
:

be the estimate of the infectious pressure exerted on susceptible individual i from stratum k
at time t. Here, r̂tk is the empirical sampling proportion of the sampled infectious set for the

stratum, I tk is the complete set of infectious individuals in strata k at time t, and Î tk is the
randomly sampled set of infectious individuals obtained via SRS (with replacement) from
strata k with empirical sampling proportion r̂tk. The sum of infectious pressures from each
stratum exerted on individual i at time t is referred to as the total infectious pressure and cal-
culated as

Ẑ it ¼
Xm
k¼1

Ẑ itk:

As before, for small infectious sets, i.e., jI tkj � q, we use the entire infectious set and do not
sample. Under a spatial-stratification scheme, we use q = 5. Thus, the approximation of the
probability of infection is

PitðθÞ ’ P̂ itðθÞ ¼ 1� exp �OSðiÞẐ it

� 	� �ði; tÞ
 �
; ð7Þ

which is substituted into our likelihood function. We refer to this model as the SSS-ILM.
We consider a three-dimensional infection matrix,Q, with dimensions tmax ×m × n that

contain elements corresponding to integer identification numbers for each farm. We use the
notationQ½B;C;D� to refer to the farm ID located at time B, stratum C, and cell D within
matrixQ. We also define a two-dimensional matrix,W , with dimensions tmax ×m that contain
the number of infectious individuals in each stratum at every time point (up until the presence
of empty cells). Thus, for each combination of t = 1, . . ., tmax and k = 1, . . .,m,
W½t; k� ¼ jQ½t; k; ��j, whereW½t; k� represents the number of infectious individuals at time t, in
stratum k. We use the following algorithm to calculate the approximated likelihood function
under the spatial stratification scheme:

1. Let L̂tk ¼ 0 8 t ¼ 1; . . . ; tmax and k = 1, . . .,m.
Set t = 1, k = 1 and ‘tk ¼ W½t; k�.

2. If ℓtk � q, calculate the likelihood component for strata k at time t,

L̂tk ¼
Y

i2Sðtþ1Þ;k

1� Pit;kðθÞ
� � Y

i2I ðtþ1Þ;knI tk
Pit;kðθÞ;

and go to step 7.
Else, if ℓtk > q, let ξ = ρtkℓtk and continue to step 2.

3. Let c = 0 and v̂tk be a set of “empty” vectors of length to be determined by the algorithm.

4. Let c = c + 1.
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5. If c� ξ, then simulate U � DU½1; ‘tk �, let v̂tk ½c� ¼ vtk ½U �, and return to step 3.

If c> ξ, then let Î tk be the set containing all c − 1 elements of v̂tk and continue to step 5.

6. Calculate the approximated likelihood component for strata k at time t,

L̂tk ¼
Y

i2Sðtþ1Þ;k

exp �OSðiÞẐ itk

� 	� �ði; tkÞ
 ��
Y

i2Î ðtþ1Þ;knÎ tk

1� exp �OSðiÞẐ itk

� �� �ði; tkÞ� 	
 �
;

where Ẑ itk ’ r̂�1
tk
P

j2Î tk

OT ðjÞkði; jÞ, as defined earlier, and r̂tk ¼ c�1
‘tk

.

7. Let k = k + 1.
If k�m, then go to step 1.
Else, if k>m, continue and calculate the approximated likelihood function for time t,

L̂t ¼
Ym
k¼1

L̂tk:

8. Let t = t+1.
If t� tmax, then reset k = 1 and go to step 1.
Else, if t> tmax, then calculate the approximated likelihood function:

p̂ðxjyÞ ¼
Ytmax

t¼1

L̂t:

Data Augmentation
Because infection times/incubation periods are unknown and can change during the incuba-
tion period MCMC update, their infectious period can become longer or shorter; recall that, in
our framework, the removal times remain constant. Thus, as each individual’s infection time
changes, we continually need to update our infection matrix to reflect the current infection
times. For computational reasons, however, it is vital that the infection matrix,Q, be updated
in as efficient a manner as possible (and certainly not reconstructed from scratch) as these
data-augmented parameters change.

As an example, say individual i3’s current infectious period is from t2 ! t4, and we are car-
rying out simple random sampling (i.e., no stratification). During the update process, the infec-
tion time increases by one and now i3 is only infectious during the period of t3 ! t4. Below, we
illustrates the matrix update process, and use 0s to represent empty cells. Each column repre-
sents a time point and the number of individuals infected at each time is displayed underneath
the matrix. The first matrix shows the current infection times (before the update) for all indi-
viduals, including i3. The second matrix shows that at time column t2, i3 is removed from its
current position and replaced with a temporarily empty cell. The final matrix shows that i5,
which is the last individual in the t2 column, is moved to i3’s old position (now i5’s new posi-
tion) and i5’s old position is replaced with an empty cell. At each state, the number of elements
in each column is also updated.
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State before update:

jI tj

t ¼ 1 t ¼ 2 t ¼ 3 t ¼ 4 t ¼ 5 . . . t ¼ tmax � 1 t ¼ tmax

i1 i1 i2 i2 i2 . . . in�1 in

0 i2 i3 i3 i6 . . . in 0

0 ji3j i4 i4 i7 . . . 0 0

0 i4 i5 i6 i8 . . . 0 0

0 i5 i6 i7 i9 . . . 0 0

0 0 i7 i8 0 . . . 0 0

..

. ..
. ..

. ..
. ..

.
. . . ..

. ..
.

0 0 0 0 0 . . . 0 0

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCA

1 j5j 6 6 5 . . . 2 1

Intermediate step: (removing i3 from the t2 column)

jI tj

t ¼ 1 t ¼ 2 t ¼ 3 t ¼ 4 t ¼ 5 . . . t ¼ tmax � 1 t ¼ tmax

i1 i1 i2 i2 i2 . . . in�1 in

0 i2 i3 i3 i6 . . . in 0

0 j0j i4 i4 i7 . . . 0 0

0 i4 i5 i6 i8 . . . 0 0

0 i5 i6 i7 i9 . . . 0 0

0 0 i7 i8 0 . . . 0 0

..

. ..
. ..

. ..
. ..

.
. . . ..

. ..
.

0 0 0 0 0 . . . 0 0

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCA

1 j�j 6 6 5 . . . 2 1
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Final state of the matrix: (following movement of last element of t2 column)

jI tj

t ¼ 1 t ¼ 2 t ¼ 3 t ¼ 4 t ¼ 5 . . . t ¼ tmax � 1 t ¼ tmax

i1 i1 i2 i2 i2 . . . in�1 in

0 i2 i3 i3 i6 . . . in 0

0 ji5j i4 i4 i7 . . . 0 0

0 i4 i5 i6 i8 . . . 0 0

0 j0j i6 i7 i9 . . . 0 0

0 0 i7 i8 0 . . . 0 0

..

. ..
. ..

. ..
. ..

.
. . . ..

. ..
.

0 0 0 0 0 . . . 0 0

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCA

1 j4j 6 6 5 . . . 2 1

Then, if the change in infection time results in an individual being infected at a time point at
which they were not previously, then they are simply added at the first zero in the particular
column. So, for example in this case, if at the next MCMC iteration i3’s infection time changed
such that they returned to having an infectious period from t2 ! t4, then a new matrix would
be formed:

New state of the matrix:

jI tj

t ¼ 1 t ¼ 2 t ¼ 3 t ¼ 4 t ¼ 5 . . . t ¼ tmax � 1 t ¼ tmax

i1 i1 i2 i2 i2 . . . in�1 in

0 i2 i3 i3 i6 . . . in 0

0 i5 i4 i4 i7 . . . 0 0

0 i4 i5 i6 i8 . . . 0 0

0 ji3j i6 i7 i9 . . . 0 0

0 0 i7 i8 0 . . . 0 0

..

. ..
. ..

. ..
. ..

.
. . . ..

. ..
.

0 0 0 0 0 . . . 0 0

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCA

1 j5j 6 6 5 . . . 2 1
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By following these methods, we avoid the problem of ending up with zeros in the middle of
columns representing each time point (which would require searching, keeping track of where
non-zeros are, or recompiling the matrix), and we only require sampling from the first jI tj of
each column of the matrix. In our MCMC update, infection times, and thus periods, increment
or decrement only by one time point at each MCMC iteration, and are considered in single
parameter updates. However, this scheme can easily be extended to allow for updates of larger
magnitude, or indeed block updates.

Under the spatial stratification sampling schemes, the same method of adding to the first
non-zero of a column, and switching a zero in the middle of a non-zero section of a column
with the last non-zero of said column, is used. However, we are of course now working with
columns in the 3-dimensional rather than 2-dimensionalQ.

Epidemic Data
To demonstrate the effectiveness of our sampling methods, we apply them to real and simu-
lated data. Here, we describe these data in some detail, beginning with the simulated epidemic
data and followed by the 2001 U.K. FMD epidemic.

Simulated Data
Using the Spatial ILM, we generated ten epidemics. The chosen population is of size n = 625
spread out evenly on a 25 × 25 grid, 1 unit apart in the x and y planes. Our susceptibility parame-
ter is set to α = 1.4 and our power law spatial parameter is set to β = 2.3. We generated the incuba-
tion period from an exponential distribution with rate parameter lz ¼ 1

3
, giving an average

incubation period of 3 days. The period from disease diagnosis to disease recovery and removal
from the population was also generated from an exponential distribution with rate parameter
lw ¼ 1

4
, resulting in an average delay period of 4 days. Thus, the total infectious period, on average,

is 7 days. Fig 1 illustrates the average infectious and non-infectious periods. In our modeling, we
assume we know removal times but not the incubation period and thus estimate it via data aug-
mentation. There is also an implicit assumption that the observation time occurs before removal.

FMD Data
We also implement our sampling-based parameterization methods on data from the 2001 U.K.
FMD epidemic. We used a subset of the epidemic data, which was from the county of Cumbria
located in North West England and consisted of 1,636 individual farms. According to [22],
sheep and cattle farms accounted for almost all cases of the FMD outbreak in 2001 in the U.K.
We consider farms to be the “individual”-level at which we are modeling and use cattle and
sheep populations within farms as covariates in our model. We treat the disease diagnosis
times recorded by veterinarians and epidemiologists who were on the ground during the out-
break as observed infection times. The times when animals were culled were also recorded and
we treat these as the removal times in our modeling framework. We estimate the incubation
periods (and the infection times indirectly) through Bayesian data augmentation. For some
farms, disease diagnosis times were not recorded and so we assume these farms transition from
state S ! R on their cull date. In total, 730 infections were recorded in our data set. Refer to,
for example, [8], for a more detailed description of the U.K. 2001 data set.

Note that most models for FMD assume an SEIR framework, with a latent, non-infectious
state before infectiousness. We simplify our model for the purposes of illustration of our
method, and—as mentioned in the discussion—extension to an SEIR framework would be
relatively straightforward.
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Priors
For both data sets, all ILM parameters, except for λz, are assigned independent, vague marginal
priors under the assumption of weak prior knowledge. The marginal priors chosen here are
positive, half-normal distributions with mode 0 and a ‘large’ variance of 105.

The marginal prior choice for λz, the incubation period rate parameter, is a Gamma distri-
bution such that λz * Γ(3, 9). This prior suggests an average incubation period of 3 days,
which is the same as the incubation period from the simulated data. For the FMD epidemic,
this prior may, of course, be misspecified because we do not know the actual incubation period.

Results
In this section, we present the results of our analyses. All computations were performed on an
Apple Mac Pro with two 6-core Intel Xeon 2.93 GHz processors with 12 GB of RAM.

Simulation Study
Figs 2 and 3 illustrate the posterior means and 95% credible intervals for each ILM parameter,
for each of the 10 epidemics simulated. Averages of these results over the ten epidemic data
sets are shown in S1 Table.

As expected, bias for all parameters decreases as the sampling proportion, ρ, increases under
the SRS technique. Posterior variance also decreases as ρ increases, leading to tighter credible
intervals. It also appears to be more difficult to estimate the spatial parameter β using an SRS
scheme with precision approaching that seen under the full MCMC analysis than is the case
with α and λz.

Introducing spatial stratification in our sampling scheme appears to lead to increased poste-
rior accuracy (Fig 3). Under these results (shown for ρ = 0.10 and ρ = 0.50), as the number of
strata,m, increases, posterior variance and bias decrease and, thus, credible intervals are tigh-
ter. The posterior means also tend to be closer to the true parameter values. We also observe
that spatial stratification is less sensitive to different ρ values tested and more sensitive to differ-
ent values form. For example, in Fig 3, the posterior results for α underm = 4 show almost no
change for ρ = 0.10 versus ρ = 0.50. However, increasing the number of strata tom = 9 does
increase posterior accuracy compared tom = 4. Under both values of ρ, we are able to obtain
more posterior accuracy under the spatial stratification scheme than the simple random sam-
pling scheme, demonstrating the advantage that including spatial stratification presents.

However, although spatial stratification appears more desirable in terms of posterior
approximation, we must also consider the computation time required for the MCMC to run.
Table 1 displays the average computation time (in hours) of each of our sampling methods. We
observe that it takes approximately 92.64 hours to run 20,000 MCMC iterations of the true
model without any data sampling. However, if we introduce SRS and set ρ = 0.25, we notice a
drastic reduction in computation time; the MCMC takes only 36.48 hours to run. The compu-
tation time increases when ρ increases, as expected. The same is true if we consider spatial
stratification in our sampling scheme. We see that smaller values ofm yield faster run times,
but the posterior approximation improves with largerm. Obviously, in practice, a trade off
between posterior accuracy and computation time would be required.

FMDModel Fitting Results
Figs 4 and 5 show the results of implementing our sampling methods when fitting the data aug-
mented FMD-ILM (tabulated results are given in S2 Table). Under the SRS approach, we see
that posterior means for each ILM parameter tend to approach the posterior mean estimate
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Fig 2. Posterior results for full MCMC and SRSmethods. Posterior means and 95% credible intervals for α, β, and λz for the full MCMC and SRSmethods
for 10 different epidemics simulated from the data augmented spatial ILM with varying sampling proportions. The dashed, horizontal lines represent the true
parameter values: α = 1.4, β = 2.3, and lz ¼ 1

3
, with a population of size n = 625.

doi:10.1371/journal.pone.0146253.g002
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Fig 3. Full posterior results for full MCMC and spatial stratification methods. Posterior means and 95% credible intervals for α, β, and λz for the full
MCMC and spatial stratification methods for 10 different epidemics simulated from the data augmented spatial ILM with varying values form and ρ. The
dashed, horizontal lines represent the true parameter values: α = 1.4, β = 2.3, and lz ¼ 1

3
, with a population of size n = 625.

doi:10.1371/journal.pone.0146253.g003
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under the full model as ρ is increased, similar to the findings of the simulation study. In general,
we also observe that posterior variance decreases as ρ increases, resulting in tighter credible
intervals closer to those under the full full model (which are generally the most narrow). Once
again, these results mimic those seen in the simulation study.

Considering the spatially stratified schemes, we draw similar conclusions to those seen in
the simulation study. Posterior accuracy tends to increase, and posterior variances decrease, as
the number of strata,m, increases. In fact, form = 16 we obtain posterior estimates that are
very close to those seen under the full model for parameters ϕs, ϕc, and λz. Credible interval
widths for ϕs and β change negligibly with regards to choice ofm. Further, although posterior
variance decreases asm increases, the credible intervals obtained under SRS withm = 4 (the
lowest number of strata) contain those seen under the full MCMC analysis, suggesting good
approximate inference.

Comparing the two sampling schemes, we see that spatial stratification tends to yield more
accurate results. For example, if we compare SRS at ρ = 0.50 with stratification even atm = 4
(also sampled with ρ = 0.50), we find that all parameters under the spatial stratification scheme
provide very similar, or more accurate, posterior means and tighter credible intervals. Asm
increases, as we have also seen, these SRS-based results improve even further.

Once again, however, a key aspect in addition to modeling accuracy is reduction in compu-
tation time. Table 2 provides the run times (in hours) for each FMD data analysis. With the full
model taking approximately 249.12 hours to run for 20,000 MCMC iterations, we notice signif-
icant time savings at ρ = 0.25 and ρ = 0.50 using SRS and atm = 4 using spatial stratification.
The time savings are much lower and of more questionable benefit for larger ρ andm. Further,
and once again, time savings achieved using these sampling methods would be expected to be
greater for larger data sets (see discussion).

Discussion
In this paper, we introduced sampling algorithms to help speed up the likelihood calculation
for ILMs in a Bayesian MCMC framework. Unlike other proposed methods (e.g., [8, 12]), ours
incorporates data augmented MCMC to allow for uncertainty about infection times into our
analysis. We test the usefulness of our methods by comparing ILM parameter estimation under

Table 1. Average computation time for the simulation studies.

ρ m Computation Time (hours)

— — 92.64

0.25 — 36.48

0.50 — 47.76

0.75 — 59.28

0.90 — 75.12

0.10 4 46.88

0.50 4 56.16

0.10 9 66.24

0.50 9 71.52

0.10 16 82.32

0.50 16 88.56

Average computation run times (in hours) of fitting the data augmented spatial ILM, SRS-ILM, and the

SSS-ILM to 10 different simulated epidemics. These epidemics were simulated using ILM parameters α =

1.4, β = 2.3, lz ¼ 1
3
, and n = 625.

doi:10.1371/journal.pone.0146253.t001
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Fig 4. Posterior results for FMD-ILM using the SRSmethod. Posterior means and 95% credible intervals for all parameters of the data augmented
FMD-ILM under the SRSmethod. The results are compared to the full model to assess accuracy.

doi:10.1371/journal.pone.0146253.g004
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Fig 5. Posterior results for FMD-ILM using the spatial stratification method. Posterior means and 95% credible intervals for all parameters of the data
augmented FMD-ILM under the spatial stratification method. We sampled ρ = 0.50 from each stratum. The results are compared to the full model.

doi:10.1371/journal.pone.0146253.g005
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the full Bayesian analysis via a simulation study and using data from the 2001 FMD epidemic
in the U.K. Our results show that overall, we were able to obtain fairly accurate (though less
precise) results using sampling-based likelihood approximations compared to the results
obtained under the full likelihood analysis. In terms of computation run times, we found signif-
icant savings could be made by using data sampling. Because the problem of repeated likeli-
hood calculations under the full model is increased drastically with the inclusion of data
augmentation, this is a result of key importance. However, we found using larger values of ρ or
m can drastically reduce the time saving benefit over the full MCMC analysis.

In our studies, only two sampling techniques were considered. Possible future work could
involve investigating other sampling procedures that might provide stronger inferential con-
clusions. For example, our spatial stratification technique consisted of dividing the population
into equally sized cells/strata and then sampling from each cell with equal sampling propor-
tions. This would seem intuitively sensible when the population is spread across a grid, as was
the case in our simulation study. This may be reasonable for some crop diseases or perhaps if
points on the grid represent regions or cells (e.g., consider the modeling of fire spread by [23]),
but such a population layout would be quite unrealistic in most situations. (It was, of course,
adequate for the main aim of this paper, which was to illustrate the facilitation of faster likeli-
hood calculations via data sampling).

In most populations, some natural clustering of individuals tends to take place (e.g., there
tend to be high density clusters of farms in regions where infrastructural and/or environmental
conditions are suitable for the type of farming in question). In such situations, spatial strata
could, for example, be based upon some spatial clustering method applied to the population
data. Alternatively, for a population in which some sort of contact network, or series of such
networks, were being used as a prime risk factor in the model, clustering based on the network
(s), using say partitioning around medoids (PAM) [24], could be considered as a way of defin-
ing strata from which to sample.

Here, we assumed that the sampling proportion was invariant to time and/or stratum. How-
ever, it might be useful to allow the sampling proportion to vary according to one or both. We
might also possibly want to place more weight on sampling at times when the epidemic inten-
sity is highest. Alternatively, in the case of spatially stratified sampling, we might want to avoid
sampling from some strata with very low epidemic intensity. Such methods could possibly pro-
vide faster computation concurrent with more accurate model parameterization.

There are also, of course, many other options for carrying out approximate inference when
computational efficiency is a driving factor. For example, [25] use a Gaussian process emulator

Table 2. Computation times for the FMD-ILM.

ρ m Computation Time (hours)

— — 249.12

0.25 — 60.24

0.50 — 84.72

0.75 — 164.88

0.90 — 227.76

0.50 4 108.24

0.50 9 185.04

0.50 16 232.80

Computation run times (in hours) of fitting the data augmented FMD-ILM to the FMD data using various

sampling techniques. Models produced 20,000 realizations from the posterior.

doi:10.1371/journal.pone.0146253.t002
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method based on mapping key summary statistics from model simulations to the parameter
space. In a similar vein, the aforementioned so-called approximate Bayesian computational
methods used by, for example, [14] and [15], can be employed. These are also based on com-
paring salient summary statistics from observed and simulated data. A systematic comparison
of all of these different approaches would be of obvious interest.

Our study used a SIRmodeling framework. We could extend the analysis presented here
to a SEIR framework to investigate disease exposure times. In our modeling, we accounted for
incubation by treating it as a period when infected individuals have not been diagnosed yet but
can pass on the disease to others. Introducing an exposed state would indicate an individual
has contracted the disease but cannot pass it on to others until they reach the infectious state,
regardless of confirmation of disease diagnosis. Additionally, we assumed knowledge of when
individuals were removed from the population; however, this would not be the case for most
diseases (e.g., human influenza). In a future study, we can also explore scenarios where removal
times are unknown and instead estimated through data augmentation. The modeling frame-
work used in this paper was also set in discrete time. The time saving sampling used here can
also be applied in a (more natural, arguably) continuous time modeling framework.

We have demonstrated as a proof of concept that, for these relatively small datasets, our
sampling-based likelihood approximations can result in a significant decrease in computation
time. The time savings using these sampling algorithms would be even more beneficial in
large-scale problems involving massive data sets compared to a full Bayesian analysis. A natural
avenue of possible future work would be to apply these techniques to much larger data sets. Of
course, these techniques would only really be worth using for large data sets in which a full
Bayesian analysis was computationally prohibitive, in which case the priority would likely to be
to get some sort of ‘rough and ready’ inference done as quickly as possible, rather than worry
too much about the quality of posterior approximation. However, some degree of thought
would have to be given to the choice of ρ and the stratification methods used in order to
achieve parametrization of a reasonable quality in a feasible time frame. Further work on the
use of some sort of adaptive scheme, based initially on a quick pilot study over sampling pro-
portions and stratification schemes, might also therefore be of interest.

Supporting Information
S1 Table. Summary statistics for the simulation studies. Summary statistics from the simula-
tion studies comparing model parameter estimation across our different sampling schemes.
The results are averaged over 10 different epidemics simulated from the data augmented spatial
ILM with parameter values a ¼ 1:4; b ¼ 2:3; lz ¼ 1

3
, and n = 625. Here, CIs are the mean cred-

ible interval limits.
(PDF)

S2 Table. Summary statistics for modeling the FMD-ILM. Summary of results from fitting
the data augmented FMD-ILM to the FMD data. We compare the results across our different
sampling methods. Note that for spatial stratification, we sample ρ = 0.50 from each stratum.
(PDF)
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