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Human placenta secretes a variety of hormones, some of them in large amounts. Their
effects on maternal physiology, including the immune system, are poorly understood. Not
one of the protein hormones specific to human placenta occurs outside primates. Instead,
laboratory and domesticated species have their own sets of placental hormones. There
are nonetheless several examples of convergent evolution. Thus, horse and human have
chorionic gonadotrophins with similar functions whilst pregnancy-specific glycoproteins
have evolved in primates, rodents, horses, and some bats, perhaps to support invasive
placentation. Placental lactogens occur in rodents and ruminants as well as primates
though evolved through duplication of different genes and with functions that only partially
overlap. There are also placental hormones, such as the pregnancy-associated
glycoproteins of ruminants, that have no equivalent in human gestation. This review
focusses on the evolution of placental hormones involved in recognition and maintenance
of pregnancy, in maternal adaptations to pregnancy and lactation, and in facilitating
immune tolerance of the fetal semiallograft. The contention is that knowledge gained from
laboratory and domesticated mammals can translate to a better understanding of human
placental endocrinology, but only if viewed in an evolutionary context.
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1 INTRODUCTION

The primary function of the placenta is to aid exchange of respiratory gases and nutrients between
parent and embryo. In addition, because embryonic and fetal tissues express paternal genes, the
placenta fashions molecules that modify maternal immune responses, which otherwise might cause
rejection of the semiallograft (1). Finally, the placenta secretes hormones to maintain uterine
quiescence, alter maternal metabolism, and influence other aspects of maternal physiology. There is
an extensive literature on gas and nutrient exchange and on placental and uterine immunology (2).
Less is known, however, about the endocrine functions of the placenta (3). One impediment to
research is that many protein hormones specific to placenta are restricted to discrete lineages rather
than being widely distributed among mammals.

In this review, the focus is on protein hormones that arose through gene duplications, such as
those derived from growth hormone, prolactin and luteinizing hormone. Intriguingly, none of these
hormones is widely distributed across mammals although hormones with similar properties have
evolved in different lineages. As an example, equine chorionic gonadotrophin is known only from
equids, whereas human chorionic gonadotrophin evolved in the lineage of anthropoid primates.
Steroid hormones secreted by the placenta have far-reaching effects in mammals but are not a focus
n.org May 2022 | Volume 13 | Article 8919271
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of this review. However, placental protein hormones interact
with steroids and prostaglandins, sometimes in sequence, as
described in later sections.

1.1 Placentation
Fetal access to the maternal circulation is dependent on the type
of placentation, particularly the interhaemal barrier separating
maternal and fetal circulations. In human placenta, this
comprises only fetal tissues as the villous trophoblast faces an
intervillous space filled with maternal blood. This is one kind of
haemochorial placenta. In a more common type, found in many
rodents, the maternal blood flows in trophoblast-lined blood
channels. In endotheliochorial placentas, trophoblast reaches the
maternal capillaries, and placental hormones need to cross the
capillary endothelium. Epitheliochorial placentas appear to offer
a greater challenge since several layers of fetal and maternal tissue
separate the two blood streams. However, as described below,
access to maternal tissues can be gained by trophoblast invasion,
as in equids, or through fusion of trophoblasts with uterine
epithelium, as in ruminants.

The trophoblast and other placental tissues are fetal in origin
(4) and express paternal genes. Therefore, trophoblast invasion
of the uterine wall challenges the maternal immune system. Since
several placental hormones are thought to modulate immune
responses, some authors tie their evolution to the degree of
invasiveness (5, 6). It should be remembered, however, that the
Grosser classification defines the tissue layers of the interhaemal
barrier and is not an index of invasiveness (7, 8).
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The hormones under discussion are products of the definitive,
chorioallantoic placenta. There are other fetal membranes and
they vary across mammals (9). In rodents and some other orders,
there is a yolk sac placenta that persists to term. It has an
epithelium, endodermal in origin, that faces the uterine cavity.
This serves mainly for uptake of maternal secretions and
antibodies. Whilst the yolk sac does synthesize hormones and
hormone-binding proteins, such as transthyretin, these are
secreted across the basolateral surface towards the fetal
circulation (10).

1.2 Mammalian Taxonomy
Nineteen orders of eutherian mammals are currently recognized
(11). Based on genomics, they can be assigned to four lineages or
superorders (11). Best characterized from the perspective of
placental endocrinology is Euarchontoglires, which includes
rodents and primates. For Laurasiatheria, a fair amount is
known about placental hormones in domesticated species
within the orders of even-toed and odd-toed ungulates
(Artiodactyla and Perissodactyla). In contrast little is known
about placental hormones in bats although Chiroptera is the
second most speciose order of mammal (12). The two other
superorders are Afrotheria, which includes elephants and
tenrecs, and Xenartha, which comprises sloths, anteaters and
armadillos. There are few observations on placental hormones in
these mammals although some studies have been made on
elephants (13). A guide to taxonomic terms used in this review
is given in Table 1.
TABLE 1 | Terminology of eutherian mammals encountered in this review.

Term Taxonomic level Remarks and examples

Afrotheria Superorder 6 orders
Proboscidea Order Elephants
Hyracoidea Order Hyraxes
Xenarthra Superorder 2 orders
Euarchontoglires Superorder 5 orders
Primates Order 14 families
Strepsirrhini Suborder Strepsirrhines: lemurs, lorises, galagos
Haplorhini Suborder Haplorhines: tarsiers and anthropoid primates
Simiiformes Infraorder Anthropoid primates: New and Old World monkeys, apes
Platyrrhini Parvorder New World monkeys
Catarrhini Parvorder Old World monkeys, gibbons and great apes (including human)
Rodentia Order 36 families in 5 suborders
Myomorpha Suborder 2 superfamilies
Muroidea Superfamily 6 families including cricetid and murid rodents
Cricetidae Family Golden hamster, deer mouse
Muridae Family Mouse, rat
Hystricomorpha Suborder 18 families including guinea pigs
Lagomorpha Order 3 families including rabbits
Laurasiatheria Superorder 6 orders
Chiroptera Order 21 families
Yinchiroptera Suborder Megabats and 6 other families
Yangchiroptera Suborder 15 families including vesper bats
Perissodactyla Order 3 families of odd-toed ungulates including tapir, rhinoceros and equids
Equidae Family Horse, zebra
Artiodactyla Order 24 families of even-toed ungulates (includes whales) including pig, hippopotamus, llama and ruminants
Ruminantia Suborder Mouse deer and pecoran ruminants
Pecora Infraorder Cattle, water buffalo, sheep, goat, deer, giraffe, pronghorn, wildebeest
For context the number of orders in each superorder is given as well as the number of families in selected orders (11, 12).
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2 RECOGNITION AND MAINTENANCE
OF PREGNANCY

At least initially, pregnancy maintenance is contingent upon
continued secretion of progesterone from the corpus luteum, and
this requires maternal recognition of pregnancy. As long
realized, there is no mechanism common to all species (14). In
most mammals studied, pregnancy recognition depends on
inhibition of a luteolytic factor, prostaglandin F2a (PGF2a),
secreted by the uterus. Thus, maternal recognition of
pregnancy usually depends on inhibition of PGF2a secretion;
this is achieved by cytokines or hormones secreted by the
blastocyst or placenta. Experiments in guinea pigs (Cavia
porcellus) showed that luteolysis was inhibited in the ovary
ipsilateral to a pregnant horn, but not on the same side as a
sterile horn [e.g. (15)]. A close apposition of ovarian arteries to
the utero-ovarian vein was then shown for several species,
including guinea pig and sheep (Ovis aries) (16, 17). Further
work, summarized in a recent review (18), showed how transfer
of PGF2a from vein to artery is aided by the counter current
arrangement of these blood vessels. This route is not available to
all mammals. In the mare, for example, PGF2a reaches the
ovaries by the systemic route. In human and some other
primates, the source of PGF2a is intra-ovarian rather than
uterine and its synthesis is decreased in the presence of
chorionic gonadotrophin (19). Several of the luteotrophic
factors discussed below are shown schematically in Figure 1.

2.1 Pecoran Ruminants
In ruminants, the signal for pregnancy recognition is interferon
tau, which is secreted by the trophectoderm of the elongated
blastocyst during its long sojourn in the uterine lumen. The
IFNT gene arose in the lineage of pecoran ruminants through
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duplication of the IFNW gene (20). In the process, IFNT lost the
viral control elements of the promotor region and acquired
sequences responsible for trophectoderm-specific expression
(21, 22) . Interferon tau binds to receptors in the
endometrium and acts to suppress secretion of PGF2a thus
preventing luteolysis (23, 24). It is also detectable in uterine
venous blood and may act on extrauterine tissues (25). Recent
work has focussed on the direct effects of interferon tau on the
transcriptome of the corpus luteum. Both the luteinized large
cells and the luteal endothelial cells respond to interferon tau
and the net effect is downregulation of luteolytic factors,
promotion of cell survival and vascular stability (26). IFNT is
absent in non-ruminant species of Artiodactyla, such as pig
(Sus scrofa), hippopotamus (Hippopotamus amphibius) and
llama (Lama glama) (27). The pregnancy recognition signal
in pigs is estrogen, primarily estradiol-17b, secreted by the
trophectoderm of the filamentous blastocyst (28).

2.2 Equids
In the horse (Equus caballus), the developing blastocyst is
enclosed in a glycoprotein capsule that moves about the uterus.
Blastocyst motility is essential to maintenance of pregnancy. A
hitherto unidentified factor inhibits release of PGF2a from the
uterus (29). A recent overview concluded that maternal
recognition of pregnancy in the horse involves a combination
of chemical and mechanical signalling through multiple
pathways (30). After implantation, between days 36 and 38 of
gestation, trophoblast migrates from the chorionic girdle of the
developing placenta into the endometrium and there forms the
endometrial cups, which secrete equine chorionic gonadotrophin
(eCG) (31, 32). Unlike in primates, a single gene codes for the b-
subunit of pituitary LH and placental CG. It evolved in the equid
lineage through acquisition of an extended carboxy-terminal
FIGURE 1 | Some luteotrophic factors. Those derived through gene duplication are shown in red. In murid and cricetid rodents (e.g., mouse, golden hamster) pituitary
prolactin (PRL) is released in response to coitus and inhibits 20a-hydroxysteroid dehydrogenase (20a-HSD); subsequently this function is assumed by placental
lactogens (PL-1, PL-2). In elephants, placental expression of PRL is responsible for pregnancy maintenance by accessory corpora lutea. In anthropoid primates and
horses, chorionic gonadotropins (CG), derived through duplication of the luteinizing hormone b-subunit, are expressed by trophoblast and maintain luteal function in
the early months of gestation. In ruminants, interferon-tau (IFNT) derived by duplication of the INFW gene is secreted by the blastocyst and acts on the endometrium to
inhibit the luteolytic signal prostaglandin F2a (PGF2a). Reproduced from Physiological Reviews (2) Copyright © 2012, The American Physiological Society.
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peptide that is key to placental expression (33, 34). Placental
expression occurs in the donkey (Equus asinus) and Plains zebra
(Equus quagga) (34, 35), but not in other perissodactyls such as
the Central American tapir (Tapirus bairdii) and various species
of rhinoceros (36). Together with pituitary FSH, eCG stimulates
development of accessory corpora lutea, which support
pregnancy until about day 70, after which pregnancy is
maintained through placental secretion of progestins such as
dihydroprogesterone (DHP). For a fuller consideration of the
endocrinology of pregnancy in the mare, including estrogen
production by the fetoplacental unit, the reader is referred to
an excellent review by Conley (37).

2.3 Anthropoid Primates
There is a superficial resemblance between horse and human in
that pregnancy maintenance depends initially on hCG, which is
secreted by the syncytiotrophoblast, and then on placental
secretion of progesterone. Although hCG rescues steroid
synthesis by the corpus luteum (38), its role may be short-lived
(39). There is no chorionic gonadotrophin in lemurs, lorises or
tarsiers. Duplication of the pituitary LH b-subunit gene, which
presaged evolution of chorionic gonadotrophin, occurred in the
lineage of anthropoid primates (40). Several copies of the CG b-
subunit gene are found in anthropoid primates, but many lack
placental expression (41). In human gestation, the plasma
concentration of hCG rises rapidly 4 weeks after implantation
and peaks at 8 to 10 weeks (42). Subsequently, pregnancy is
maintained through placental secretion of progesterone. An
enduring hypothesis is that human parturition is triggered by
progesterone withdrawal (43). The current view favours a
functional progesterone withdrawal resulting from an increase
in the ratio between the two progesterone receptors (PR-A/PR-B
ratio) and mediated by prostaglandins, although the full picture
is considerably more complex (44, 45).

It should be remarked that hCG has actions other than
maintenance of the corpus luteum (3). For example, hCG
induces proliferation of the uterine natural killer cells that play
a key role in maternal-fetal interactions within the placental
bed (46).

2.4 Murid and Cricetid Rodents
In mouse (Mus musculus), rat (Rattus norvegicus), and golden
hamster (Mesocricetus auratus), rescue of the corpus luteum is
through pituitary secretion of prolactin (PRL), which requires
stimulation of the uterine cervix during coitus. As pregnancy
proceeds, PRL is supplemented by placental lactogens (PLs).
PRL, PL-I and PL-II act by silencing expression of 20a-
hydroxysteroid dehydrogenase, which otherwise would
catabolize progesterone (47). The trophoblast giant cells secrete
PL-I in mid-gestation and PL-II during the last half of gestation
(48). In rodents, placental lactogens arose through duplication of
the Prl gene and in mouse they are encoded by Prl3d1 (PL-I) and
Prl3b1 (PL-II). A variant form of PL-I in the rat is encoded by
Prl3d4. Further functions of PLs and prolactin-like proteins in
rat and mouse are discussed in a later section.

Evolution of placental lactogens in rodents has yet to be
explored in depth. Pl1, Pl2, and variants thereof, have been
Frontiers in Endocrinology | www.frontiersin.org 4
documented in cricetid rodents: the golden hamster (49) and
two species of deer mouse (Peromyscus maniculatus and
P. polionotus) (50). Thus, based on current phylogeny, Pl1
and Pl2 must have been present in the common ancestor of
Muridae and Cricetidae, which together account for 94% of
muroid diversity (51). Without further data, it is not possible to
pinpoint when and where placental lactogens emerged in this
lineage of rodents.

2.5 Guinea Pig
The guinea pig and other hystricomorph rodents have a long
gestation and give birth to well-developed young. They differ in
this respect from mouse and rat. Maintenance of the corpora
lutea in the first weeks of guinea pig pregnancy has been ascribed
to a chorionic gonadotrophin [evidence summarized in (52)]. In
addition, spongiotrophoblast from the interlobular areas of the
placenta secretes prolactin-like proteins (53). The ovaries are not
required after day 21 of gestation when pregnancy maintenance
depends on placental secretion of progesterone (54). As in
women, there is no decline in plasma progesterone prior to
birth suggesting guinea pig as a promising model for research on
parturition (44).

2.6 Elephant
The prolactin gene went through a period of rapid evolution in
the African savannah elephant (Loxodonta africana) and rock
hyrax (Procavia capensis), but without gene duplication (55).
Nonetheless, placental expression of PRL has been suggested for
both African and Asian elephants (Elephas maximus) based on
immunostaining with an antibody raised against human
prolactin (56, 57). Gestation in elephants is maintained by
large accessory corpora lutea and the luteotrophic factor may
well be PRL derived from the placenta (58).
3 MATERNAL ADAPTATIONS FOR
PREGNANCY AND LACTATION

Placental hormones have diverse yet poorly understood effects
on maternal physiology (3). They stimulate growth of the uterine
glands and secretion of histotroph (uterine milk), which is an
important source of fetal nutrition, especially in species with
epitheliochorial placentation (59). They also have far-reaching
effects on maternal metabolism that ensure an adequate supply
of nutrients to the fetus. Placental lactogens are among a plethora
of hormones that support differentiation of the mammary glands
preparatory to lactation (60). There are also behavioural effects
such as nest-building in rabbits (61).

The hormones responsible for these actions include placental
lactogens. They occur in primates, rodents and ruminants but are
the result of separate evolutionary trajectories and are derived from
different genes. Therefore, they cannot be assumed tohave identical
functions. Known effects of PRL-related hormones on placental
development are considered here though those actions may be
paracrine rather than endocrine Also considered in this section are
placensin, recently described as a human placental hormone, and
the pregnancy-associated glycoproteins of artiodactyls.
May 2022 | Volume 13 | Article 891927
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3.1 Primates
Duplication and placental expression of the growth hormone
gene is a distinctive feature of anthropoid primates. A cluster of
five genes is found on human chromosome 17. One codes for
pituitary growth hormone (hGH-N), another for placental
growth hormone variant (hGH-V) and two for placental
lactogens, also known as chorionic somatomammotropic
hormones (CSH1/hCS-A, CSH2/hCS-B) (62). The appellation
placental lactogen is supported by their much greater affinity
for the PRL receptor than the GH receptor (63).

3.1.1 Placental Growth Hormone
Placental GH is secreted from 24-25 weeks of gestation, reaches a
plateau at 34-35 weeks, and is maintained to term. It suppresses
secretion of pituitary GH from 24-25 weeks (64). Secretion of
placental GH is continuous (65) whereas pituitary GH is secreted
in pulses. Since GH promotes gluconeogenesis, lipolysis and
anabolism, it is though that the placental variant increases nutrient
availability to the placenta and fetus (66, 67). Thus, maternal insulin
resistance develops during mid- to late human pregnancy in
response to placental GH, thereby ensuring availability of maternal
glucose for placental transfer [reviewed in (67)]. Placental growth
hormone is not secreted to the fetal circulation (68).

Many actions of GH are mediated through STAT5B, which
upregulates transcription of insulin-like growth factor 1 (IGF1)
(69). In addition, the syncytiotrophoblast of human placenta
expresses IGF2 (70) and the maternal plasma concentration of
IGF-2 rises throughout pregnancy. The actions of IGFs are
mediated through their receptors IGF1R and M6P/IGF2R as
well as through the insulin receptor. Several IGF binding
proteins regulate their availability. For closer consideration the
reader is referred to appropriate reviews (67, 70–72).

3.1.2 Placental Lactogens
Human PL is found in maternal plasma at around 6 weeks and
reaches a plateau by 32-35 weeks of gestation (68). Towards
term, the secretion rate of hPL is about 1 g/day, exceeding that of
any other peptide hormone (73). It binds preferentially to the
PRL receptor (63). However, although levels of hPL greatly
exceed those of PRL, a role in the secretory differentiation of
the human mammary gland has yet to be determined (60). Thus,
the increase in urinary lactose, reflecting the capacity of the
breast to make lactose, correlates with PRL levels but not hPL
levels (74). Pregnancy proceeds to term even in the absence of
circulating hPL, although fetal outcomes vary (68). In humans
most placental hormones are secreted by the maternal-facing
syncytiotrophoblast: secretion is unidirectional. Human PL is an
exception and is found in the fetal circulation (75).

It may be noted that Prl itself is expressed in the uterine
decidua of anthropoid primates including brown-headed spider
monkey (Ateles fusciceps), rhesus macaque, and human (76).

3.1.3 Growth Hormone Locus in Nonhuman Primates
Most mammals have a single growth hormone gene expressed in
the pituitary. This is also true of strepsirrhine primates such as
the slow loris (Nycticebus pygmaeus) (77) and tarsiers (Carlito
Frontiers in Endocrinology | www.frontiersin.org 5
syrichta and Cephalopacus bancanus) (78). Phylogenetic analysis
infers there was a single gene in the common ancestor of New
World and Old World monkeys, although it may already have
attained placental expression (79). Gene duplication occurred
separately in the two lineages (79). Multiple GH genes are found
in NewWorld monkeys, for example 8 genes and pseudogenes in
the common marmoset (Callithrix jacchus) (80), which is an
important animal model (81). At least three genes are expressed
in the placenta of the brown-headed spider monkey (Ateles
fusciceps) (79). Among Old World monkeys, baboon placenta
expresses placental growth hormone (GH-2) and two PLs (CSHs)
(82) and rhesus macaque (Macaca mulatta) has a cluster of six
GH-like genes, four of which are expressed in the placenta (83).
Like human, chimpanzee (Pan troglodytes) and lowland gorilla
(Gorilla gorilla) have two GH genes and 3-4 CSH-like genes
(84, 85).

3.1.4 Placensin
The FBN1 gene encodes a structural protein, fibrillin-1, and a
secreted protein, asprosin. Its paralogue FBN2 was recently
shown to be highly expressed by cyto- and syncytiotrophoblast
of human placenta and given the name placensin (86). Based on
its ability to stimulate glucose secretion and gluconeogenesis in
primary hepatocytes, it was suggested that placensin plays a role
in metabolic homeostasis during pregnancy. It should, however,
be noted that the gene is expressed at very low levels in mouse
placenta and FBN2 is highly conserved across vertebrates (86).

3.2 Rodents
As already noted, PRL, PL-1 and PL-2 maintain corpus luteum
function, which is a prerequisite for mammary development. In
addition, they act through the PRL receptor (coded by Prlr) to
promote lobuloalveolar growth, differentiation, and milk protein
gene expression (87, 88). Until quite recently, the metabolic
effects of rodent PLs were unclear. However, a comparison of
mouse mutants lacking either Prl or Prlr indicated that PLs
rather than prolactin were essential for maintenance of adequate
glucose levels during gestation (89).

A large cluster of PRL-like genes occurs in rat and mouse (90,
91). Many of these are orphan ligands or act through non-classical
pathways rather than through the PRL receptor (92). They include
genes coding for proliferin (Prl2c2) and proliferin-related protein
(Prl7d1). Proliferin promotes angiogenesis and is expressed by the
trophoblast giant cells during development of the placental
labyrinth (93). In contrast, proliferin-related protein, which is
expressed by cytotrophoblasts of the junctional zone, is anti-
angiogenic. At midgestation there is decrease in proliferin and
increase in proliferin-related protein that may restrict further
vascularization (93). Whilst these actions are paracrine, both
proteins are secreted to the maternal circulation.

Several of the PRL-like proteins (PRL-A, -B, and -C) are
expressed by the trophoblasts that invade the mesometrial
triangle in the last week of gestation. This coincides with the
disappearance of uterine natural killer (uNK) cells and PLP-A
has been shown to bind to uNK cells and suppress their synthesis
of interferon-gamma (94).
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Rodents do not have a placental growth hormone. However,
in the mouse, pituitary secretion of GH rises at mid-gestation
coincident with development of the chorioallantoic placenta
(95). The increase has been attributed to a placental factor.
Subsequent work ruled out placentally derived acyl-ghrelin
(96), but placental secretion of GH- releasing hormone
(GHRH) remains a possibility (95). Finally, it is noteworthy
that Prl is expressed by uterine decidua in murid rodents (76), as
in anthropoid primates, although this is another incidence of
convergent evolution (76).

3.3 Artiodactyls
Most research on placental hormones of artiodactyls has focussed
on domesticated species such as cattle (Bos taurus), sheep, and
goat (Capra hircus). These and other ruminants, including the
basal tragulids or mouse deer (Tragulus javanicus and T. napu)
(97), feature binucleate trophoblast cells (BNCs) that synthesize
prolactins and pregnancy-associated glycoproteins (PAGs). As
first shown in cattle (98), BNCs can fuse with uterine epithelial
cells to form a short-lived trinucleate cell that delivers the
hormones to maternal tissues. Trinucleate cells have been
demonstrated in species from three further families, including in
white-tailed deer (Odocoileus virginianus), Northern giraffe
(Giraffa camelopardalis) and pronghorn (Antilocapra americana)
(99, 100). In sheep, goat, and blue wildebeest (Connochaetes
taurinus), there is a syncytium that Wooding considers to be a
hybrid tissue maintained by continual fusion with BNCs (100,
101). This view has been challenged recently, and it is suggested
that uterine epithelial cells undergo apoptosis so that the syncytial
layer is entirely trophoblastic in origin (102). If that is the case, the
placenta is syndesmochorial according to the Grosser
classification (7).

3.3.1 Placental Lactogens
Ovine placental lactogen (oPL) stimulates hyperplasia of the
uterine glands and secretion of histotroph (103). There is also
evidence that it promotes mammary growth in ewes (104), as does
bovine placental lactogen (bPL) in heifers (105). However, oPL
affected neither growth nor milk production when given to
lactating ewes (106). Additionally, these hormones may be
important for fetal growth as oPL is secreted to the fetal
circulation in sheep. Indeed, RNA interference studies in sheep
support the view that oPL stimulates fetal growth by enhancing
transcription of IGF1 and IGF2 as well as some IGF-binding
proteins (107).

The placental lactogens of ruminants arose through
duplication of the PRL gene with subsequent expansion of the
gene locus. Thus, in cattle there are 8 PRL-like genes. One codes
for bPL; the remainder for prolactin-related proteins (PRPs)
(108, 109). There is considerable sequence divergence between
bPL and oPL, and bPL is glycosylated whereas oPL is not (110).
Apart from goat and water buffalo (Bubalus bubalis), other
species have not been investigated at the molecular level.
Therefore, it is not possible to determine when ruminant PLs
evolved. However, prolactin-like activity has been found in
placentas of other ruminants including Northern giraffe and
six species of deer (Cervidae) as well as in llama, though not
Frontiers in Endocrinology | www.frontiersin.org 6
domestic pig (111). In addition, placental lactogens have been
demonstrated in BNCs from several species including mouse
deer (97), deer (112) and giraffe (113) by immunostaining with
antibodies raised against oPL and bPL. Giraffe BNCs stain for
PRL itself (113).

3.3.2 Placental Growth Hormone
Placental expression of growth hormone is found in sheep and
goat, but is restricted to the caprine lineage (114). Sheep are
polymorphic for the gene duplication (115). One allele carries a
single gene (GH1) and the other has two copies of the duplicated
gene (GH2-N and GH2-Z). Only the latter are expressed in the
placenta (116), so individuals that are homozygous for GH1 lack
placental expression. The product of GH2-Z has a higher affinity
for the GH receptor (115) and oGH has been shown to promote
endometrial gland proliferation (117). This suggests that the
duplicate gene may confer an advantage on fetuses that carry it.
The GH gene locus has a similar structure in the domestic goat
(114), but little work has been done on this species.

3.3.3 Pregnancy-Associated Glycoproteins
Most mammals have a single PAG-like gene belonging to the
aspartic peptidase family. There have been two rounds of
duplication in artiodactyls (118, 119). Products of the first
round, referred to as “ancient PAGs,” retain the active site. In
cattle, they are expressed mainly by trophoblasts of the
intercotyledonary chorion (120). In both pig and cow, the
proteins occur at the microvillous junction between uterine
epithelium and trophoblast suggesting they may function as
linking molecules and be important for fetal-maternal
anchorage (121). The second round of gene duplication
occurred in ruminants (including mouse deer). In cattle, these
“modern PAGs,” are expressed predominantly by BNCs in the
placental cotyledons (120). There has been expansion within
both clusters with cattle having 21 PAG genes and 20 PAG-like
pseudogenes (120). There are comprehensive studies of gene
expression in cattle comprising both modern and ancient PAGs
(120, 122). Comparative studies have been restricted to protein
expression using antibodies raised against ovine PAG-1 and
bovine PAG-2 (100). PAGs have been included here as several
are released from BNCs. It has been speculated that they are
involved in immune tolerance (123). Another possible role is
pregnancy maintenance (122).
4 IMMUNOSUPPRESSION

The immunological paradox of pregnancy, to which Medawar
drew attention (1), has baffled scientists for nearly seventy years
(124, 125). Many placental cytokines and hormones are
suggested to contribute to immune tolerance. Here I have
chosen to highlight the pregnancy-specific glycoproteins
(PSGs) and galectins.

PSGs belong to the carcinoembryonic gene family, which in
turn is part of the immunoglobulin gene superfamily. There are
two major branches coding, respectively, for cell adhesion
molecules (CEACAMs) and PSGs (CEAPSGs). The function of
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this large group of proteins is not entirely clear, but PSGs are
secreted by trophoblast and are putative immunomodulatory
agents. Developments in the last few years have widened the
spectrum of PSGs from primates and rodents to horses and
bats (5).

Galectins are an ancient group of proteins with a wide variety
of functions that in mammals include regulation of immune
tolerance at the maternal-fetal interface (126–128). Galectins are
predominantly localized to the cytoplasm but are included here
because there are placenta-specific galectins in primates, one of
which is secreted to the maternal circulation. For a broader
consideration of the role of galectins in the female reproductive
tract the reader is referred to recent comprehensive reviews
(127, 128).

4.1 Anthropoid Primates
4.1.1 Pregnancy-Specific Glycoproteins
Human placenta secretes large amounts of PSG (previously
named b1-glycoprotein). There is a cluster of 10 PSG genes in
human and similar numbers in great apes and Old World
monkeys though only 1-7 in New World monkeys (5). PSG
genes are absent in lemurs, lorises and tarsiers, so the origin and
expansion of CEAPSG genes occurred in the lineage of
anthropoid primates (5). The biological role of PSGs has not
been fully resolved. However, all human PSGs activate
transforming growth factor b1 (TGF-b1) in immune cells and
may thereby contribute to immune tolerance and vascular
remodelling [reviewed in (129)]. PSGs also stimulate
proliferation of CD4+, Fox3+ regulatory T-cells, which is
TGFb1-dependent, further supporting a role in maternal
tolerance of pregnancy (46, 130). Human PSGs have a highly
conserved RGD peptide motif and bind to integrin a5b1. Since
both PSGs and integrin a5b1 are expressed by extravillous
trophoblasts, it has been suggested that PSGs can promote
trophoblast invasion of the uterine decidua (131).

4.1.2 Galectins
Seven galectins are expressed by the trophoblast of human
placenta (132). Of particular interest is a cluster of genes on
chromosome 19 unique to anthropoid primates and absent in
tarsier, greater galago (Otolemur garnetti) and grey mouse lemur
(Microcebus murinus) (133). There is variation between species.
However, particular interest attaches to LGALS13 found in
catarrhines (Old World monkeys and apes), because the gene
product (galectin-13 or PP13) is secreted from the villus
syncytiotrophoblast to the intervillous space and reaches the
uterine decidua. In first trimester human pregnancies, aggregates
of galectin-13 are found in necrotic zones close to the decidual
veins. These appear to attract, activate, and induce apoptosis of
maternal immune cells that might otherwise attack invading
trophoblast (134). Intriguingly, PSG-1 is a ligand for galectin-
1 (135).

4.2 Murid Rodents
Although rodent and primate PSGs are thought to have evolved
from a CEACAM-1-like gene, the two gene families arose
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independently through convergent evolution. Orthologous
genes are found only within rodents (mouse and rat) or
primates (human and baboon) (136). The Psg locus of the
mouse comprises 17 genes and has been explored in detail
(137). The rat Psg locus has evolved less rapidly and includes
eight genes (136). Trophoblast giant cells express Psg22 in the
first half of mouse pregnancy, whereas the spongiotrophoblast
expresses Psg16, Psg21 and Psg23 in the second half (138). Mouse
Psg23 can activate latent TGFb1 (139) and likely increases the
availability of regulatory T-cells, as shown by administering
recombinant human PSG1 to mice (140).

PSGs do not occur in the guinea pig (6), but have not been
sought in other rodents so it is not known if they evolved in the
murid lineage or a deeper branch.

4.3 Equids
In the horse, PSGs evolved through expansion from a
CEACAM1-like ancestral gene to a cluster of some 17 genes
coding for secreted proteins (141, 142). Five are known to be
expressed in the trophoblast of the endometrial cups (142). As
mentioned above, the cups are formed by invasive trophoblast
and are responsible for secretion of eCG. The endometrial
stroma surrounding the cups is heavily infiltrated by CD4+
and CD8+ T-cells as well as by macrophages and natural killer
cells (143, 144), yet the cups survive until at least 100 days of
gestation. Immunosuppression by secreted PSGs is a plausible
hypothesis (142). It is thought that regulatory T-cells play a role
in tolerance of the invasive trophoblast (145). Since at least one
of the equine PSGs can activate TGFb1, they may contribute to
differentiation of regulatory T-cells (146) as shown for human
and mouse (130). PSG expression has not been examined beyond
36 days (142) and it would be interesting to know if the putative
protection is withdrawn at a later stage when the cups become
necrotic and eventually are sloughed off. It is not known if PSGs
occur in other perissodactyls, such as tapirs and rhinoceroses.

4.4 Bats
Chiroptera is the most speciose order after rodents. Based on
molecular and morphological evidence it can be divided into two
clades: Yinpterochiroptera includes megabats and six families of
echo-locating bats; the remaining orders constitute
Yangochiroptera (147, 148). Expansion of CEACAM genes has
occurred in Yinpterochiroptera, but CEAPSG-like genes have
been found only in three families of Yangochiroptera (149). One
cluster of putative PSG genes occurs in the Natal long-fingered
bat (Miniopterus natalensis), the common moustached bat
(Pteronotus parnellii) and four species of vesper bat. A second
cluster is restricted to the vesper bats. It must be stressed that bat
PSGs were identified from genomic data. Further evaluation will
require demonstration of placental expression of these genes.
5 DISCUSSION

The most remarkable thing about placental peptide and protein
hormones is that each is restricted to a rather narrow group of
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mammals. Only ancient PAGs occur throughout an entire
order (Table 2). Apparent similarities, as between humans
and rodents, are the result of convergent evolution. Thus,
placental lactogens were derived either from growth hormone
or prolactin. They have some properties in common but
significant differences that may be related to pregnancy
duration. Before considering the implications for animal
models, we shall consider gene duplications and the
subsequent expansion to multigene families.

5.1 Gene Duplication
Placental protein hormones evolved through duplication of
existing genes including those coding for pituitary hormones
(Table 2). Gene duplication often is preceded by a burst of rapid
change in nucleotide sequence (87, 150). These bursts can be
interpreted as reflecting adaptation of the gene product for a new
function, alternating with reversal towards the original function.
Repeated cycles of change would lead to accumulation of
substantial changes. The process would end once gene
duplication allowed a second protein to adopt the new
function (87).

5.2 Multigene Families
After initial duplication, the genes of many placental hormones
have undergone further expansion to create multigene families.
This is a contrast to adult hormones, which usually are encoded
by a single gene (6). One explanation has been formulated in
terms of parent-offspring conflict; a hypothesis based on
conflicting priorities for allocation of maternal resources to the
offspring. Paternal genes evolve to promote nutrient supply and
improve survival of the neonates, while maternal genes evolve to
Frontiers in Endocrinology | www.frontiersin.org 8
conserve maternal resources for subsequent pregnancies. These
ideas were developed to explain the evolution of placental
lactogens and their receptors (151). Parent-offspring conflict
has also been suggested as a plausible explanation for the
expansion of PSG genes in human (eleven genes), mouse
(seventeen), and horse (seven genes) (6). It has also been
alluded to with respect to the multigene family of PAGs (119).

An alternative hypothesis suggests that bursts of rapid
evolution in genes and their repeated duplication reflect the
arms race between pathogens and their mammalian hosts. After
decades of research on the evolution of growth hormone,
prolactin and their receptors, Wallis concluded this to be a
plausible explanation for his findings (150). He hypothesized
that viruses could gain access to cells by binding to these
hormones and then be internalized with the hormone-receptor
complex. Thus, the hormones would evolve rapidly to hinder
binding of the virus. Gene expansion, as seen with placental
lactogens and their kin, would result in multiple species that
could act as viral decoys. Human PL reaches very high levels in
the second half of gestation, 100 times greater than GH in
nonpregnant humans, yet its physiological significance remains
unclear. However, a high concentration of hPL would decrease
the odds of a virus fastening to a molecule that was to be
internalized after receptor binding. The downside to this
hypothesis is that viruses capable of binding to growth
hormone or prolactin have yet to be identified (150, 152).

Here it is worth noting that CEACAMs are thought to act as
decoy receptors and PSGs may act in a similar fashion, so this is
an alternative explanation for expansion of PSG gene loci (149).
However, as with the PL locus, there is no clear evidence that
PSGs bind to microorganisms (6).
TABLE 2 | Protein hormones secreted by the placenta that evolved through gene duplication.

Hormone Derivation Distribution

Interferon-t (IFNT) Interferon-w
(IFNW)

Pecoran ruminants (Infraorder)

Placental lactogens (hCS-A and hCS-B in human) Growth hormone
(GH)

Anthropoid primates (Infraorder) with separate trajectories in New World monkeys (Parvorder)
and Old World monkeys plus apes (Parvorder)

Placental growth hormone (GH2-Z) Growth hormone
(GH2-N)

Sheep and goat (Family)

Placental lactogens (e.g., PL-I (Prl3d1) and PL-2
(Prl3b1) in mouse and rat)

Prolactin (PRL) Murid and cricetid rodents (Families with common root)

Placental lactogens (e.g. CSH2 in cattle) and
prolactin-like proteins

Prolactin (PRL) Ruminants (Suborder)

Chorionic gonadotropin b-subunit (e.g., CGB1 in
human)

LH b-subunit
(LHB)

Anthropoid primates (Infraorder)

Chorionic gonadotropin b-subunit (eCGb in horse) LH b-subunit
(LHB)

Equids (Family); evolution without gene duplication

Pregnancy-specific glycoproteins (CEAPSGs) CEACAM-1-like
gene

Anthropoid primates (Infraorder)

Pregnancy-specific glycoproteins (CEAPSGs) CEACAM-1-like
gene

Murid rodents (Family)

Pregnancy-specific glycoproteins (CEAPSGs) CEACAM-1-like
gene

Equids (Family)

Pregnancy-specific glycoproteins (CEAPSGs) CEACAM-1-like
gene

Bats (Some families of Suborder Yangochiroptera)

Pregnancy-associated glycoproteins (PAGs) An aspartic
proteinase

Artiodactyls (Order) but “new PAGS” confined to ruminants (Suborder)
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5.3 Genomic Imprinting
Fetal growth is regulated by the insulin-like growth factor system
with IGF2 as a key factor (67). IGF2 is expressed in the adults of
most amniotes (reptiles, birds and mammals), including human
(153), whereas in mouse and rat Igf2 is expressed in placenta but is
largely absent in adults. Both IGF2 and theM6P/IGF2R receptor are
imprinted genes in most mammals including marsupials (154). In
mice the phenotype of the conceptus, including the trophoblast, is
determined by the paternal allele of Igf2 and the maternal allele of
Igf2r. This reciprocal imprinting has been interpreted in terms of
parent-offspring conflict: the kinship theory of genomic imprinting
(155). It has limited application to human pregnancy as imprinting
ofM6P/IGF2Rwas lost in the lineage of primates, colugos and tree
shrews (156).

5.4 Implications for Animal Models
No gene for human placental protein hormones has orthologous
genes in mammals other than anthropoid primates. That does
not mean that findings in animal models are without merit for
understanding the role of placental hormones in human
pregnancy. However, hypotheses generated from models need
to be verified in clinical studies or further explored in nonhuman
primates (81).

5.4.1 Placental Growth Hormones and Lactogens
Placental lactogens and growth hormones arose through
duplication of the genes for pituitary prolactin and growth
hormone. They act through similar receptors, i.e., prolactin
receptor (PRLR) and growth hormone receptor (GHR). The
receptor genes have not undergone duplication, although they
did evolve rapidly in parallel with GH and PRL (87, 151).
Therefore, it may be supposed that the placental lactogens of
ruminants, rodents, and primates act through similar pathways
to effect changes in nutrient availability and maturation of the
mammary glands. On the other hand, the most pronounced
effects on metabolism and mammary development during
human pregnancy are exerted by the placental variant of GH
rather than by hPL. Other than anthropoid primates, only sheep
and goat have been shown to have a placental growth hormone;
it acts locally to promote growth of the uterine glands (117).

The primary function of rodent PLs is to maintain CL function
and, acting through the PRL receptor, to promote differentiation
of the mammary glands. Although rodent PLs and related proteins
have a range of actions, none have such fundamental effects on
maternal metabolism as the GH secreted by human placenta.
Other products of the gene locus seem not to bind to the PRL
receptor but act through non-classical pathways (92). PLs of
ruminants stimulate secretion of histotroph from the uterine
glands (103). This is important since some substances do not
readily cross the epitheliochorial placenta. Uterine gland
secretions are rich in uteroferrin, which is taken up by the
trophoblast and is an essential source of iron. In addition,
ruminant PLs may play a role in mammary gland development.
Since it is by no means clear that PLs have evolved to serve the
same functions in primates, rodents, and ruminants, extreme care
is needed in extrapolating across species.
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A further qualifier applies to mouse and rat models. Murid
rodents have brief gestations and large litters of poorly developed
(altricial) pups. Primates and ruminants have much longer
gestations usually with singletons that are well-developed
(precocial) at birth (81). Therefore, there is a stretch of several
months where placental hormones might regulate maternal
physiology in primates and ruminants with no equivalent
period in rodents.

5.4.2 Pregnancy-Specific Glycoproteins
PSGs are derived from the carcinoembryonic gene family rather
than from pituitary hormones. It is nonetheless remarkable that
PSGs have evolved separately in four orders of mammal. Cross-
species comparisons should be valuable in determining whether
their primary role is to promote trophoblast invasion or to act as
viral decoys. Although CEACAMs do act as viral decoys, there is
no evidence that PSGS bind to microorganisms (6). The case is
stronger for a role in immune tolerance of the invading
trophoblast, especially in humans where PSGs, acting through
TGFb1, induce proliferation of regulatory T-cells in the uterus
(46, 130). There is growing evidence for a similar mechanism in
rodents (140) and there could be a link between PSG expression
by the endometrial cups of the horse and the presence of
regulatory T-cells in their vicinity (145).
6 CONCLUSIONS

The placenta expresses a variety of hormones that can affect
maternal physiology and fetal development (3). This review has
focussed on placental hormones that originated through
duplication of existing genes such as those coding for pituitary
hormones (Table 2). There are several instances of convergent
evolution and expansion of gene loci after the initial duplication.
Many of the gene products are found at high concentration in
maternal blood.

Least contentious in a physiological context are placental
hormones responsible for pregnancy recognition and
maintenance of the corpus luteum. These include INFT in
ruminants, hCG in anthropoid primates, eCG in equids and
PLs in murid and cricetid rodents.

There could be a common purpose to the convergent
evolution of PSGs in 4 orders of mammal. It is notable that
human PSGs and murine Psg23 can activate TGFb1 and thereby
promote proliferation of regulatory T-cells. It has yet to be
demonstrated conclusively that the primary function of PSGs
is immunosuppression and promotion of trophoblast invasion.
However, this is an active area of research (6).

The role of the placental variant of GH in human pregnancy is
clear. It reprogrammes maternal metabolism and ensures an
adequate supply of glucose to the fetus. A placental GH has been
convergently evolved in one family of ruminants where it may
play a role in development of the uterine glands.

More perplexing is the significance of placental lactogens.
Human PL is secreted at high levels and, though derived from a
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GH gene, shows greater affinity for the PRL than the GH receptor.
Yet it seems less important for mammary gland development than
pituitary PRL (74). In ruminants, there is some evidence that oPL
and bPL affect mammary development, but they play a more
important role in uterine gland development and secretion of
histotroph. In rodents PLs are mainly important for pregnancy
maintenance. An additional complication is the expansion of the
PRLgene loci in rodents and ruminants.Many of the gene products
seem toact throughnon-classical pathways (92).Thus, caremust be
taken in extrapolating work on ruminant and rodent prolactins to
human pregnancy.
Frontiers in Endocrinology | www.frontiersin.org 10
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