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Supercapacitors (SCs) have attracted widespread attention due to their short

charging/discharging time, long cycle life, and good temperature characteristics.

Electrolytes have been considered as a key factor affecting the performance of SCs.

They largely determine the energy density based on their decomposition voltage and the

power density from their ionic conductivity. In recent years, redox electrolytes obtained

a growing interest due to an additional redox activity from electrolytes, which offers an

increased charge storage capacity in SCs. This article summarizes the latest progress

in the research of redox electrolytes, and focuses on their properties, mechanisms,

and applications based on different solvent types available. It also proposes potential

solutions for how to effectively increase the energy density of the SCs while maintaining

their high power and long life.
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INTRODUCTION

Supercapacitors (SCs) are a new type of energy storage equipment filling the gap between secondary
batteries and traditional capacitors (Hui et al., 2019; Poonam et al., 2019; Zhi-yu et al., 2019;
Alipoori et al., 2020; Cheng et al., 2020; Iqbal et al., 2020; Li and Liang, 2020; Mohd Abdah et al.,
2020; Panda et al., 2020; Yi et al., 2020). SCs are believed to be one of the most promising candidates
due to their fast charging/discharging capability, long cycle life, high power density, and high
safety (Zhang W. et al., 2017; Zhang et al., 2018; Afif et al., 2019). In the course of decades of
their development, the research on SCs has mainly focused on the preparation and modification
of electrode materials to improve capacity (Zhao and Zheng, 2015). As an important part of SCs,
electrolytes provide ionic conductivity and promote the charge compensation of electrodes (Wang
Y. et al., 2016), so the performance of the SCs is determined by the electrolyte together with the
electrode material. The electrolyte has two key parameters: (1) Electrochemical stability window.
If the electrode material doesn’t undergo any decomposition reaction within the voltage range
of the SCs, then the output voltage of the device largely depends on the decomposition voltage
of the electrolyte (Schütter et al., 2016). (2) Ionic conductivity. It affects the dynamic process and
determines the rate capability of the SCs. It is related to the number of carriers, the ionic charge, and
carrier mobility. The SCs electrolytes mainly have the following types: aqueous electrolytes, organic
electrolytes, ionic liquid electrolytes, all solid electrolytes, gel electrolytes, and redox electrolytes
(Panda et al., 2020). Several reviews concerning electrolytes for SCs have been published previously
(Zhao and Zheng, 2015; Zhong et al., 2015; Pal et al., 2019; Li et al., 2020). However, none of
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the previous reviews concentrated on the dependence of
properties, mechanisms, and applications of redox electrolytes on
the different solvent types available.

Redox electrolytes are a specific type of electrolyte, in which
redox active species were added. They can greatly increase the
electrochemical performance of SCs for two reasons: (1) The
electrolyte additive is an active part of the SCs in redox reactions
during charge and discharge processes (Sankar and Selvan, 2015;
Sun et al., 2015b; Fan et al., 2016; Wang C. et al., 2016). (2)
The redox reactions in the electrolyte are conducive to electron
transfer between the electrode material and the redox species
in the electrolyte (Dai et al., 2016; Vlad et al., 2016; Gao et al.,
2017; Mourad et al., 2017; Xiong et al., 2017). This review
mainly summarizes the latest research results of various redox
electrolytes based on aqueous, organic, ionic, and gel solvents.

REDOX MEDIATED AQUEOUS
ELECTROLYTES

Aqueous electrolytes can be divided into three types:
acidic, alkaline, and neutral solutions. As a commonly used
electrolyte, sulfuric acid aqueous solution not only has high
ion conductivity/concentration but also low equivalent series
resistance. Therefore, adding redox additives to sulfuric acid
aqueous solution is a good way to optimize the electrolyte and
improve the performance of SCs. Some typical redox additives
contain KI (Zhang Y. et al., 2017; Gao et al., 2018), Na2MoO4

(Xu et al., 2017a), Ce2(SO4)3 (Díaz et al., 2015), Fe
3+/Fe2+ (Ren

et al., 2017), viologen substances (Sathyamoorthi et al., 2016),
1,4-dihydroxyanthraquinone (Xu et al., 2017b), hydroquinone
(HQ) (Pham et al., 2015; Chen and Lin, 2019), and so on.

Generally, the energy density based on multiple redox
additives is higher than that based on a single redox additive
in aqueous electrolytes (Lee et al., 2016b; Teng et al., 2016).
When using mixed electrolytes, their ratio is a key factor
for the performance of SCs. Xu et al. (2017a) adjusted the
overlapping redox voltage windows by the ratio of Na2MoO4

to KI. The optimal system (Na2MoO4: KI = 1:1) shows
higher capacitance (the capacitance increased by 17.4 times)
and better rate performance than other systems (Na2MoO4:
KI 6= 1:1) due to a synergistic effect between Na2MoO4 and
KI. Sathyamoorthi reported on a viologen-based redox active
electrolyte, in which the redox behavior of bromide and 1,1′-
diethyl-4,4′-bipyridinium ions boosted both anode and cathode
performance (Sathyamoorthi et al., 2016). Interestingly, the
specific capacitance of the SCs increases continuously during the
charge and discharge cycle, and a 30% increase is observed at
the end of the 1,000 cycles. Hu et al. (2017) reported on redox
additives 4-hydroxybenzoic acid (HBA), 3,4-dihydroxybenzoic
acid (DHBA), and 3,4,5-trihydroxybenzoic acid (THBA) in
H2SO4. SCs with HBA and DHBA exhibit higher capacitances
because of their functional hydroxyl groups in the benzene ring.

For alkaline electrolytes, K3Fe(CN)6 (Veerasubramani et al.,
2016; Lamiel et al., 2017) and p-phenylenediamine (PPD) (Zhang
et al., 2015) can improve the capacitance and stability of the
SCs. Zhang et al. (2015) introduced PPD into KOH electrolytes

to form a PPD-KOH electrolyte. As expected, the specific
capacitance of the carbon sample in the PPD-KOH electrolyte
was larger (501.4 F g−1 at 3A g−1) than that of SCs using an
electrolyte without PPD (119.2 F g−1 at 3A g−1). Fic et al. (2015)
demonstrated a new capacitor concept in which the positive
electrode works in a KI solution and the negative electrode works
in a KOH electrolyte. Because of the redox reactions of I−/I2, the
capacitance and energy density of the SCs is improved.

For neutral electrolytes, K3Fe(CN)6 (Lee et al., 2016a), KI
(Singh and Chandra, 2016) and other additives with redox
properties (Chun et al., 2015) are usually added. Chun et al.
(2015) found that a high energy density of about 14 Wh kg−1

was obtained under methyl viologen (MV)/bromide electrolytes
due to the redox reactions of Br−/Br−3 and MV2+/MV+. The
stability was improved by substituting heptyl viologen (HV) for
MV and did not degrade after 20,000 cycles. It is believed that this
electrolyte system will gain a foothold in future advanced energy
storage applications.

Despite making considerable progress, the low decomposition
voltage of water (1.23V) leads to a poor energy density of SCs
(Yi et al., 2020). It is also reported that the cycle performance of
SCs will deteriorate after adding redox additives to the aqueous
electrolytes (Chodankar et al., 2016; Singh and Chandra, 2016).
This is mainly because a strong redox reaction occurs at the
electrode/electrolyte interfaces, which will affect the electroactive
site to a certain extent (Chodankar et al., 2016).

REDOX MEDIATED ORGANIC
ELECTROLYTES

In order to increase the energy density, an organic electrolyte
with a wide electrochemical stability window (around 3V) is a
good choice (Zhao and Zheng, 2015). The organic system consists
of organic solvents and conductive salts. Propylene carbonate
(PC) (Li et al., 2015; Salunkhe et al., 2016) and acetonitrile (AC)
(Dall’Agnese et al., 2016; Jäckel et al., 2016; Singh and Chandra,
2016; Yang et al., 2017) are the most commonly used solvents in
SCs. Tetraethyl ammonium tetrafluoroborate (TEABF4) (Li et al.,
2015; Jäckel et al., 2016; Salunkhe et al., 2016; Singh and Chandra,
2016; Yang et al., 2017) and LiPF6 (Xie L. et al., 2016) are the most
commonly used salts in SCs.

Kim et al. (2016) reported a high-performance flexible
microcapacitor, which employed a poly(methyl methacrylate)-
propylene carbonate-lithium perchlorate (PMMA-PC-LiClO4)
electrolyte with hydroquinone (HQ) redox additive. The
operating voltage of this system is up to 1.2V, which is better
than that of other flexible SCs under HQ-PVA-H2SO4 and
PPD-PVA-KOH electrolytes (both below 1V). The volumetric
capacitance increased 35-fold due to the reversible redox reaction
between hydroquinone (HQ) and benzoquinone (BQ). Also, a
flexible SC with an extended operating voltage of 1.5 V, a specific
capacitance of up to 363 F g−1, and an energy density of 27.4 Wh
kg−1 was obtained under an organic electrolyte with ferrocene
and 4-oxo-2, 2, 6, 6-tetramethylpiperidinooxy additive, due to
the wide voltage of the organic electrolyte and the additional
faraday capacitance from the redox mediator (Zhang et al.,
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2016). Dall’Agnese et al. (2016) studied the electrochemical
behavior of two-dimensional titanium carbide (MXene)
in acetonitrile solution with 1-ethyl-3-methylimidazolium
bis(trifluoromethylsulfonyl)imide (EMITFSI) additive. The
capacitance of 85 F g−1 was obtained at 2mV s−1, while a high
rate capability and good cyclability appeared. Through in-situ
X-ray diffraction studies, it was found that EMI+ cations are
embedded in MXene, which results in increased capacitance.

REDOX MEDIATED IONIC LIQUID
ELECTROLYTES

Ionic liquids are generally composed of a bulky, asymmetric
organic cation and a weakly coordinating inorganic/organic
anion, which shows a wide electrochemical window (generally
above 3.5V), high electrochemical stability, good oxidation
resistance, and so on (Brandt et al., 2013). In recent years, it was
discovered that Quinones are excellent redox electrolyte additives
in ionic liquid electrolytes. The introduction of hydroquinone
(HQ) (Dubal et al., 2015; Sathyamoorthi et al., 2015; Xu et al.,
2015) and benzoquinone (BQ) (Navalpotro et al., 2016) into the
electrolyte as organic redox shuttles leads to low charge transfer
resistance and contributes to the improvement of the specific
capacitance and specific energy of SCs.

In addition, it is reported that the addition of tin sulfate
(SnSO4) and vanadium sulfate (VOSO4) (Lee et al., 2016b) to
the ionic liquid electrolyte can also significantly improve the
overall performance of the SCs. Xie H. J. et al. (2016) reported
two redox ionic liquids, [FcEIm][NTf2] and [EMIm][FcNTf],
which were prepared by modifying either the [EMIm] cation or
the [NTf2] anion with ferrocene. Based on [EMIm][FcNTf], the

energy density is as high as 13.2Wh kg−1, while the self-discharge
at the positive electrode is fully suppressed due to the deposition
of a film on the electrode. It can be seen that redox-mediated ionic
liquid electrolytes are promising alternatives to conventional
electrolytes. However, the problems of liquid electrolyte leakage
and corrosion in liquid electrolytes have severely limited its
application (Ma et al., 2015).

REDOX MEDIATED GEL ELECTROLYTES

GEL is a special material between liquid and solid, which
exhibits the flexibility and stability of solid and the easy diffusion
of liquid (Zhi-yu et al., 2019). It has a series of advantages
such as a higher ionic conductivity than solid electrolytes and
good mechanical and chemical stability, etc., which makes it a
promising electrolyte (Batisse and Raymundo-Piñero, 2017; Qin
and Panzer, 2017; Hui et al., 2019; Li et al., 2019). Recently, a
novel redox-mediated strategy for SCs was reported, which can
efficiently increase the ionic conductivity and produce additional
capacitance by the quick reversible redox reaction introduced by
the redox mediator (Alipoori et al., 2020). The redox additives
in gel polymer electrolytes usually include indigo carmine (IC)
(Ma et al., 2015), 2-mercaptopyridine (PySH) (Pan et al., 2015),
1-butyl-3-methylimidazolium iodide (BMIMI) (Tu et al., 2018),
alizarin red S (ARS) (Sun et al., 2016), FeBr3 (Wang et al., 2019),
1,4 Naphthoquinone (Hashemi et al., 2018), 1-anthraquinone
sulfonic acid sodium (AQQS) (Feng et al., 2016) and 1-ethyl-3-
methylimidazolium tetrafluoroborate ([EMIM]BF4) (Seok Jang
et al., 2016).

The redox-mediated gel polymer electrolyte (PVA-H2SO4-IC)
was prepared by adding indigo carmine (IC) to a mixture of

FIGURE 1 | (A) The fabrication model of the SCs with PVA-H2SO4-ARS electrolyte, (B) double-layer formation and redox reaction on the carbon surface, (C) CV

curves for the SCs at 10mV s−1, (D) Ragone plots of the SCs with PVA-H2SO4-ARS electrolyte, (E) cyclic performances of the SCs with PVA-H2SO4-ARS electrolyte

at 1 A g−1. Reproduced by permission of The Royal Society of Chemistry from Sun et al. (2016).
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polyvinyl alcohol (PVA) and sulfuric acid (H2SO4). Its ionic
conductivity is increased by 188%, reaching 20.27mS cm−1. Due
to the reversible redox reaction of the IC, the specific capacitance
of the device was increased by 112.2% (382 F g−1), and the
energy density also increased to 13.26 Wh kg−1. It also shows
excellent cycling stability (80.3% capacitance retention after
3,000 cycles) (Ma et al., 2015). When alizarin red S (ARS) was
added into polyvinyl alcohol-sulfuric acid (PVA-H2SO4), a new
type of electrolyte (PVA-H2SO4-ARS) was obtained (Figure 1).
Its conductivity reached 33.3mS cm−1, due to ARS acting as
a redox shuttle in the electrolyte. Compared with ARS-free
SCs (160 F g−1 at 0.5 A g−1), the specific capacitance of SCs
using a PVA-H2SO4-ARS gel polymer electrolyte is larger (441 F
g−1 at 0.5 A g−1). At the same time, its energy density is as
high as 39.4 Wh kg−1 and it has a good cycling stability.
Therefore, the redox-mediated electrolyte has a good application
prospect in improving the electrochemical performance of SCs
(Sun et al., 2016).

Sun et al. (2015a) prepared a redox-mediated gel polymer-
polyvinyl alcohol-orthophosphate 2-mercaptopyridine (PVA-
H3PO4-PySH) by introducing PySH into PVA-H3PO4. The ionic
conductivity of the PVA-H3PO4-PySH system was increased
by 92% to 22.57mS cm−1. As a result, a high specific
capacitance (1,128 F g−1) and energy density (39.17 Wh kg−1)
were obtained. These improved properties are attributed to
the redox reaction between PySH and 2,2′-bipyridine redox
couple in PVA-H3PO4-PySH (Ye et al., 2018). These results
undoubtedly indicate that redox-mediated gel polymers are
promising electrolyte candidates for advanced flexible SCs
(Aljafari et al., 2019).

Although redox electrolytes have greatly contributed to the
improvement of the performance of SCs, it’s worth noting
that self-discharge (SD) is a fatal weakness for most redox
electrolytes. So, many pieces of research have focused on
this problem recently. Fan et al. (2020) lowered self-discharge
and improved energy density and cycling stability (capacitance

TABLE 1 | Redox electrolyte-based SCs and their performance (Mai et al., 2013; Park et al., 2014; Yu et al., 2014; Díaz et al., 2015; Sathyamoorthi et al., 2015; Zhang

et al., 2015; Kim et al., 2016; Navalpotro et al., 2016; Seok Jang et al., 2016; Singh and Chandra, 2016; Xie H. J. et al., 2016; Mousavi et al., 2017; Ren et al., 2017; Gao

et al., 2018; Tu et al., 2018; Wang et al., 2019).

Redox additives Supporting

electrolyte

Capacitance Energy density

(Wh kg−1)

Cycling stability

Redox mediated aqueous

electrolytes

KI H2SO4 203–616 F g−1 at 1A g−1 — 77.3% capacitance

retention after 5,000 cycles

Ce2(SO4)3 H2SO4 408 F g−1 at 17.7mA

cm−2

1.24–13.84 94% capacitance retention

after 3,000 cycles

0.8M Fe3+/Fe2+ H2SO4 1,062 F g−1 at 2A g−1

(almost tripled)

8.3–22.1 93% capacitance retention

after 10,000 cycles

Catechol H2SO4 429–1,967 F g−1 at 1A

g−1

81.8 80% capacitance retention

after 5,000 cycles

CuCl2 HNO3 440–4,700 F g−1 at 5

mVs−1

163 99.4% capacitance

retention after 5,000 cycles

PPD KOH 119.2–501.4 F g−1 at 3A

g−1

— 85.2% capacitance

retention after 5,000 cycles

KI Li2SO4 96–198 F g−1 at 1A g−1 65 85.3% capacitance

retention after 3,000 cycles

Redox mediated organic

electrolytes

HQ PMMA 0.2–7.1 mF cm−2 at

0.1mA cm−2

— 97% capacitance retention

after 10,000 cycles

PPD LiClO4+AC 25–69 F g−1 at 0.5 A g−1 18–54 93% capacitance retention

after 5,000 cycles

DmFc TBAP+THF 8.3–61.3 F g−1 at 10A

g−1

36.8 88.4% capacitance

retention after 10,000 cycles

Redox mediated ionic

electrolytes

HQ TEATFSI 72 F g−1 at 0.57mA cm−2 18.4–31.22 84.1% capacitance

retention after 1,000 cycles

p-BQ PYR14TFSI 20–70 F g−1 at 5mA cm−2 3.5–10.3 50% capacitance retention

after 1,000 cycles

Ferrocene [EMIM] [NTf2] — 7.2–13.2 —

Redox mediated gel

electrolytes

FeBr3 H2SO4+PVA 204–885 F g−1 33.9 100% capacitance retention

after 10,000 cycles

BMIMI Li2SO4+PVA 139.1–384 F g−1 at 0.25A

g−1

10.4–29.3 80.9% capacitance

retention after 10,000 cycles

[EMIM]BF4 H3PO4+ PVA 103–271 F g−1 at 0.5 A

g−1

20.7–54.3 70% capacitance retention

after 3,000 cycles

EVD, ethyl viologen dibromide; AQDS, anthraquinone-2,7-disulphonate; PMMA, poly (methyl methacrylate); DmFc, decamethylferrocene; TBAP, tetrabutylammonium perchlorate;

THF, tetrahydrofuran; TEATFSI, triethylammonium bis(trifluoromethane)sulfonamide; p-BQ, para-benzoquinone; PYR14TFSI, N-butyl-N-methyl pyrro lidinium bis(trifluoromethanesulfonyl)

imide; [EMIM][NTf2 ], 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide.
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retention 87.9% after 10,000 cycles) by the addition of Li2SO4-
BMIMBr-carbon nanotubes in the PVA solution, in which the
3D carbon nanotubes networks provide fast ion transmission
channels. Chen et al. (2014) blocked the migration of the
active electrolyte between two electrodes and suppressed the
self-discharge though inhibiting BQ shuttle with Nafion R©177
membrane or suppressing shuffle effect with a CuSO4 active
electrolyte. It is believed that these results will guide the further
design of SCs with both a high energy density and good
energy retention.

In the end, a table (Table 1) was given, in which several typical
redox electrolyte-based SCs are summarized and compared
for clarity.

CONCLUSIONS AND PERSPECTIVES

Each redox electrolyte has its own advantages and disadvantages.
The two most important criteria for selecting an electrolyte are
the operating voltage and the ionic conductivity. The higher
the operating voltage and the ionic conductivity is, the greater
the energy density and power density of the SCs. In order to
further develop high-performance SCs electrolytes and improve

the overall performance of SCs, we can start from the following
aspects: (1) The introduction of redox active materials that
can produce reversible redox reactions in the electrolyte is
an effective way to increase the capacity and energy density
of SCs; (2) Investigating the interaction mechanism between
the electrode material and the electrolyte, and optimizing the
matching relationship between them. Taken together, these redox
electrolytes pave the way for high-performance SCs applications.
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