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Abstract

Deep brain stimulation (DBS) is an established clinical therapy, and directional DBS elec-

trode designs are now commonly used in clinical practice. Directional DBS leads have the

ability to increase the therapeutic window of stimulation, but they also increase the complex-

ity of clinical programming. Therefore, computational models of DBS have become available

in clinical software tools that are designed to assist in the identification of therapeutic set-

tings. However, the details of how the DBS model is implemented can influence the predic-

tions of the software. The goal of this study was to compare different methods for

representing directional DBS electrodes within finite element volume conductor (VC) mod-

els. We evaluated 15 different DBS VC model variants and quantified how their differences

influenced estimates on the spatial extent of axonal activation from DBS. Each DBS VC

model included the same representation of the brain and head, but the details of the current

source and electrode contact were different for each model variant. The more complex VC

models explicitly represented the DBS electrode contacts, while the more simple VC models

used boundary condition approximations. The more complex VC models required 2–3 times

longer to mesh, build, and solve for the DBS voltage distribution than the more simple VC

models. Differences in individual axonal activation thresholds across the VC model variants

were substantial (-24% to +47%). However, when comparing total activation of an axon pop-

ulation, or estimates of an activation volume, the differences between model variants

decreased (-7% to +8%). Nonetheless, the technical details of how the electrode contact

and current source are represented in the DBS VC model can directly affect estimates of the

voltage distribution and electric field in the brain tissue.

1. Introduction

Deep brain stimulation (DBS) is an established therapy for the treatment of movement disor-

ders and shows promise for the treatment of neuropsychiatric disorders [1]. Clinical DBS tech-

nology is advancing with the introduction of new electrode designs [2]. Traditional DBS leads

consisted of four cylindrical electrode contacts, whereas newer directional leads segment the

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0260162 December 15, 2021 1 / 13

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Frankemolle-Gilbert AM, Howell B, Bower

KL, Veltink PH, Heida T, McIntyre CC (2021)

Comparison of methodologies for modeling

directional deep brain stimulation electrodes. PLoS

ONE 16(12): e0260162. https://doi.org/10.1371/

journal.pone.0260162

Editor: Thippa Reddy Gadekallu, Vellore Institute of

Technology: VIT University, INDIA

Received: May 17, 2021

Accepted: November 3, 2021

Published: December 15, 2021

Copyright: © 2021 Frankemolle-Gilbert et al. This is

an open access article distributed under the terms

of the Creative Commons Attribution License,

which permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The voltage

distribution solutions for each DBS VC model are

available here: https://github.com/annekegilbert/

directionalDBSmodel The axon model used for the

activation threshold calculations is available here:

https://senselab.med.yale.edu/ModelDB/

ShowModel?model=3810#tabs-1.

Funding: This work was supported by grants from

the National Institutes of Health (P50 NS098573;

R37 NS116079) The funders had no role in study

https://orcid.org/0000-0003-0724-8087
https://orcid.org/0000-0002-1796-9999
https://orcid.org/0000-0003-0932-854X
https://doi.org/10.1371/journal.pone.0260162
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0260162&domain=pdf&date_stamp=2021-12-15
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0260162&domain=pdf&date_stamp=2021-12-15
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0260162&domain=pdf&date_stamp=2021-12-15
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0260162&domain=pdf&date_stamp=2021-12-15
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0260162&domain=pdf&date_stamp=2021-12-15
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0260162&domain=pdf&date_stamp=2021-12-15
https://doi.org/10.1371/journal.pone.0260162
https://doi.org/10.1371/journal.pone.0260162
http://creativecommons.org/licenses/by/4.0/
https://github.com/annekegilbert/directionalDBSmodel
https://github.com/annekegilbert/directionalDBSmodel
https://senselab.med.yale.edu/ModelDB/ShowModel?model=3810#tabs-1
https://senselab.med.yale.edu/ModelDB/ShowModel?model=3810#tabs-1


cylindrical band into three separate electrode contacts. These segmented electrodes show

promise in steering stimulation toward therapeutic areas and away from areas that are known

to generate side effects [3]. As such, directional DBS electrodes can increase the therapeutic

window of clinical stimulation by lowering the efficacy threshold and increasing the side effect

threshold [4].

While the technical advantages of directional DBS leads are relatively straightforward, the

clinical advantages are less obvious because the increased complexity of the lead makes it more

difficult to search the parameter space and identify an optimal therapeutic setting. Therefore,

computational models have been proposed as tools that could assist in clinical programming

[5]. Patient-specific DBS models provide insight on the neural response to the applied voltage

distribution and the modulation of different brain pathways by DBS [6]. These computational

tools have also been used to guide the surgical targeting [7] and clinical programming of DBS

therapy [8].

Computational models of DBS generally rely on finite element methods (FEM) to solve for

the voltage distribution in the brain from the DBS pulses [9]. The model used to solve for the

DBS voltage distribution is known as a volume conductor (VC) model. The voltage distribu-

tion results from the VC model can then be coupled to neuron models (typically axons) to

quantify a simulated biophysical response to DBS [10]. The coupled VC-neuron simulation is

known as a field-cable model. One drawback of DBS field-cable models is that they are rela-

tively complicated and computationally demanding. Therefore, more simplified metrics like

an electric field isosurface (e.g. 0.2 V/mm) [11], or a volume of tissue activated (VTA) calcula-

tion [12], have been proposed to provide a generalized estimate of stimulus spread. These sim-

plified metrics are derived from the DBS VC voltage distribution data, and are popular in

clinical DBS research studies [13], but carry with them a sizeable list of limitations [14].

Understanding the limitations and assumptions of a given DBS model becomes relevant

when attempting to define correlations between the simulated neural response to DBS and

actual behavioral effects measured in patients [13]. As such, DBS model development is often

seeking a balance between biophysical realism and computational simplicity, but the func-

tional optimum along that continuum is not obvious [10]. For example, previous studies have

demonstrated that the inhomogeneity, anisotropy, and permittivity of the brain tissue medium

can dramatically affect the simulated voltage distribution in DBS VC models [15]. However,

implementing those kinds of electrical details in a clinical software tool are not realistic [14].

Therefore, the common assumptions in clinical analyses are to model the brain tissue as an iso-

tropic medium and use electrostatic solutions of the DBS voltage distribution [16]. Nonethe-

less, the details of how the electrode contacts and current sources are represented in the finite

element model can also affect the voltage distribution solution [17]. A direct comparison of

implementation strategies for representing the DBS electrode contacts and current sources in

DBS VC models is not currently available in the literature. Therefore, the goal of this study was

to compare different finite element modeling methodologies to simulate current-controlled

DBS from directional electrodes.

2. Methods

2.1 Volume conductor model

A finite element human head model, based on Howell and McIntyre [18], was used to compare

the effects of using different modeling methodologies for simulating current controlled stimu-

lation with a clinical directional DBS lead (Boston Scientific 2202). Fifteen different variants of

the volume conductor (VC) model were defined, which included five different methods for

representing the current source for the active contact, and up to four different options for
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representing the DBS electrode contact (section 2.2). The voltage distribution (Ve) was calcu-

lated for each of the VC model variants by solving Laplace’s equation using the finite element

method in COMSOL Multiphysics (v5.5).

For every VC model, the DBS lead was surrounded by a 0.5 mm encapsulation layer with

an isotropic conductivity of 0.13 S/m. Each model variant also included a head domain and a

brain domain which were defined from the Multimodal Image-based Detailed Anatomical

(MIDA) model of the human head and neck [19]. The brain domain was defined as the area

between the encapsulation layer and the outer boundary of the brain. The brain tissue was

modeled as a homogeneous isotropic medium with a conductivity of 0.2 S/m. The head

domain consisted of the area between the brain and the scalp and was modeled as ten hetero-

geneous structures based on MIDA12, where each structure had its own isotropic conductivity

[18]. The outer boundary of the head was insulated except for the base of the neck, which was

set to ground.

2.2 Directional DBS lead

The directional DBS lead consisted of one cylindrical contact, six directional contacts, and one

tip contact (Fig 1). Our simulations were performed with one active contact and seven inactive

contacts. The geometry of each component of the DBS lead was either explicitly built or

defined as a boundary in the model (Table 1 and Fig 1). Explicit components existed as a

domain with assigned material properties. When modeled explicitly, the shaft was an insulator

with a conductivity of 1e-16 S/m, and the contacts were modeled as platinum/iridium with a

conductivity of 5.3e6 S/m. The boundary components were built and consequently subtracted

from the DBS lead model which resulted in external boundaries that were defined using

boundary conditions. The inactive contacts were treated as ideal conductors and modeled

Fig 1. DBS lead design. The directional DBS lead was modeled in COMSOL with either an explicitly modeled or

boundary representation for the active contact, inactive contacts, and shaft. The insets show mesh details for the

explicitly modeled lead (left) and the lead represented by boundaries (right).

https://doi.org/10.1371/journal.pone.0260162.g001
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using Robin boundary conditions, which specified that all potentials within the contact were

equal in value and that the net current flow through the surface of the contact was 0 mA.

To generate a default solution for each VC model, the active electrode contact was set as a

cathode to deliver 1 mA current. The stimulus was defined as either a point current source,

boundary current source, current density, electric potential, or floating potential. The point

current source model was implemented by placing a point source in the center of the active

contact domain. The boundary current source adds a source to the interior boundary of the

active contact domain, which requires an explicit model of the active contact. The boundary

current source was defined by a Neumann boundary condition, based on the known surface

area of the active contact. The current density source model is only applicable to exterior

boundaries, so this source requires a boundary representation of the active contact geometry.

The current density source was defined by a Neumann boundary condition of the current den-

sity on the active contact surface, based on the known surface area of the active contact. The

electric potential source model was implemented by solving the VC model twice. The model

was first solved with Dirichlet boundary conditions of 1 V at the active contact, and the output

current was calculated by integrating the current density over the surface area of the active

contact. The model was then solved a second time with a 1 mA output current by setting the

Dirichlet boundary condition as the reciprocal of the output current. The floating potential

source was implemented as an equipotential boundary by assigning a Robin boundary condi-

tion set to 1 mA. The number of options for modeling the geometry of the DBS lead as either

an explicitly modeled domain, represented as a boundary condition, or a combination of both,

depended on which method was used to represent the current source. Table 1 lists the model

variants used in this study.

The different VC models were compared with an output current of 1 mA on the active con-

tact. The active contact current was calculated by integrating the normal component of the

current density over the active contact surface (Fig 2). The formulas used for each current

Table 1. COMSOL models.

Source Geometry

Model # Active Contact Active Contact Inactive Contacts Shaft

1 Point Current Source Explicit Explicit Explicit

2 Point Current Source Explicit Explicit Boundary

3 Point Current Source Explicit Boundary Boundary

4 Boundary Current Source Explicit Explicit Explicit

5 Boundary Current Source Explicit Explicit Boundary

6 Boundary Current Source Explicit Boundary Boundary

7 Current Density Boundary Boundary Boundary

8 Electric Potential Explicit Explicit Explicit

9 Electric Potential Explicit Explicit Boundary

10 Electric Potential Explicit Boundary Boundary

11 Electric Potential Boundary Boundary Boundary

12 Floating Potential Explicit Explicit Explicit

13 Floating Potential Explicit Explicit Boundary

14 Floating Potential Explicit Boundary Boundary

15 Floating Potential Boundary Boundary Boundary

One of five current sources was used for the active contact. The DBS lead geometry was modeled with either an explicit or boundary representation for the active

contact, inactive contacts, and shaft. Inactive contacts were always modeled using a floating potential.

https://doi.org/10.1371/journal.pone.0260162.t001
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source are included as S1 Table. It should be noted that COMSOL applies the various current

source models differently (S1 Table). For example, the boundary current source adds a discon-

tinuity across the boundaries so both sides of the boundary have to be evaluated to determine

the current on the contact surface. COMSOL defaults to taking the average instead of the dif-

ference when calculating the surface current, so it is important to consider how the initial cur-

rent source is applied.

Since the current through the active contact is integrated over the contact surface it is

important that the mesh is sufficiently fine to ascertain the active contact output current equals

the input current. Additionally, the mesh on the active contact surface has to be the same for

each model variant to accurately compare the different models with each other. To accomplish

this across the VC model variants, the active electrode surface was always meshed first to gen-

erate our desired mesh, then we would mesh the remaining components of the DBS lead. A

tetrahedral mesh was used in all domains and the resolution of the mesh was chosen so that

increasing the resolution resulted in a change of less than 21% in the calculated voltage

distribution.

The insets in Fig 1 show a mesh detail for both the explicitly modeled DBS lead (left) and

the DBS lead modeled using boundary conditions (right). The more complex models explicitly

modeled the contacts and the shaft, so they had an increased mesh density overall. However,

the mesh on the surface of the contact was the same in all models. Model # 1 was considered to

be the closest to physical realism and it was therefore used as the reference case for this study

(Table 1).

2.3 Axon models

Axon models were used to estimate a neural response to the DBS voltage distribution (Fig 3).

A large population of straight axon models were orientated perpendicular to the DBS lead.

The grid of axons was centered on the active contact and distributed logarithmically with

increasing distance from the electrode (Fig 3B and 3C). A subset of the grid was rotated around

the DBS lead to capture the spatial effects of stimulation through the directional electrode con-

tacts (Fig 3D and 3E). The potential distribution from a cathodic 1 mA DBS pulse was solved

in the VC model and interpolated along each axon model as static extracellular potentials (Fig

3A). The static extracellular potentials were scaled by the time-varying stimulus waveform to

Fig 2. Active contact current density. The current density on the active contact for each of the current sources. The

inset shows a closer view of the corner area of the contact.

https://doi.org/10.1371/journal.pone.0260162.g002
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create a vector describing the extracellular potential along the axon over time for the given

stimulus pulse. A monophasic rectangular stimulus waveform of 60 μs was used in this study,

and the stimulus amplitude of the pulse was adjusted to identify the threshold for activation of

each axon model.

Each axon was simulated as a multi-compartment cable model of a myelinated axon [20],

which was defined in NEURON (v7.3) [21]. The cable model enabled calculation of the mem-

brane response to a given DBS stimulus. An axon model was deemed activated by a given stim-

ulus amplitude if the DBS pulse, which was derived from the VC model, generated an action

potential that propagated through the axon. Stimulation amplitudes were iteratively evaluated

until the activation threshold was identified for each individual axon in the population.

3. Results

There are many different ways to construct VC models for DBS leads. This study evaluated

four different contact geometry designs (Fig 1), with five different source implementations

(Fig 2). Each source implementation produced a different current density distribution on the

active contact. The current density was always higher at the edges and corners of the contacts

than in the middle of the contact, except when using a point current source (Fig 2). The point

current source exhibited a high current density at the center of the electrode contact, where

Fig 3. Axon models. Representation of the axons with respect to the DBS lead which is paced in an encapsulation

layer. The potential distribution is imposed on the axons. A. 3D view of the axon grid perpendicular to the DBS lead

and centered around the active directional contact. The YZ view (B) and XY view (C) of the DBS lead, encapsulation

layer and axon grid. A subset of the axon grid is rotated around the DBS lead. The XY view (D) and 3D view (E) show

the DBS lead, encapsulation layer and the rotated axon grid with the potential distribution imposed on the axons.

https://doi.org/10.1371/journal.pone.0260162.g003
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the point source was located, as well as a high current density at the edges and corners of the

contact.

Given that the basic purpose of DBS is to modulate neural activity, we used axonal activa-

tion as an output metric to compare the model variants. Axonal activation is dictated by the

DBS voltage distribution generated along the trajectory of the axon. Therefore, the first step in

our analysis was to compare the DBS voltage distribution applied to a grid of axons positioned

near the DBS lead (Fig 3). Fig 4 shows the differences in voltage distribution of each DBS elec-

trode model variant applied to one example grid of axons that were orientated perpendicular

to the active directional contact. These results are presented relative to the most detailed DBS

electrode model (Model #1). The greatest differences in the DBS voltage distribution were

noted with the electric potential source implementation, especially when explicitly modeled

inactive contacts were included in the model (Fig 4).

Fig 5 shows example current-distance relationships for activation of the axon models. The

results are presented for stimulation through a single active directional contact for all the DBS

electrode model variants. Activation thresholds increased as the electrode-to-axon distance

increased. We defined an activation threshold error as the difference in activation threshold of

each model axon, for each DBS electrode model variant, relative to Model #1 (Fig 5B). Differ-

ences in activation threshold compared to Model #1, as calculated for individual axons,

showed a variability that ranged from -24% to +47%.

A 3D spread of activation was calculated by rotating the axon grid around the DBS lead.

Activation was calculated as the total number of active axons, as well as an activation volume.

Fig 6 shows example results for a 1 mA 60 μs stimulus delivered through the specified electrode

Fig 4. Voltage distribution differences. Voltage distribution of all model variants relative to Model #1 imposed on a

perpendicular axon grid (Fig 3A). All models were solved with the same directional contact set as the active contact at

1 mA. The columns show the different current sources, and the rows show the different geometry presentations of the

DBS lead. N/A indicates an inapplicable combination of source and geometry representation.

https://doi.org/10.1371/journal.pone.0260162.g004
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contacts for each of the DBS electrode model variants. The errors presented in Fig 6 are the

errors compared to Model #1. In general, the errors increase with decreasing complexity in the

model’s geometry. When evaluating a summary metric like the total number of active axons in

the population, the errors are reduced to -6.6% to +7.6% (Fig 6A), which is substantially less

than the individual axon errors (Fig 5B). The activation volume is a common clinical represen-

tation for DBS activation data [12]. The activation volume metric exhibited similar trends in

the errors as seen with the total number of active axons, albeit a bit larger error for most of the

conditions we examined.

The total computation time to build, mesh, and solve each model variant increased with the

number of components on the DBS lead that were explicitly modeled. On average, it took 2.7

times longer to build, mesh, and solve a model with explicit representation of the entire DBS

lead compared to a model using boundary conditions for the DBS lead. The computation time

for the tip and cylinder contacts is on average 2.1 times longer than a directional contact

because of their larger surface areas.

4. Discussion

Volume conductor (VC) models of the DBS voltage distribution in the brain are common

tools for research on the biophysics of stimulation [9]. In addition, patient-specific DBS

Fig 5. Activation threshold. A. Current-distance relationships show the activation thresholds for all axons and all

models as a function of distance to the center of the active directional contact. B. Activation threshold error shows the

relative error in activation threshold of each model compared to Model #1.

https://doi.org/10.1371/journal.pone.0260162.g005
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models are beginning to be applied in clinical programming [8, 22, 23], as well as the in the

generation of hypotheses on which axonal pathways are associated with therapeutic benefit

from DBS [13, 24]. However, there remain a wide range of technical questions on the best

practices for building and implementing VC models of DBS. Therefore, the goal of this study

was to provide a side-by-side comparison of different approaches to DBS electrode model con-

struction (Fig 1), and evaluate the impact of using some different simplifying assumptions in

the VC models on predictions of axonal activation from DBS (Fig 3). The results demonstrate

substantial differences in the voltage distribution generated by the different DBS VC model

variants (Fig 4), which affected individual axonal thresholds (Fig 5). However, the impact of

those differences on summary metrics like a generalized activation volume were relatively

small (Fig 6). Therefore, the level of model detail that would be appropriate for a specific

DBS research project is likely to be dependent on the specific question being addressed. None-

theless, the results of this study provide information on the technical details and modeling

Fig 6. Stimulation spread and computation time. The spread of activation for a 1 mA threshold is calculated as the

number of active axons (A) and as activation volume (B) for the tip contact, the directional contact, and the cylinder

contact set as active contact. The relative difference of each model is compared to Model #1. C. The average time to

build, mesh and solve the model for each level of model geometry option.

https://doi.org/10.1371/journal.pone.0260162.g006
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caveats associated with different implementation strategies for simulating clinical DBS

electrodes.

The focus of the analyses in this study was on the representation of the DBS electrode con-

tact and the current source. The DBS models we used were intentionally simple, as this level of

VC model represents the general platform used in clinical DBS research [13, 23]. We defined

the most detailed representation that we implemented as the standard for comparison (Model

#1). However, it should be noted that there is no ground truth for modeling the geometry of

DBS leads or the implementation of the applied stimulation current. We propose that the

point current source is the most realistic source, as it simulates the current distribution

through the electrode contact via a simulated weld point connecting the contact to the stimula-

tor. However, none of the model sources are technically correct. All cases are modeled to the

steady state solution for time at infinity, and do not account for the heterogeneous distribution

of current over time [15]. In addition, the electrode-electrolyte interface is not included in

these models [25], so the current density distribution on the contact is not represented cor-

rectly. However, all of the models do show an increased current density at the edges and cor-

ners of the electrode contact which is a well-established phenomenon [26] (Fig 2).

The DBS voltage distribution generated by the majority of the model variants is comparable

to Model #1, with the exception of examples with explicitly modeled inactive contacts (Fig 4).

Explicit representation of the inactive contacts introduces substantial variance in the voltage

distribution near the contacts, and subsequently translates into discrepancies in the axonal

threshold calculations (e.g. Models #8 and #9 in Fig 5A and 5B). However, nearly all of Models

#2–15 show some variance in the voltage distribution, which did not always translate into

effects on the axonal threshold calculations. This is likely because the neural response to elec-

trical stimulation is not directly associated with the extracellular voltage, or the electric field,

but instead the second spatial derivative of the extracellular voltage distribution [27]. So if the

variance in the voltage distribution all has either a negative bias or a positive bias, there will be

minimal impact on axonal thresholds. However, if there is both positive and negative variance

in the voltage distribution, axonal thresholds will exhibit greater differences.

Two general strategies exist for using finite element VC models in clinical DBS research

software tools. The most simple approach is to store precompiled solutions of the voltage dis-

tribution for each contact of each electrode design, and then access those solutions when

needed by the DBS software [24]. However, this approach requires accepting many simplifying

assumptions about the tissue medium of the brain and/or the location of the DBS electrode in

the brain. Alternatively, the electric field solution can be solved on demand by the DBS soft-

ware, which requires waiting for the computer to process the simulation, but can enable much

more detailed representations of the tissue conductivity and anisotropy [28]. As such, imple-

mentation of Model #1 may make more sense when using precompiled solutions, while Model

#15 would be a more efficient option when using on demand simulations.

5. Conclusion

Volume conductor models of the voltage distribution in the brain generated by DBS electrodes

are commonly used in clinical research studies. The goal of this study was to provide a side-by-

side comparison of different approaches to modeling the DBS electrode contacts and current

sources, and document how those model construction decisions affect estimates of the voltage

distribution and axonal activation. The different DBS VC models generated substantial differ-

ences in their voltage distributions and axonal thresholds. These results suggest that attention

should be paid to the representation of the stimulating contact when constructing a DBS VC

model for a specific research application.
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