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Abstract: Metal–air batteries and fuel cells have attracted much attention as powerful candidates
for a renewable energy conversion system for the last few decades. However, the high cost and
low durability of platinum-based catalysts used to enhance sluggish oxygen reduction reaction
(ORR) at air electrodes prevents its wide application to industry. In this work, we applied a
plasma process to synthesize cobalt nanoparticles catalysts on nitrogen-doped carbon support with
controllable quaternary-N and amino-N structure. In the electrochemical test, the quaternary-N and
amino-N-doped carbon (Q-A)/Co catalyst with dominant quaternary-N and amino-N showed the
best onset potential (0.87 V vs. RHE) and highest limiting current density (−6.39 mA/cm2). Moreover,
Q-A/Co was employed as the air catalyst of a primary zinc–air battery with comparable peak power
density to a commercial 20 wt.% Pt/C catalyst with the same loading, as well as a stable galvanostatic
discharge at −20 mA/cm2 for over 30,000 s. With this result, we proposed the synergetic effect of
transitional metal nanoparticles with controllable nitrogen-bonding can improve the catalytic activity
of the catalyst, which provides a new strategy to develop a Pt-free ORR electrocatalyst.

Keywords: cobalt nanoparticles; nitrogen-doped carbon; highly durable electrocatalysts; Zn-air battery

1. Introduction

Eco-friendly energy devices such as metal-to-air batteries and fuel cells receive much attention,
while the importance of air electrodes for oxygen reduction reactions is increasingly prominent. Mainly,
air electrodes often require platinum catalysts to improve their slow oxygen reduction reaction (ORR).
However, many studies are attempting to reduce the Pt content or entirely replace Pt due to its low
durability, high price, and rarity. Among them, transition metal-based electrocatalysts have exhibited
promising ORR performance in basic electrolytes and active research is being done in using these as Pt
catalyst replacements [1–5]. Among the various transition metals, cobalt is the most widely used as an
alternative catalyst material due to its decent oxygen reduction reaction activity, higher four-electron
selectivity, high durability, and low price [6–9]. On the other hand, cobalt nanoparticles as single
active sites supported on a pristine carbon matrix often exhibit low activity compared with platinum
catalysts [10,11]. Thus, there are many attempting to improve the intrinsic activity of the catalysts. One
of the most typical methods is to synthesize a catalyst using a heteroatom-doped carbon matrix [12,13].
Among them, nitrogen-doped (N-doped) carbon represents a far better performance compared with
pristine carbon support [14–18]. The catalyst often shows relatively high catalytic performance in
alkaline electrolytes. In the case of N-doped carbon, nitrogen reduces the charge density of the nearby
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carbon atoms due to the differences in electronegativity of carbon and nitrogen [19]. Most recently, a
few studies reported enhanced catalytic activity when combining cobalt nanoparticles with N-doped
carbon support, and some of their ORR activity might even be comparable to that of platinum-based
catalysts [20–24].

To date, there are different arguments about how various types of nitrogen functional groups
affect the activity of catalysts [25–34]. Chatterjee et al. reported nitrogen-carbon nano-ions with
pyridinic-N and pyrrolic-N as dominant catalysts. The catalysts contained a nitrogen content of up
to 7.5%, and the author suggested that pyridinic-N worked as an active site for oxygen reduction
with notably high activity [31]. On the other hand, Wang et al. found a correlation between the
potential cycle and the diminishing concentration of quaternary-N in the catalyst. Based on the density
functional theory (DFT) calculation and experimental results, quaternary-N displayed lower Gibbs
free energy on the rate-liming step in the ORR reaction compared with pyridinic-N or pyrrolic-N.
The author claimed that quaternary-N was responsible for the ORR activity in N-doped carbon [35].
Not only for single controlled C-N bonding, Yan also reported the synergetic effect of quaternary-N-
and pyridinic-N-doping on the oxygen reduction reaction by using theoretical calculation [17]. After
that, Ning et al. reported the synergetic effect of pyridinic-N and quaternary-N by measuring the
transferable electrons of N-doped carbon. They suggested that the kinetic current density of the ORR
in alkaline media is depended on the ratio of pyridinic-N and quaternary-N [36]. Additionally, Li et
al. reported another synergic effect of amino-N and quaternary-N on ORR, where the experimental
results showed that dominant amino-N-doped carbon indicated a higher onset potential, and the
incorporation of quaternary-N into amino-N improved the 4-electron reaction selectivity and limiting
current density [28].

Recently, a great deal of research has been reported on the development of a heterogeneous
atomic-doped carbon catalyst through bottom-up synthesis using heterocyclic compounds through
liquid plasma engineering. The approach has many advantages, such as being conducted at room
temperature and being able to synthesize a heterogeneous atomic-doped carbon catalyst simply by
selecting different precursors [37–44]. On the other hand, due to the low thermal stability of amino-N,
it is hard to retain amino-N on the carbon matrix by the conventional synthesis route [27]. Thus, we
applied a low-temperature facile plasma synthesizing method to fabricate amino-N and quaternary-N
selectively on carbon support by careful selection of the precursors. Although a few studies have
reported on metal-free tunable N-doped carbon electrocatalysts and/or metal nanoparticles doped on
N-doped carbon, the synergic effect of transitional metal nanoparticles with precisely tunable amino-N
and quaternary-N has rarely been reported.

In this study, we fabricated cobalt nanoparticles on a nitrogen-doped carbon catalyst through two
heterocyclic compounds, quinoline and aniline, via plasma engineering. A pair of cobalt electrodes
were applied as the precursor of metal nanoparticles, while quinoline and aniline were the sources of
quaternary-N and amino-N, respectively, in the N-doped carbon support. Through XPS results, we
can confirm that quaternary-N and amino-N are successfully retained within the carbon matrix from
their corresponding precursors. Further, in the electrochemical performance test, cobalt nanoparticles
supported on the mixture of quaternary-N and amino-N-doped carbon ((Q-A)/Co) had higher ORR
onset potential and limiting current density than those of a single amino-N-doped carbon (A/Co) or
quaternary-N-doped carbon (Q/Co) catalyst.

2. Materials and Methods

2.1. Synthesis of Co-N/C Catalyst by a Plasma Process

Plasma synthesis was performed between a pair of high purity transition cobalt electrodes
(99.999%, Nilaco Co., Ltd., Tokyo, Japan, diameter of 1 mm) inside an organic solution of aniline
(A-Co), quinolone (Q-Co), and aniline-quinoline 1:1: mixed solution (Quinoline, Aniline, >99%, Junsei
Chemical Co., Ltd., Tokyo, Japan) using a bipolar pulse power supply (MPP-HV02, KURITA, Kyoto,
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Japan). The plasma was discharged at a voltage of ~4 kV, a frequency of 50 kHz, and a pulse width
of 1.0 µs. Stable plasma was discharged for 30 min to obtain cobalt nanoparticles/N-doped carbon
(Co-N/C). The solution was filtered using a φ 55 mm polytetrafluoroethylene filter, and the resulting
filtered carbon powder samples were dried in an oven for 10 h at 80 ◦C, then heated at 700 ◦C for 1 h
with 1.0 cc/min nitrogen atmosphere to improve their electrical conductivity. The schematic of the
plasma synthesis is illustrated in Figure 1.
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Figure 1. (a) Schematic illustration of the solution plasma process and synthesis of the cobalt
nanoparticles/N-doped carbon (Co-N/C) catalyst. (b) Structure of the N-doped carbon catalyst.

2.2. Structure and Chemical Composition Analysis

The nitrogen absorption-desorption method (BET, Brunauer Emmett Teller; Shimadzu, TriStar-II
3020, Tokyo, Japan) was used for analyzing the surface area, pore volume, and pore diameter of the
various Co-N/C catalysts. For morphology and chemical composition analysis, the synthesized carbon
samples were characterized using scanning electron microscopy (SEM; JEOL, JSM-7100F, Tokyo, Japan),
X-ray diffraction (XRD; Rigaku, Ultima IV, Tokyo, Japan), and X-ray photoelectron spectroscopy (XPS;
JEOL, JPS-9010MC, Tokyo, Japan).

2.3. Electrochemical Measurements

An electrochemical analyzer (Biologic, VSP, Grenoble, France) was used to analyze the ORR
electrochemical properties of the synthesized cobalt-nitrogen-doped carbon. The catalyst ink for the
electrochemical analysis was made by adding 4 mg of well-ground Co-N/C-doped carbon catalysts into
a mixture composed of 480 µL of distilled water, 480 µL of ethanol, and 40 µL of Nafion®117 Solution
that was then ultrasonicated for 30 min. A total of 800 µg/cm2 of well-dispersed catalyst was applied
on a well-polished glass carbon (GC) disk (diameter: 4 mm) electrode (working electrode), where a
platinum coil and Hg/HgO (1 M NaOH) were used as the counter and reference electrodes, respectively.
After the three-electrode cell was prepared, ORR activity was measured by linear sweep voltammetry
(LSV) in O2 saturated 0.1 M KOH with a scan rate of 5 mV/s and rotating speed of 1600 rpm, between a
potential range of 0.2 to 1.2 V vs. RHE. Chronoamperometry (CA) was conducted at 0.6 V vs. RHE for
30,000 s. In order to investigate the cycle durability of the synthesized catalysts, cyclic voltammetry
(CV) was conducted at 50 mV/s for 3000 cycles between a potential range of 0.4 and 1.0 V vs. RHE. The
kinetic current of the prepared electrocatalyst was calculated by a rotation rind disk electrode (RRDE).
Where id is disk current, ir is ring current, and Ce is collection efficiency (0.42) [45]:

Electron transfer number(n) = 4 ∗ (id/(id + (
ir
Ce

)) (1)
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H2O2 yielding(%) = 2 ∗ (
ir
Ce

Id + ( ir
Ce )

) ∗ 100 (2)

2.4. Primary Zn–Air Battery Measurement

The home-made Zn–air battery was assembled with the as-prepared catalysts and loaded on a gas
diffusion layer electrode, with a Zn foil as the metal electrode, and 6 M KOH + 0.2 M ZnCl2 as the
electrolyte. For comparison, a benchmark catalyst (20 wt.% Pt/C) was also measured as the oxygen
electrocatalyst. The catalyst ink (same as electrochemical ORR measurement) were well-suspended
and dropped onto one face of carbon paper, with a mass loading of 1 mg/cm−2. The power density
was measured at 10 mV/s from OCV to 0.4 and discharge stability of the sample was measured by
discharging at −20 mA/cm2 for 30,000 s.

3. Results

3.1. Properties of Co Nanoparticles/N-Doped Carbon Catalyst

The SEM images of Q-A/Co, A/Co, and Q/Co are shown in Figure 2a–c. The three electrocatalysts
exhibited very similar morphology, and carbon spherical nanoparticles were heavily agglomerated.
There were no obvious structural differences from applying various types of nitrogen-carbon precursors
during the plasma process. Figure 3 demonstrates the low resolution SEM images with EDS elemental
mapping for Q-A/Co, Table S1 summarizes the atomic percentage of each element. It was found that
nitrogen from the heterocyclic compound precursors (aniline and quinoline) was successfully retained
with a high concentration of around 5% within the carbon matrix. Although the percentage of Co
(at.%) was quite small (0.01–0.03%), cobalt nanoparticles formed by electrode sputtering during the
plasma process were uniformly deposited on the synthesized carbon matrix (Figure 3c).
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Figure 2. SEM images of the (a) quaternary-N and amino-N-doped carbon (Q-A/Co), (b) amino-N-doped
carbon (A/Co), and (c) quaternary-N-doped carbon (Q/Co) catalysts.

Figure 4 and Table 1 summarize the porous structure of the synthesized N-doped carbon obtained
from the N2 adsorption-desorption method. The BET isotherm linear plot in Figure 4a confirms that all
synthesized N-doped carbon had a meso-macro porous structure from the hysteresis graph. This is
coming from the interparticle voids between the primary carbon particles in the usual solution plasma
method synthesized carbon [46]. The BET surface areas of Q-A/Co, A/Co, and Q/Co were 211.1, 210.2,
and 206.2 m2/g, respectively. This result implies that the porous and structural properties of synthesized
Co-N-doped carbon are not affected by the original precursor. In Figure 4b, Q-A/Co exhibits a slightly
higher pore volume of 0.67 cm3/g and has mainly mesopores with an average diameter of 10.1 nm.
To confirm the crystalline structure of the deposited cobalt particle, XRD analysis in Figure 5 clearly
indicates pure cobalt metal peaks (Co0) at 44◦([110], 52◦([200]), and 76◦([220]). Regardless of the liquid
precursor, the composition of the cobalt nanoparticles is identical with similar crystallinity. Combined
with the EDS picture and XRD profile, it is clear that the cobalt nanoparticles in their pristine form are
successfully fabricated through the plasma process and incorporated into N-doped carbon support.
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Table 1. Textural parameters of Q/A-Co derived from the N2 adsorption-desorption isotherms.

BET Surface Area BJH Adsorption
Pore Volume

BJH Adsorption
Average Pore Width

Q-A/Co 211.1 m2/g 0.6711 cm3/g 10.1 nm

A/Co 210.2 m2/g 0.6708 cm3/g 13.08 nm

Q/Co 206.2 m2/g 0.5871 cm3/g 15.3 nm
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3.2. Chemical Bonding States of Co Nanoparticles/N-Doped Carbon Catalyst

In order to analyze and understand the effect of nitrogen functional groups on ORR catalytic
activity, we applied XPS to figure out the surface nitrogen-carbon bonding states in detail. First, we
can confirm that nitrogen is successfully doped into the carbon matrix by the presence of C–N bonding
in all synthesized samples from C1s XPS spectra in Figure 6a–c. In order to identify the types of C–N
bonding, N1s narrow spectra of Q-A/Co, A/Co, and Q/Co are demonstrated in the corresponding
Figure 6d–f. As a reference, the binding energy of amino-N is around 399.4–399.6 eV and quaternary-N
is around 401.1–401.5 eV [47]. A/Co, which was synthesized from the aniline precursor, shows a
highest amino-N peak of 35%. Additionally, Q/Co fabricated from the quinoline precursor shows a
dominant quaternary-N peak of 32%. For Q-A/Co, which was synthesized from a mixed aniline and
quinoline solution, two major peaks for quaternary-N (30%) and amino-N (31%) are present equally.
From the above XPS results, it is clear that C–N bonding is retained from the heterocyclic compound
precursor, and plasma engineering is a facile route to control various types of nitrogen-carbon bonding
by choosing the corresponding single or multiple C–N precursors. The relative percentages of nitrogen
bonding states of three Co-N-doped catalysts are summarized in Table 2.
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Figure 6. (a–c) High-resolution C 1s XPS spectra with peak deconvolution of Co-N/C. (d–f) N 1s XPS
spectra with peak deconvolution of Co-N/C.

Table 2. Nitrogen bonding states of three Co-N-doped catalysts from the deconvolution of N 1s spectra.

Bonding Binding Energy Q-A/Co A-Co Q-Co

Relative Percentage (%)

N1(Pyridinic-N) 398.4–398.6 eV 14 16 22

N2(Amino-N) 399.4–399.6 eV 31 35 18

N3(Pyrrolic-N) 400.1–400.3 eV 20 24 25

N4(Quaternary-N) 401.1–401.5 eV 30 21 32

N5(Oxide-N) 403.3–403.7 eV 5 4 3

3.3. Electrochemical Properties of Co Nanoparticles/N-Doped Carbon Catalyst

Figure 7a–d shows the electrochemical ORR catalytic activity of synthesized Co-N-doped carbon
in 0.1 M KOH. In the polarization curve, A/Co with dominant amino-N demonstrates a slightly higher
onset potential (0.85 V vs. RHE) than that of the Q/Co (0.84 V vs. RHE). Figure 7b demonstrates a lower
Tafel-slope of Q/Co (67 mV/dec) and Q-A/Co (78 mV/dec) compared with that of A/Co (89 mV/dec),
which indicates that quaternary-N doping can improve the ORR reaction kinetics. Figure S1a–c
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further evaluated the CV curves of each electrocatalyst with a scan rate of 10–80 mV/s, and the double

layer capacitance (Cdl) values are derived from each CV based on the equation Cdl =
d(∆ j)

2d(Vb) , where
Vb is the scan rate (Figure S1). The electrochemically active surface areas (ECSA) are calculated by
ECSA=Cdl/Cs, of which Cs is the specific capacitance of a flat surface with 1 cm2 of surface area, and
the rugosity can be estimated from ECSA/geometric surface area (0.1256 cm2) [48,49]. The calculated
Cdl values of A/Co, Q/Co, and Q-A/Co were 14 mF/cm2, 14 mF/cm2, and 11 mF/cm2, respectively.
Although ESCA, of all synthesized catalysts, exhibited a similar value of 11–14 mF/cm2, the limiting
current density of the Q/Co at 0.6 V vs. RHE (−6.41 mA/cm2) was much higher than that of the A/Co
(−5.17 mA/cm2). This result clearly implies that amino-N has a positive effect on the onset potential,
whereas quaternary-N improves the reaction kinetics, both of which are similar to previously reported
findings [28,50]. Interestingly, Q-A/Co with both dominant amino-N and quaternary-N shows certain
differences in ORR activity compared with single amino-N-doped carbon or quaternary-N-doped
carbon. The Q-A/Co exhibits better onset potential (0.87 V vs. RHE) and limiting current density
(−6.27 mA/cm2), which is quite comparable to a commercial 20 wt.% Pt/C catalyst. (0.95 V vs. RHE
and −5.43 mA/cm2). In reaction selectivity results based on the electron transfer number calculation in
Figure S2, Q-A/Co shows the higher 4 e− selectivity of 3.91 compared with those of Q/Co and A/Co
(~3.8). The above findings prove the synergetic effect of amino-N and quaternary-N on ORR activities.
In the durability test as displayed in Figure 7c,d, the onset ORR potential of Q-A/Co and 20 wt.% Pt/C
shift negatively by 10 mV and 20 mV, respectively, after 3000 cycles. Moreover, the relative current
density of Q-A/Co reduces by merely 9% while 20 wt.% Pt/C decreases by 16% after 30,000 s at 0.6 V vs.
RHE. Both experimental results confirmed that the amino-N and quaternary-N are incorporated into
the carbon matrix with high stability. The detailed electrochemical catalytic activity of Co-N-doped
carbon and 20wt.% Pt/C are summarized in Table 3.
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Figure 7. (a) Linear sweep voltammetry (LSV) curve of Co-N-doped carbon and 20 wt.% Pt/C at 5 mV/s
in O2 saturated 0.1 M KOH in rotation speed 1600 rpm. (b) Correlated Tafel slope from each LSV curve.
(c) Cycle durability of Q-A/Co and 20 wt.% Pt/C after 3000 cycles. (d) Chronoamperometry (CA) of
Q-A/Co and 20 wt.% Pt/C at 0.6 V vs. RHE.
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Table 3. Summary of the electrochemical catalytic activity of Co-N-doped carbon and 20 wt.% Pt/C.

Q-A/Co Q/Co A/Co 20 wt.% Pt/C

Onset Potential 0.87 V vs. RHE 0.84 V vs. RHE 0.85 V vs. RHE 0.95 V vs. RHE

Potential
at −3 mA/cm2 0.78 V vs. RHE 0.74 V vs. RHE 0.74 V vs. RHE 0.81 V vs. RHE

Current density
At 0.6 V vs. RHE −6.27 mA/cm2

−6.41 mA/cm2
−5.17 mA/cm2

−5.43 mA/cm2

Potential
at −3 mA/cm2

After 3000 cycles
Figure 7c

0.77 V vs. RHE - - 0.79 V vs. RHE

Current density
After 3000 cycles

Figure 7d
9% decrease - - 16% decrease

3.4. Primary Zn–Air Battery Test of Co Nanoparticles/N-Doped Carbon Catalyst (Q-A/Co)

Since Q-A/Co outperformed other as-synthesized electrocatalysts, it was further applied as the air
cathode in a home-made primary aqueous Zn–Air battery cell, in order to examine its performance in
a practical application. In open circuit voltage, the Q-A/Co catalyst exhibited an open-current voltage
(OCV) of 1.43 V, which is only slightly lower than that of 20 wt.% Pt/C (1.49 V). On the other hand,
the peak power density of Q-A/Co (87 mW/cm2) is almost similar to the Pt/C (89 mW/cm2) due to
the higher discharge current density (Figure 8b). Although the step-voltage discharge of Q-A/Co
(Figure 8c) shows lower voltage in the low current density range between 1 and 20 mA/cm2, Q-A/Co
works comparably to the commercial 20 wt.% Pt/C catalyst in a higher current density region above
50 mA/cm2. During the galvanostatic discharge at −20 mA/cm2, the Q-A/Co catalyst displays a stable
discharge for 30,000 s (Figure 8d). Based on the Zn–air battery test, Q-A/Co is a potential noble-free
ORR catalyst to replace expensive noble Pt/C in primary Zn–air batteries with the high peak power
density and durable discharge performance.
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4. Conclusions

Consequently, in this study, cobalt with dominant amino-N- and quaternary-N-doped carbon was
synthesized through a plasma process. Both EDS and XRD results indicated that Co particles were
deposited on the carbon matrix with nitrogen. From the XPS surface analysis, Q-A/Co exhibited both
major amino-N and quaternary-N peaks evenly. This result clearly indicated that aniline and quinoline
precursors can be applicable as selective N-C bonding precursors. From the electrocatalytic activity
measurement, we confirmed that amino-N had a positive effect on ORR onset potential, whereas
quaternary-N improved the limit current density, as reported. In particular, the combination of amino-N
and quaternary-N provided a synergetic effect to better the onset potential and limit current density.
Q-A/Co displayed a relatively high catalytic activity in terms of onset potential (0.87 V vs. RHE) and
limit current density (−6.39 mA/cm2), which is only slightly inferior to that of commercial 20 wt.% Pt/C.
In a primary Zn–air electrode test, Q-A/Co further exhibited high potential from its high peak power
density (87 mW/cm2) and durable discharge performance. From the above results, we suggested that
plasma engineering is a facile route to fabricate transition metal nanoparticles on selective amino-N
and quaternary-N. When combining the synergic effect of transitional metal-based nanoparticles with
the controlled N-doped carbon matrix, the noble metal-free catalysts might be further developed as
promising candidates to replace the state-of-the-art Pt/C in fuel cell and metal-air batteries.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/10/2/223/s1.
Table S1: Atomic percent of A/Co, Q/Co, Q-A/Co from EDS, Figure S1. (a–c) CV curves of synthesized catalysts
with scan rate 10–0 mV/s in 0.1M KOH, (d) Current density differences plot with scan rate. ∆J is current differences
between Ja (anodic current) and Jc (cathodic current) at potential 0.5 V vs. RHE which is non faradaic region;
Figure S2. (a) Electron transfer number and, (b) peroxide yielding of Q-A/Co, A/Co, Q/Co.
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