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A B S T R A C T

Heart disease is a common manifestation in conditions of iron imbalance. Normal heart function requires
coupling of iron supply for oxidative phosphorylation and redox signalling with tight control of intracellular iron
to below levels at which excessive ROS are generated. Iron supply to the heart is dependent on systemic iron
availability which is controlled by the systemic hepcidin/ferroportin axis. Intracellular iron in cardiomyocytes is
controlled in part by the iron regulatory proteins IRP1/2. This mini-review summarises current understanding of
how cardiac cells regulate intracellular iron levels, and of the mechanisms linking cardiac dysfunction with iron
imbalance. It also highlights a newly-recognised mechanism of intracellular iron homeostasis in cardiomyocytes,
based on a cell-autonomous cardiac hepcidin/ferroportin axis. This new understanding raises pertinent questions
on the interplay between systemic and local iron control in the context of heart disease, and the effects on heart
function of therapies targeting the systemic hepcidin/ferroportin axis.

1. Principles of iron homeostasis

The average amount of iron in a human male is ~4 g, of which
~2.3 g is present in the red blood cell compartment and ~3 mg com-
plexed to transferrin (Tf-Fe3+) in the plasma [1]. The rest is present
intracellularly within peripheral tissues. Inside cells, most of the iron is
complexed to protein chaperones such as ferritin, or present in func-
tional groups; e.g. heme prosthetic or iron-sulfur groups [2–4] The rest
represents the chelatable labile iron pool (LIP), the size of which varies
between different cell types [5].

Cells must maintain an adequate supply of iron for iron-dependent
processes, while at the same time restricting the size of LIP to prevent
excessive ROS generation from Fenton-type reactions [6]. Cellular iron
homeostasis is achieved through control of iron uptake by transferrin
receptor 1 (TfR1) and divalent metal transporter 1 (DMT-1); iron sto-
rage by ferritin; iron utilisation in heme synthesis by erythroid 5-ami-
nolevulinic acid synthase (ALAS2); and in some cells, iron export by
ferroportin (SLC40A1 or FPN) [7,8]. These processes are orchestrated
by the iron regulatory proteins, IRP1 and IRP2. Their activity involves
an iron-sensing step, whereby high intracellular iron reduces the RNA-
binding ability of IRP1 and the stability of IRP2. The second step, which
occurs preferentially under conditions of low iron, involves the binding
of IRP1 and IRP2 at iron regulatory elements IREs, either at the 5′UTR
to cause translational repression (e.g ferroportin, L-ferritin, H-ferritin,
Alas2) or at the 3′UTR to increase transcript stability (e.g TfR1, Dmt1)

[7,8].
The body must maintain adequate supply of iron for key physiolo-

gical and developmental processes such as erythropoiesis, bone growth
and neuronal development. This supply is achieved primarily from the
recycling of iron from senescent red blood cells in the re-
ticuloendothelial macrophages [8,9]. Other sources of iron are en-
terocytes (the site of dietary iron absorption), and hepatocytes (the site
of iron storage) [10,11]. Systemic iron homeostasis is orchestrated by
the hepcidin/ferroportin axis. Hepcidin is the liver-derived hormone
that controls systemic iron availability through the binding, and in-
ternalisation of ferroportin. Ferroportin is the only known mammalian
iron export protein, and enables the release of iron into the circulation
from the sites of iron recycling, absorption and storage [10,11]. Genetic
mutations that impair hepcidin production or binding to ferroportin are
associated with systemic iron overload (primary hemochromatosis)
[12], while mutations in negative regulators of hepcidin (matriptase-2)
cause iron refractory iron deficiency anaemia (IRIDA) due to in-
appropriately high hepcidin levels [13]. As the major site of iron de-
mand in the body, the bone marrow exerts dominant control over
hepcidin production. Hepcidin production in the liver is reduced by the
endocrine action of erythroferrone derived from the stimulated ery-
throid compartment [14]. This explains the secondary iron overload
associated with ineffective erythropoiesis (e.g. β-thalassemia) [15].
Hepcidin production is also suppressed by hypoxia (possibly in a
manner dependent on erythroferrone) and stimulated by high

https://doi.org/10.1016/j.freeradbiomed.2018.08.010
Received 15 June 2018; Received in revised form 7 August 2018; Accepted 10 August 2018

E-mail address: samira.lakhal-littleton@dpag.ox.ac.uk.

Free Radical Biology and Medicine 133 (2019) 234–237

Available online 11 August 2018
0891-5849/ Crown Copyright © 2018 Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/BY/4.0/).

T

http://www.sciencedirect.com/science/journal/08915849
https://www.elsevier.com/locate/freeradbiomed
https://doi.org/10.1016/j.freeradbiomed.2018.08.010
https://doi.org/10.1016/j.freeradbiomed.2018.08.010
mailto:samira.lakhal-littleton@dpag.ox.ac.uk
https://doi.org/10.1016/j.freeradbiomed.2018.08.010
http://crossmark.crossref.org/dialog/?doi=10.1016/j.freeradbiomed.2018.08.010&domain=pdf


transferrin saturation and by inflammation [16]. The anaemia of
chronic disease is attributed to the stimulation of hepcidin by in-
flammation [17].

2. The importance of iron control in the heart

The average humy weight iron predominantly present in ferritin and
within the mitochondrial compartment [18,19]. The concentration of
ferritin iron within the heart increases gradually with age while that of
mitochondrial iron increases rapidly during growth and remains rela-
tively stable in the adult heart [20]. Mitochondrial iron is present
mainly in iron-sulfur clusters and heme functional groups [20]. Iron-
mediated oxidation-reduction reactions are essential to the metabolism
of oxygen in the heart. Iron in iron-sulfur and heme groups is required
for electron transfer and oxygen activation in oxidative phosphoryla-
tion [2,3], while labile free iron is required for oxygen activation by
dioxygenases [21], and as a catalyst for redox signalling [22]. At the
same time, this reactivity with oxygen underpins the ability of free iron
to participate in Fenton-type reactions, producing ROS which are da-
maging to proteins and lipids [6]. The high rate of oxygen turnover in
the heart necessitates a fine balance between, on the one hand, ade-
quate supply of iron for the synthesis of iron-sulfur and heme groups,
and on the other hand, tight control of the size of LIP to below levels at
which excessive ROS are generated.

The requirement for such tight control of cardiac iron levels may
also explain why heart failure is a common denominator in conditions
of systemic iron imbalance. Iron overload cardiomyopathy is the
leading cause of death in primary iron overload and an important co-
morbidity in secondary iron overload [23,24]. It manifests initially as
restrictive cardiomyopathy with diastolic dysfunction, and often pro-
gresses to dilated cardiomyopathy [25–27]. In the setting of iron
overload, where circulating non-transferrin bound iron (NTBI) levels
are high, Fe+2 is taken up into cardiomyocyte through LTCCs; a route of
uptake that is not coupled to the sensing of size of LIP, because LTCCs
are not regulated by IRPs [27]. Additionally, the fact that the heart is
affected first in these patients, despite the degree of iron loading in the
heart being much lower than that of the liver, indicates that cardio-
myocytes have greater sensitivity than hepatocytes to changes in LIP.
This idea is supported by the finding that, under normal conditions, the
concentration of non-ferritin non-heme Fe2+in the heart is considerably
lower than that of the liver [20]. Beyond the cell damage caused by
ROS, there is mounting evidence that excess intracellular iron promotes
ferroptosis, a form of regulated cell death driven by iron-dependent
lipid peroxidation [28]. In the myocardium, increased LIP, either in the
setting of hemochromatosis, or following cardiac haemorrhage, could
promote ferroptosis, thereby contributing to cardiac cell death [29].
Finally, there is evidence that increased LIP, and in particular free Fe2+,
impinges directly on excitation-contraction coupling in cardiomyo-
cytes, which may account for the diastolic dysfunction seen in the early
stages of disease [25–27].

Another form of iron imbalance is iron deficiency. It is the most
widespread nutritional disorder worldwide, including in industrialised
nations, where it commonly co-exists with cardiovascular disease [30].
It is formally a recognised co-morbidity in chronic heart disease and
acute heart failure [31,32]. In heart failure, iron deficiency is highly
prevalent, with some studies reporting it in 50% of patients in their
cohorts [33,34]. Depending on the aetiology, iron deficiency is either
absolute (e.g., due to blood loss, malabsorption due gastrointestinal
abnormalities) or functional, where iron is sequestered from the cir-
culation (e.g., due to effect of inflammation on hepcidin levels). Im-
portantly, iron deficiency, independently of anaemia, has been found to
be a predictor of mortality, adverse cardiovascular events and quality of
life [31,32,35]. In the last decade, a number of randomized trials have
provided unequivocal evidence for the benefits of iron supplementation
in patients with chronic heart failure. While oral iron supplementation
has had limited success (partly due to limited absorption particularly in

patients with inflammation), intravenous iron preparations such as
ferric carboxymaltose and iron sucrose have been shown to improve a
number of outcomes in patients with heart failure, including 6-min
walk test, self-reported Patient Global Assessment, exercise capacity,
hospitalisation due to cardiovascular events and mortality (summarised
in 35). The European Society of Cardiology's guidelines now re-
commend intravenous iron replacement in chronic heart failure [36].
Less clear are the benefits of iron supplementation in acute heart
failure, where there is a concern that such treatment could exacerbate
ischemia reperfusion injury.

The mechanisms underlying the detrimental effects of iron defi-
ciency in heart failure are only beginning to be explored. In part, iron
deficiency anaemia affects the heart by reducing muscle exercise ca-
pacity, and limiting oxygen availability for use in oxidative phosphor-
ylation within cardiomyocytes [37,38]. However, anaemia is estimated
to occur only in ~25% of iron-deficient individuals [39–41]. In the
context of chronic heart failure, clinical outcomes are worse in non-
anaemic iron-deficient patients than in anaemic iron-replete patients,
suggesting that iron deficiency per se affects the heart directly, and in a
manner that is distinct from the effects of anaemia [35]. Other than its
requirement for haemoglobin synthesis, iron is essential for metabolic
and signalling processes. In the heart, recent evidence is pointing to-
wards a direct effect of intracellular iron levels within the cardiomyo-
cyte on cardiac function. In one mouse model lacking cardiomyocyte
TfR1, severely reduced iron levels in the cardiomyocytes resulted in
fatal heart failure by the second week of age, in part due to failure of
mitochondrial respiration [42]. The severe and early nature of the
phenotype seen in these mice likely reflects the previously recognised
need to rapidly increase mitochondrial iron levels during growth [20].
In another mouse model of dysregulated cardiac iron export (discussed
in more detail in the next section), more progressive depletion of car-
diomyocyte iron resulted in heart failure developing between 3 and 6
months of age [43]. In that setting, the activity of the electron transport
chain was also reduced. One pertinent question is what pathways, other
than mitochondrial respiration, are affected by intracellular iron defi-
ciency in the heart. Pathways of interest include oxygen sensing by
Hypoxia-inducible factor (HIF) prolyl hydroxylases (PHDs which re-
quire iron as a co-factor) and redox signalling which controls excita-
tion-contraction coupling in the cardiomyocyte [25,44]. Fig. 1 sum-
marises the effects of systemic iron imbalance on the cardiomyocyte.

3. New mechanisms of iron control in the heart

Like other cells in the body, cardiomyocytes acquire iron pre-
dominantly by uptake of transferrin through TfR1. The importance of
TfR1 for cardiac function is supported by the finding that mice lacking
cardiac TfR1 manifest severe heart failure [42]. Inside the cell, iron that
is not utilised in the synthesis of heme and iron-sulfur clusters is stored
in ferritin. The levels of both TfR1 and ferritin are regulated by the IRP/
IRE system [7]. The importance of IRP1 and 2 in the heart has been
demonstrated in a mouse model with cardiomyocyte-specific deletion
of the Irp1 and Irp2 genes. Such mice have an impaired left ventricular
response to dobutamine challenge and an exacerbated injury following
myocardial infarction [45].

One feature of cardiomyocytes is that they also express relatively
high levels of ferroportin and hepcidin, despite having no role in sys-
temic iron control [43,46]. The functions of cardiac hepcidin and fer-
roportin have been explored recently. It was shown that mice with a
cardiomyocyte-specific deletion of the ferroportin gene develop fatal
left ventricular dysfunction by three months of age. The dysfunction
was caused by a three-fold increase in iron levels within cardiomyo-
cytes, and was prevented when animals were fed an iron-deficient diet.
Notably, downregulation of TfR1, an IRP-driven response to increased
cardiomyocyte iron content, was not sufficient to prevent iron overload
in ferroportin-deficient hearts, demonstrating that ferroportin-mediated
iron release is an essential component of cardiomyocyte iron
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homeostasis [46]. Comparison between mice lacking cardiomyocyte
ferroportin and a mouse model of hemochromatosis (ubiquitous dele-
tion of hepcidin) yielded interesting insights into the pathophysiology
of iron overload. It was found that the total quantity of iron in the
ferroportin-deficient hearts was much lower than in hemochromatosis
hearts. Nonetheless, fatal heart failure occurred in the former but not
the latter setting. Closer examination of the distribution of iron showed
that in the ferroportin-deficient heart, iron was preferentially retained
within the cardiomyocytes, whereas in the hemochromatosis model,
most of the iron was outside of the cardiomyocytes, consistent with the
marked upregulation of cardiomyocyte ferroportin in this model. This
comparison demonstrated that ferroportin in cardiomyocytes controls
the site of deposition of iron in the heart in the setting of systemic iron
overload, and thereby determines the severity with which iron de-
position affects cardiac function [46]. Beyond control of iron export in
the steady state, it would be important to establish how the levels of
cardiac ferroportin affect iron-dependent processes that are important
in the disease state, e.g. ferroptosis [28,29].

The function of cardiac hepcidin was interrogated using two ap-
proaches [43]. First, cardiomyocyte-specific deletion of hepcidin re-
sulted in fatal left ventricular dysfunction in mice between three and six
months of age, despite the maintenance of normal systemic iron levels.
Second, animals with cardiomyocyte-specific knock-in of the ferro-
portin isoform C326Y, which retains its iron export function but loses
its hepcidin binding, also developed heart failure of similar nature and
timecourse to that seen in animals lacking cardiomyocyte hepcidin. In
both settings, the cardiomyocytes were found to be iron-depleted due to
increased ferroportin-mediated iron export. The development of cardiac
dysfunction in cardiac-hepcidin knockouts was prevented by in-
travenous iron supplementation. Taken together, these results demon-
strate that the cardiac hepcidin/ferroportin axis is essential for the cell-
autonomous control of the intracellular iron pool upon which normal
cardiac function depends [43].

The cardiac hepcidin/ferroportin axis also protects the heart in the

setting of systemic iron deficiency. Indeed, animals with hepcidin-de-
ficient hearts developed a greater hypertrophic response to sustained
dietary iron restriction than their littermate controls [43]. Cardiac
hepcidin protein was upregulated rather than downregulated by dietary
iron restriction in vivo and by iron chelation in vitro. That hepcidin
regulation in the heart is divergent from that of the liver, suggests that
it functions to counteract the effects of reduced systemic iron avail-
ability, by promoting iron retention within the cardiomyocyte.

Comparison between cardiac and ubiquitous mouse models of dis-
rupted hepcidin/ferroportin axis further reveals that cardiomyocyte
iron levels are a balance between local homeostasis, achieved through
the cardiac hepcidin/ferroportin axis and systemic iron homeostasis,
controlled by the systemic hepcidin/ferroportin axis. For instance, de-
spite a marked increase in cardiac ferroportin levels, systemic loss of
hepcidin responsiveness did not lead to the same cardiovascular dys-
function seen in mice with a cardiac-specific loss of hepcidin respon-
siveness [43]. This suggests that increased systemic availability can
mitigate against the effects of uncontrolled iron release in cardiomyo-
cytes. The interaction between the cardiac and systemic hepcidin/fer-
ropotin axes in hemochromatosis patients is less clear. In particular, it
remains to be established if the cardiac axis has a modifying effect on
the degree of cardiac iron loading and ensuing cardiomyopathy, and
whether differences in cardiac iron control between patients (e.g., due
to factors such as local inflammation and ischemia) explain the lack of
concordance between the severity of liver and of heart iron loading in a
significant proportion of hemochromatosis and thalassemia major pa-
tients [47,48].

4. Questions & implications

The finding that the cardiac hepcidin/ferroportin axis is essential for
cardiomyocyte iron homeostasis and heart function poses a number of
pertinent questions. Rat studies have shown that hepcidin RNA and
protein are upregulated in both the ischemic portion of the infarcted
heart and in the serum of infarcted animals 24 h after myocardial in-
farction MI [49]. In humans, hepcidin has been shown to be elevated in
the serum following MI as early as 4 h, in a manner that is independent
of serum iron levels and of inflammatory markers [50]. Therefore, it
would important to interrogate the role of cardiac hepcidin in ischemic
heart disease and in ischemia-reperfusion injury. Additionally, it re-
mains to be established how inflammation, a hallmark of cardiovas-
cular disease and a known regulator of hepcidin, impinges on the car-
diac hepcidin/ferroportin axis, and on cardiomyocyte iron levels. In the
context of hemochromatosis, it remains to be established how the sys-
temic and cardiac hepcidin/ferroportin axes interact, and the extent to
which local iron regulation in the heart mitigates against or exacerbates
iron overload cardiomyopathy. Finally, greater understanding needs to
be gained of the effects on cardiac iron homeostasis of hepcidin mi-
metics and inhibitors newly developed for the treatment of iron over-
load and iron deficiency respectively.
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