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An endoscope with integrated transparent
bioelectronics and theranostic nanoparticles
for colon cancer treatment
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The gastrointestinal tract is a challenging anatomical target for diagnostic and therapeutic

procedures for bleeding, polyps and cancerous growths. Advanced endoscopes that combine

imaging and therapies within the gastrointestinal tract provide an advantage over stand-alone

diagnostic or therapeutic devices. However, current multimodal endoscopes lack the spatial

resolution necessary to detect and treat small cancers and other abnormalities. Here we

present a multifunctional endoscope-based interventional system that integrates transparent

bioelectronics with theranostic nanoparticles, which are photoactivated within highly

localized space near tumours or benign growths. These advanced electronics and

nanoparticles collectively enable optical fluorescence-based mapping, electrical impedance

and pH sensing, contact/temperature monitoring, radio frequency ablation and localized

photo/chemotherapy, as the basis of a closed-loop solution for colon cancer treatment.

In vitro, ex vivo and in vivo experiments highlight the utility of this technology for accurate

detection, delineation and rapid targeted therapy of colon cancer or precancerous lesions.
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C
onventional endoscopes consist of a flexible tube fitted
with a camera, lens and light delivery system, providing
both maneuverability and direct visualization of the

gastrointestinal tract. More advanced endoscopes allow for
enhanced flexibility and maneuvering within tightly spaced
orifices, while offering both diagnostic and therapeutic
capabilities including tissue biopsy and resection of tumours
and polyps1. Despite the proven utility of current surgical
endoscopes, onboard sensors coupled with treatments are
unavailable because of the macro-scale size of conventional
system, preventing diagnosis and therapy of micro-scale tumours.
To understand the detailed physiological dynamics and treat
cancerous tissues simultaneously in vivo, a new integrated system
with targeted therapies and diagnostics is required2,3. Radio
frequency (RF) ablation and localized photo-/chemotherapies
with biocompatible theranostic nanoparticles serve as effective
alternatives or a supplementation to surgical resection4,5. In
both modes, intraprocedural mapping of diseased tissues
using multimodal devices6–9 and controlled delivery/actuation
of nanoparticles as imagers and probes10–13 for magnetic
resonance, fluorescence, Raman scattering imaging provide
precise information about the location and physicochemical
properties of the targeted growth14–17. The small surface area of
the endoscope tip, however, limits the number of useful sensing
and therapeutic features that can be integrated on endoscopes
using existing packaged electronics.

Here we demonstrate a multifunctional surgical endoscope
system to diagnose and treat intestinal diseases, such as colon
cancers. This ‘smart’ endoscope system contains transparent
bioelectronics, which provides impedance- and pH-based sensing,
in combination with RF ablation therapy to facilitate the
characterization and removal of colon cancers. Additional sensors
for monitoring mechanical contacts and mapping temperatures
provide accurate physiological sensing capabilities during cancer
detection and ablation. The transparency of devices enables
optimal integration of a number of multifunctional sensing and
therapeutic components on the endoscope tip without blocking
the line of sight of the camera or light. By loading transparent
bioelectronics on the camera of the endoscope, the tissue
observed through the camera in fluorescence mapping and/or
phototherapies can be exactly matched with the characterized
and/or ablated tissues by transparent devices. In addition to
transparent bioelectronics, this system has custom-designed
biocompatible theranostic nanoparticles (NPs) with photother-
apeutic and chemotherapeutic agents, which can be
delivered locally and activated with light. This multifunctional
endoscopic system could be useful for the detection of flat
or depressed neoplasms18 and for the treatment of patients
with chronic inflammatory bowel diseases and with increased
risks of developing malignancy due to undetected dysplastic
lesions19. Synergistic effects between the transparent
bioelectronics and theranostic NPs can enhance the tumour
detection accuracy and provide treatment capabilities in response
to the detection.

Results
Multifunctional endoscope system for colon cancer treatment.
A representative clinical application of this smart endoscope
system (Fig. 1a,b) involves the treatment of colon cancer as
schematic illustrations described in Fig. 2. The treatment begins
with the intravenous injection of NPs (Fig. 1a,b, bottom) that
actively target colon cancer cells (HT-29) by specific antibody
(cetuximab) that is conjugated on the surface of the NPs. Imaging
of fluorescence dyes loaded on these NPs provides the optical
information about the spatial distribution of cancer cells.

The endoscope allows laser light to access suspicious sites
exposed to NPs (Fig. 1a,b, top left). These regions are readily
observed due to transparency of the integrated transparent
bioelectronics on the endoscope camera, which have an overall
transmittance of B80% in the visible range (Supplementary
Fig. 1a,b). The transparent bioelectronics and associated sensors
(Fig. 1a,b, top right) provide additional electrochemical analysis
of the tumour distribution. The detailed design of electronics is
shown in Supplementary Fig. 1c–e.

After a suspicious area of tissue is optically observed and
potentially cancerous tissue is identified, these tissues are resected
using forceps, followed by RF ablation using the transparent
bioelectronics. Feedback modulations of this ablation therapy are
based on the continuous monitoring of temperature, contact and
cell/tissue viability. Photodynamic (PDT)-, photothermal (PTT)-,
and chemotherapies induced by PDT dyes (chlorin e6; Ce6), gold
nanorods (Au NRs) and chemo-drugs (doxorubicin; Dox) loaded
in the mesoporous silica shell (MSS) can effectively destroy any
residual cancer cells around the surgically treated area on
activation with irradiated red or near-infrared (NIR) lasers. The
thermosensitive poly(N-isopropylacrylamide) (PNIPAAm) shell
prevents Dox from being released without NIR laser irradiations.
Before procedures, the transparent bioelectronics are cleaned,
sterilized20 and attached to the endoscope (Supplementary
Fig. 2a,b). The sterilization procedure is performed using hot
saturated steam in an autoclave (120 �C, 200 kPa, 15 min), which
does not alter the performance of the electronics (Supplementary
Fig. 2c). The repetitive application of normal and shear stress
does not change the performance of electronics (Supplementary
Fig. 2d). Note that the transparent bioelectronics can be
mechanically bent and twisted without causing fractures
(Supplementary Fig. 2e,f) during the installation, removal
(Supplementary Fig. 2a,b and Supplementary Note 1) and
wiring (Supplementary Fig. 3) due to the high degree of
mechanical deformability achieved by neutral mechanical plane
designs21,22, ultrathin structures23,24 and flexible properties of
graphene (GP)25,26. The transparent bioelectronics also shows
higher mechanical reliability than indium tin oxide, which is well-
known material for transparent electrodes, but has brittle
mechanical properties (Supplementary Fig. 2g). The simple
attachment and detachment of the multifunctional transparent
bioelectronic system provide the wide applicability to endoscopic
devices. The multifunctional endoscopic system can be potentially
used for the targeted ablation of unresectable multiple metastatic
lesions27,28 or the natural orifice transluminal endoscopic
surgery29 to detect and treat metastatic lesions as well as
primary intraluminal lesions.

Characterization of the graphene hybrid. Figure 3a shows a
schematic diagram and scanning electron microscope images of
the graphene hybrid. Chemical vapour deposition-grown
graphene25,26 is modified with Au chemical doping and iridium
oxide (IrOx) deposition9. Au doping on graphene helps achieve
uniform IrOx plating (Supplementary Fig. 4 and Supplementary
Note 2). Ag nanowires (Ag NWs) are then embedded to boost
the electrical conductivity30. This hybrid structure provides
good transparency (Fig. 3b). By selectively electroplating the
IrOx onto active sites, the device–tissue interface with low
contact impedance is realized (Fig. 3c) with preserved high
transparency. Additional characterization of graphene hybrid is
included in Supplementary Fig. 5 and Supplementary Note 3. The
stability of graphene hybrid immersed in biofluids at various
temperatures (Supplementary Fig. 6; including hot steam for
sterilization in Supplementary Fig. 2c) is confirmed through
cyclic voltammetry tests.
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In vitro and ex vivo study of transparent bioelectronics. On the
completion of microfabrication on a handle substrate
(Supplementary Fig. 7), the transparent bioelectronics is transfer
printed onto a preshaped PDMS segment (Supplementary
Fig. 2a,b) and wired (Supplementary Fig. 3). Tumour/pH
sensors, ablation electrodes and viability sensors are calibrated
and characterized ex vivo using both resected HT-29 tissues and
healthy tissues excised from the BALB/c nude mouse model. The
tumour sensor is able to differentiate HT-29 tissues from normal
tissues according to impedance differences (Fig. 3d, top and
middle; Supplementary Note 4). Shift in pH levels around
tumours due to the rapid cancer metabolization serves as another
important marker used to detect tumours31. We monitor pH

changes by measuring the open-circuit potential (OCP)9, since
the surface zeta potential of graphene hybrid has the pH
dependence (Fig. 3d, bottom; Supplementary Fig. 8a; and
Supplementary Note 5). After the calibration, pH sensors show
reliable and stable performances over different pH ranges, by
different pH sensors, and in repeated multiple uses
(Supplementary Fig. 8b–d). RF ablation studies using graphene
hybrid electrodes are conducted in vitro, ex vivo and in vivo
(Fig. 3e and Supplementary Fig. 9). The spatial (lateral and
vertical) thermal distribution of RF ablation using graphene
hybrid electrodes are compared with that using conventional
commercial ablation electrodes (Boston Scientific Corporation;
Model 5031T) on agar (in vitro) and BALB/c nude mouse model
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(in vivo), whose temperature distribution and lesion sizes are
imaged with the infrared and optical camera, respectively
(Supplementary Fig. 9). Both electrodes show similar results. To
control lesion profiles effectively, conformal contact and
temperature are constantly monitored during ablation (Fig. 3f).
Finally, the viability sensor differentiates ablated tissues from
non-ablated ones by measuring local impedance changes
(Fig. 3g). Although the direct mapping of the three-dimensional
thermal profile during RF ablation is challenging, it is clinically
important. Previous reports provide a theoretical model for the
prediction of the three-dimensional thermal profile during the
ablation by using the two-dimensional surface temperature
profile and the lesion size6.

In vitro imaging and therapy with theranostic nanoparticles.
Theranostic NPs, which are used in conjunction with the
transparent bioelectronics, provide additional cancer diagnosis
and targeted therapies (Fig. 1a,b, bottom). The detailed synthetic
procedures and characterizations are described in Supplementary
Fig. 10 and Supplementary Note 6. These NPs consist of Au NR
core coated with MSS to create a photothermally active core-shell
structure (Au NR@MSS)15,32, on which fluorescence dye
(rhodamine B), PDT dye and Dox are loaded. PNIPAAm is
polymerized on the surface of MSS to provide the
effective encapsulation of Dox10,33. Cytotoxicity tests show
that these drug-loaded NPs have minimal effect on the cell
viability after the PNIPAAm encapsulation in comparison with
control experiments (Fig. 4a). Cetuximab (Erbitux) antibody is
conjugated on PNIPAAm to allow the active targeting (Figs 1b
and 4b� d) of epidermal growth factor receptors that are
overexpressed in colon cancer (HT-29) cells. The conjugation
of the theranostic NPs with tumour-specific antibodies can
distinguish the subtypes of tumour by fluorescence imaging34.

The cell transmission electron microscope images in Fig. 4b
and Supplementary Fig. 11 show the targeted uptake of NPs by
cancer cells, which is corroborated by fluorescence images in
Fig. 4c and flow cytometry data in Fig. 4d. These theranostic NPs
can treat cancer cells via reactive oxygen species (ROS) generation
(Fig. 4e), photo-induced hyperthermia (Fig. 4f) and controlled
drug release (Fig. 4g). The photoactivation of NPs is localized to
laser-irradiated regions and controlled by modulating the laser
intensity (Supplementary Figs 12–15). Direct control of the laser
light, which is delivered through an optical fibre and guided with
the endoscope (Fig. 1 and Supplementary Fig. 16), can overcome

many issues related to the penetration depth of light35. Because
colon cancers are normally located in superficial regions, our
system is less affected by the penetration depth problem of light
in comparison with other tumour cases. PDT dyes on NPs are
more efficiently delivered to and taken up by cancer cells,
compared with controls (cancer cells treated by free form of PDT
dyes and non-treated ones), as shown in flow cytometry results
(Fig. 4e, middle). When radiated by continuous wave red laser
(wavelength 670 nm), PDT dyes generate ROS and cell viability is
decreased (Fig. 4e, bottom; and Supplementary Figs 12b and
13)36. The temperature is photothermally modulated by changing
particle concentration, continuous wave NIR laser intensity
(wavelength 808 nm) and duration of irradiation, optimized for
decreasing cancer cell viability (Fig. 4f and Supplementary
Figs 12b and 14). Increasing temperature causes a change in
the hydrodynamic diameter of NPs from B290 to B110 nm by
the shrinkage of PNIPAAm layer, which in turn induces the
release of Dox loaded in NPs (Fig. 4g, middle)37. The release
temperature (445 �C) is strategically designed to be higher than
the body temperature (B36.5 �C). PNIPAAm block copolymer
suppresses drug release in the absence of laser radiation (Fig. 4g,
bottom; and Supplementary Figs 12b and 15), thus minimizing
side effects of Dox. Furthermore, viability tests of cancer cells
after PDT, PTT, PTT/chemo- and combined therapies (using
GaAs pulsed laser; wavelength 690 nm, power 30 mW for red
laser and wavelength 808 nm, power 30 mW for NIR laser)
confirm the synergistic effect of the combined treatment (Fig. 4h
and Supplementary Fig. 12b).

In vivo colon cancer treatment. The integrated system,
transparent electronics on the endoscope and theranostic NPs
actuated by guided lasers can be applied to in vivo models. The
in vivo experimental set-up is shown in Supplementary Fig. 17.
Endoscopic treatment of colon cancer (HT-29) grown on the
sub-dermis surface of BALB/c nude mouse begins with the
injection of NPs intravenously through the tail vein. Since colon
cancer models are not available in large animals and endoscopes
are too large for gastrointestinal tracts of small animals, we
conduct in vivo studies using mouse subcutaneous colon cancer
models. Side effects from Dox are minimized, however, since the
release of Dox loaded on NPs is suppressed by the PNIPAAm
encapsulation (Fig. 4a,g, bottom). Fluorescence image of resected
organs and biodistribution analysis data show successful targeting
(Supplementary Fig. 18a,b). Most NPs are cleared from the blood
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in 1 day due to the short circulation time (t1/2¼ 20 min;
Supplementary Fig. 18c). A large number of NPs accumulate in
the tumour within 6 h of injection (Fig. 5a and Supplementary
Fig. 18d) and active targeting using the antibody conjugation
shows enhancement in the targeting efficiency of NPs
(Supplementary Fig. 18e,f and Supplementary Note 7).

Fluorescence optical imaging of NP-targeted tumours is
obtained in vivo by IVIS Lumina II (PerkinElmer) 6 h after NP
injection, in which tumour-suspected and tumour-free areas are
screened (Fig. 5a). The details are observed visually with the camera
installed in the endoscope. Images of the tumour-grown surface
captured by the endoscope camera reveal that the transparent
bioelectronics do not disturb the visual observation, while the
control standard metal device causes severe interferences (Fig. 5b).
On identifying the cancerous cells, RF ablation therapy is employed
to destroy the tumours. In this case, contact sensors are used to
detect conformal contacts between electronics and tissues (Fig. 5c).
In the contact mode during RF ablation, the visual observation of

tumours is unavailable. Therefore, the impedance-based tumour
and pH sensors are used to locate cancer tissues (Fig. 5d,e),
according to the lower impedance and pH levels of tumour cells.
The calibrated impedance and pH sensor successfully detects pH of
target tissues in vivo under the contact mode (Fig. 5e). Monitoring
temperature changes (Fig. 5f) provides additional guidance during
RF ablation (Fig. 5g). Finally, tissue viabilities are measured to
confirm the ablation therapy (Fig. 5h). We also conduct ex vivo
studies using mouse colon cancer tissues attached on a porcine
colon to show potential applicability of the current system to large
animals (Supplementary Fig. 19). Although conducted ex vivo,
these results validate operation of the device and demonstrate the
potential for practical implementation in humans.

Together with physical treatments through the transparent
bioelectronics, cancer cells are treated with theranostic NPs that
are locally activated using continuous wave red and NIR lasers
(Supplementary Fig. 16) to induce PDT (ROS), PTT (heat) and
chemotherapy (Dox). The effectiveness of these multiple
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interventions is confirmed in vivo by tracking changes in tumour
volume (HT-29) based on visual observations (Fig. 5i,j). Tumour
volume increases in the control group (no therapy) after 2 weeks,
whereas it decreases in the treated groups. Furthermore, when the
tumour grown on the mouse model is either laser irradiated
without injecting NPs or treated with chemo-drugs (Dox) only
without targeting carriers (NPs), the tumour volume increases
(Supplementary Fig. 20). The combined therapy group (PDT,
PTT and chemotherapy all together) exhibits marked decrease in
the tumour volume. Since the PTTþ chemotherapy already has a
good therapeutic effect and suppresses the tumour growth in our
in vivo model, this makes little difference in tumour volume
between PTTþ chemo and combined therapies. However, the
combined therapy shows its higher effectiveness than other
therapies in the in vitro test (Fig. 4h). The haematoxylin and eosin
(H&E) staining and terminal deoxynucleotidyl transferase dUTP

nick end labelling (TUNEL) assay images of the tumour after
treatments reveal irregular structures due to both apoptosis and
necrosis of cancer cells (Fig. 5k,l and Supplementary Fig. 21).
From 40,6-diamidino-2-phenylindole and cleaved caspase-3
staining images, it seems that cell death might be caused by
apoptosis (Supplementary Fig. 22)38,39. Although further large
animal studies are required, the translation of theranostic
nanoparticles for human patients can be pursued13.

Discussion
Materials, designs and integration strategies for advanced,
transparent bioelectronics and theranostic NPs onboard
multifunctional endoscope systems have the potential to reduce
the procedure time and improve the efficiency of minimally
invasive surgical procedures for colon cancer treatment. These
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multifunctional endoscopic system for simultaneous in vivo
histologic detection, delineation and rapid targeted treatment will
be substantial for the reduction of missed lesions, whether they
are intraluminal mucosal lesion or extraluminal metastatic lesion.
Furthermore, efficient therapy can contribute to the excellent
oncologic and economic yield for various gastrointestinal cancers
or precancerous lesions in the future. These systems facilitate
access to internal organs and provide a significant amount of
diagnostic feedback during treatment routines, thus highlighting
the utility of this technology in the translational medicine.

Methods
Fabrication and transfer of transparent bioelectronics. The microfabrication
process (Supplementary Fig. 7) begins with the deposition of a sacrificial nickel
layer (100 nm, via thermal evaporation) on a handle silicon wafer. Then a bottom
epoxy layer is patterned using SU8-2. The graphene is synthesized on the Cu foil
through a chemical vapour deposition process26. A Raman spectroscopy data of

graphene is obtained using T64000 (Horiba, Japan) at National Center for Inter-
University Research Facilities (NCIRF) (Supplementary Fig. 5a). The synthesized
graphene is transferred to the target substrate by the graphene (GP) scooping
method using poly(methyl methacrylate) A4 after the wet etching of the Cu foil.
Next, the Ag NW solution (0.5 wt% in isopropanol) is spin coated at 2,000 r.p.m.,
followed by the annealing at 130 �C for 1 min. Ag NW/GP layers are patterned by a
photolithographic process. Ag NWs on the active sites of the temperature sensors
are selectively removed to enhance the temperature monitoring sensitivity
(Supplementary Fig. 6b). Then, another GP layer is transferred onto Ag NW/GP
layers. After patterning of the top graphene, the device is encapsulated by epoxy
layer (SU8-2). External interconnection parts are also fabricated for power supply
and data acquisition (Supplementary Fig. 3). These interconnections consist of a
polyimide encapsulation layer and an Au/Cr metal layer, which is evaporated
thermally and patterned via photolithography and etching processes. The
fabricated transparent bioelectronics is transferred onto endoscope. In Fig. 1b and
Supplementary Fig. 3, we use the Fujinon endoscope (ES-410WE, Fujinon;
13.0 mm of diameter, 760 mm of working channel length, flexible type) for imaging
integrated devices on the endoscope. In Fig. 5b, we use the Olympus endoscope
(CF Type H260AL, Olympus; 13.2 mm of diameter, 1,680 mm of working channel
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length, flexible type) for imaging the tumour by the camera of the endoscope
through devices.

Electroplating IrOx for graphene hybrid. Before the electroplating of IrOx, GP/Ag
NW/GP electrodes are immersed in a 20-mM AuCl3 solution for 10 min for doping,
which enhances the uniformity of the IrOx film deposition (Supplementary Fig. 4).
The IrOx solution for electroplating is prepared by dissolving 150 mg of iridium
tetrachloride in 100 ml of ultrapure distilled water with 20 min of stirring. A 1-ml
aliquot of aqueous 30% H2O2 is added and stirred for 10 min, and after which
500 mg of oxalic acid dihydrate is added and stirred for another 10 min. Finally,
anhydrous potassium carbonate is used to adjust the solution pH to 10.5. The
resulting solution is stored in room temperature for 1 week to stabilize iridium ions,
resulting in a solution of the light-violet colour. Electrodeposition is performed by
the three-electrode method using an electrochemical analyser. Chronopotentiometry
is conducted at 0.7 V for 5 min across the graphene hybrid working electrode, the
Pt wire counter electrode and the Ag/AgCl reference electrode in the IrOx solution.

Electrical stability of graphene hybrids in biofluids. To be suitable as sensors
and actuators (for example, ablation electrodes) in a smart endoscope procedure,
the electronics have to withstand temperature fluctuations during RF ablation and
exposure to multiple electrochemical cycles in bio-fluidic environments. The
graphene hybrid maintains a stable impedance value in the temperature range of
20–50 �C in PBS (Supplementary Fig. 6a). The change in the resistance of the
interconnection is small (Supplementary Fig. 6b). The graphene hybrid maintains
electrochemical stability after multiple cyclic voltammetry tests in PBS
(Supplementary Fig. 6c). The stability of its impedance in fetal bovine serum (Life
Technologies, 16000) is also confirmed over 6 h (Supplementary Fig. 6d),
demonstrating stable electrochemical operation in bio-fluidic environments.

Ex vivo and in vivo tumour sensing. Ex vivo and in vivo tumour sensing is based
on the detection of different impedance values between resected normal tissues and
tumours (HT-29) (Fig. 3d, middle and 5d). Tumours are grown on the thigh region
of a mouse (BALB/c nude mouse). Normal tissues of the opposite thigh region are
used as a control group. The resected tissues are positioned on the working and
counter electrodes of tumour sensor (Fig. 3d, top), which are connected to an
electrochemical analyser for impedance measurements (two-electrode method).
In vivo impedance-based tumour sensing requires conformal contacts to target
tissues for precise measurements. After incision of skin, the tumour sensor directly
contacted to target tumour and normal tissues. The conformal contact is confirmed
with integrated contact sensors.

In vitro and in vivo pH sensing. The zeta potential of the IrOx film surface is
dependent on the pH of the solution and directly affects the OCP. The pH
dependence of surface zeta potential is characterized using an electrokinetic analyser
(Supplementary Fig. 8a). The pH sensor is connected to an electrochemical analyser
and operated by two-electrode method using pH-sensitive graphene hybrid working
electrode and Au-doped GP/Ag NW/GP counter electrode. The OCP is calibrated
using standard buffer solutions (pH 5, 7 and 9 solution, Alfa Aesar; product #42417,
38172 and 42421) (inset of Fig. 3d, bottom). The reliability of pH sensors are tested
with 10 pH sensors in repetitive uses using graphene hybrid working electrode,
platinum counter electrode and Ag/AgCl reference electrode (Supplementary
Fig. 8b–d). The measured OCP values are converted to pH values based on the
calibration curve. During the in vivo experiment, pH sensor is directly contacted to
the target tissues (tumour, dermis and muscle) after incision of skin and collection of
blood from the mouse (Fig. 5e). For the pH measurement of blood, heparin is added
to prevent coagulation of the collected blood (5 IU heparin per ml of blood).

RF ablation and feedback monitoring. RF ablation is conducted using the
experimental set-up shown in Supplementary Fig. 17, in which the transparent
bioelectronics are connected to three different analysers. An electrochemical analyser
is used to measure the impedance change of the contact sensor, the tumour detector
and the viability sensor, which are all made from the same graphene hybrid but have
different designs for each specific application. The RF ablation is conducted by
connecting the ablation electrode to a RF generator and using the conventional RF
ablation conditions (45–60 W). The on and off contact is monitored through
impedance changes of the contact sensor. The temperature during the RF ablation is
continuously monitored by measuring resistance changes of the temperature sensor
by a digital multimeter, which is confirmed by a commercial infrared camera. Tissue
viability is measured impedance change through pre- and post-RF ablation.

Synthesis of multifunctional theranostic NPs. Multifunctional theranostic NPs
are synthesized by multiple stepwise reactions and separation processes. The
synthetic process consists of (i) Au NR synthesis, (ii) MSS synthesis, (iii) PDT and
FL dye conjugation, (iv) PNIPAAm encapsulation and (v) antibody conjugation
and Dox loading.

i Au NR synthesis: Au seed solution is made by injecting the NaBH4 solution
(600ml, 10 mM) to an aqueous seed solution containing HAuCl4�3H2O (250ml,
10 mM) and cetyltrimethylammonium bromide (CTAB; 7.5 ml, 100 mM). The
growth solution is made by adding HAuCl4�3H2O (1.7 ml, 10 mM) and
AgNO3 (250ml, 10 mM) to the CTAB solution (40 ml, 100 mM), into which L-
ascorbic acid (270ml, 100 mM) is injected. This Au seed is then converted to Au
NR by injecting the additional seed solution (420ml) into a growth solution,
which is left to react for 3 h. The final product solution is centrifuged twice.

ii MSS synthesis: the silica shell is grown on the surface of Au NR. Tetraethyl
orthosilicate (30ml) is injected to the Au NR solution (50 ml) under alkaline
conditions (pH 10–11) and reacted with Au NRs for 4 h. Functionalization of the
silica surface is achieved by injecting (3-aminopropyl) triethoxylsilane (10ml) and
3-(methacryloxy) propyl triethoxysilane (10ml), and the solution is stirred for 4 h.
Then, the silica-coated Au NRs are centrifuged twice and dispersed in the ethanol.
To create pores in the silica shell, HCl is added to the NP–ethanol suspension to
adjust its pH to 1–2, which is refluxed to remove the CTAB templates. The
resulting Au NR@MSS is centrifuged twice and dispersed in water.

iii PDT and FL dye conjugation: Ce6 reacts with the equimolar amount of
N-(3-dimethylaminopropyl)-N0-ethylcarbodiimide hydrochloride and
N-hydroxysuccinimide (NHS). And the functionalized Ce6 is reacted with
Au NR@MSS for 12 h. To conjugate FL dyes, rhodamine B isothiocyanate
is mixed and reacted for 12 h. After the conjugation, Au NR@MSS is
centrifuged and dispersed in water.

iv PNIPAAm encapsulation: to produce a PNIPAAm shell, the Au NR@MSS
solution (5 ml) is reacted with N-isopropylacrylamide (12 ml, 100 mM),
acrylic acids (1.4 ml, 100 mM), N, N0-methylenebis(acrylamide) (1.2 ml,
100 mM), acrylate–PEG–NHS (20 mg) ans SDS (200 ml). The solution is
bubbled with argon and heated to 70 �C to remove oxygen. After 30 min,
potassium persulfate (1 ml, 20 mM) is injected to initiate the polymerization.
The Au NR@MSS@PNIPAAm solution is then centrifuged twice to remove
unreacted chemical regents.

v Antibody conjugation and Dox loading: the cetuximab (antibody) (2 ml,
5 mg ml� 1) is added to the Au NR@MSS@PNIPAAm solution for the
conjugation. The NHS-end group is reactive with the PEG-end group. This
antibody-conjugated Au NR@MSS@PNIPAAm is then centrifuged and
dispersed in PBS. Then, Dox (1 ml, 0.6 mg ml� 1) solution is added to the NP
solution (5 ml) and stirred for 1 day. Excess Dox is removed by centrifuging NPs.

Characterization of theranostic NPs. The size changes of the synthesized NPs
according to the temperature change (increase from 20 to 55 �C and decrease from
55 to 20 �C) are measured by the dynamic light scattering. The hydrodynamic
diameter is measured for every 5 �C increment (Fig. 4g, middle). Temperature
changes in the Au NR and PBS solution (concentration of 50, 100 and 200mg ml� 1)
induced by the continuous wave NIR laser irradiation (1 W, 5 min) are measured by
the infrared camera at 0, 1, 2, 3, 4 and 5 min (Fig. 4f, middle and bottom).
Ultraviolet–visible spectrophotometry is used to calculate the amount of drug loaded
on NPs by measuring the initial and supernatant Dox peak intensity values at
480 nm. Photoluminescence spectrophotometry is used to acquire the amount of
released drug by measuring supernatant Dox peak intensity value at 580 nm (exci-
tation wavelength of 480 nm) (Fig. 4g bottom). Florescence correlation spectroscopy
is used to calculate the amount of conjugated FL dyes on NPs. The amount of PDT
dyes conjugated on NPs is measured by using ultraviolet–visible spectrophotometer
and ICP-AES (inductively coupled plasma atomic emission spectroscopy).

Preparation of FHC and HT-29 for in vitro experiments. Human colon epithelial
normal cells (FHC) were purchased from American Type Culture Collection
(ATCC; catalogue number: CRL-1831) and human colon epithelial cancer cells
(HT-29) were purchased from Korean Cell Line Bank (catalogue number: 30038).
The culture medium for the FHC (ATCC, CRL-1831) is DMEM/F-12 (Life
Technologies, 11320) with 10% bovine serum (Life Technologies, 16000), 1%
penicillin streptomycin, 25 mM HEPES, 10 ng ml� 1 cholera toxin, 5 mg ml� 1

insulin, 5 mg ml� 1 transferrin and 100 ng ml� 1 hydrocortisone. The culture
medium for the HT-29 (KCLB, 30038) is RPMI 1640 containing 10% bovine serum
and 1% penicillin streptomycin. Both cell types are deposited on culture plates and
incubated at 37 �C under the atmosphere of 5% CO2.

Cytotoxicity and active targeting of NPs in vitro. The cytotoxicity of the NPs is
measured by MTS assay, in which HT-29 cells are suspended in the culture medium
with a concentration of 1� 105 cells per ml. A volume of 100ml of this suspension is
dispensed in each well of a 96-well plate. After the incubation for 2 days, Dox-loaded
and -unloaded NPs with the PNIPAAm encapsulation as well as Dox-loaded NPs
without the PNIPAAm encapsulation are injected to check the cytotoxicity. After 1
day, each cell is washed and 100ml of the fresh cell culture medium is added along
with 20ml of the MTS solution (CellTiter 96 AQueous). After further incubation for
2 h, the light absorbance at 490 nm, which is proportional to the cell viability, is
measured by a cell plate reader (Fig. 4a). To estimate the active targeting efficiency,
NPs are injected into the FHC and HT-29 cell media. Cells are incubated for 4 h and
washed twice to remove remaining NPs. Since NPs are conjugated with a red
fluorescence dye (RITC), their active targeting efficiency can be characterized by the
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red fluorescence mapping (lex/lem¼ 550/580 nm) using the confocal laser scanning
microscopy (CLSM). The cell nuclei are also dyed with 40 ,6-diamidino-2-pheny-
lindole to identify the location of individual cells (lex/lem¼ 340/488 nm; Fig. 4c).
The uptake of NPs by FHC and HT-29 is measured by a flow cytometer (Fig. 4d),
in which 10,000 cells are counted. The targeting efficiency of free Ce6 and
Ce6-conjugated NPs is also compared (Fig. 4e, middle). ROS generation after
irradiation of continuous wave red laser is measured with ROS-sensing dye
(DHR123, lex/lem¼ 488/520 nm) using CLSM (Fig. 4e, bottom).

In vitro phototherapy experiments using theranostic NPs. The therapeutic
effect of NPs is estimated by treating HT-29 cells with NPs, which are not con-
jugated with RITC, incubating cells for 4 h and then washing them twice to remove
remaining NPs. In the case of PTT, NPs without the Dox loading are used. For the
chemotherapy, Dox-loaded NPs are used. A pulsed laser (wavelength 690 nm,
power 0–40 mW for PDT; wavelength 808 nm, power 0–40 mW for PTT) is used
and irradiated for 10 min. A volume of 10 ml of calcein AM (1 mg ml� 1) and
propidium iodide (1 mg ml� 1) are added afterwards. CLSM is used to measure the
cell viability based on the excitation/emission wavelengths of calcein AM
(lex/lem¼ 488/520 nm) and propidium iodide (lex/lem¼ 550/620 nm).

Animal experiment and animal model of HT-29 cancer. All procedures are
approved by the Institutional Animal Care and Use Committee (IACUC) of the
Biomedical Research Institute of Seoul National University Hospital, and all experi-
mental procedures are performed according to the IACUC guidelines. HT-29 cancer
cells (1� 106) in 50ml of serum-free media are mixed with an equivalent volume of
Matrigel (BD Biosciences). The mixture is subcutaneously injected into the flank of
female BALB/c nude mouse (aged 6–8 weeks). The maximum weight of tumours did
not exceed 10% of total body weight in accordance with the IACUC guidelines.
Experiments were performed with tumour sizes of 100±30 mm3 (2 weeks after the
tumour implantation). After phototherapy mice were divided into two groups. One
group was used to monitor the efficacy of treatment. The size of tumours was checked
every 3 days and mice were killed 20 days after treatment. Mice in the other group
were used for immunohistochemistry and killed 7 days after treatment.

In vivo active targeting and phototherapies of NPs. NPs are intravenously
injected into the BALB/c nude mouse model with colon cancer, through the tail
vein. The estimation of in vivo toxicity is based on histology analysis of the organs
(Supplementary Fig. 23). Individual organs show no inflammations after NPs
targeting. The tumour-targeting efficiency of NPs is characterized through phar-
macokinetics, biodistribution and fluorescence studies. Blood samples are collected
at 10 min, 30 min, 2 h, 6 h and 24 h after the NP injection. After 24 h, the mice are
killed and the organs are collected for quantitative measurement of NP distribu-
tion. The collected blood and organ samples are dissolved by the acid solution and
the Au concentration is measured by ICP-MS (Supplementary Fig. 18b,c). The
fluorescent images of the whole body and the extracted organs are obtained using
IVIS Lumina II (PerkinElmer) (Fig. 5a and Supplementary Fig. 18a,d,e). In vivo
photo- and chemotherapies using NPs are performed with the radiation of red and
NIR continuous wave lasers. The tumour region is irradiated by 670-nm red laser
(500 mW for 6 min) for PDT or 808-nm NIR laser (1.5 W for 6 min) for PTT. After
treatments, tumour sizes are measured by caliper for 2 weeks (tumour volume¼
W2� L/2, W¼width, L¼ length) (Fig. 5j and Supplementary Fig. 20).
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