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a b s t r a c t

The present study is conducted to determinate fatty acids (FA) composition in 3 adipose tissues. Sub-
cutaneous and perirenal adipose tissues were prepared from 24 Ningxiang castrated boars and 24 cas-
trated gilts fattened by a traditional diet for 56 d, respectively. The results showed that the FA profile in
the 3 adipose tissues (dorsal subcutaneous adipose [DSA], abdominal subcutaneous adipose [ASA], and
perirenal adipose [PA]) differed greatly. In boars, the proportions of oleic acid (c18:1n9c) (P < 0.05), cis-
11-20c acid (c20:1) (P < 0.05), and a-linolenic acid (c18:3n3) (P < 0.05) in DSA were the highest among 3
adipose tissues, whereas palmitic acid (c16:0) (P < 0.05) and stearic acid (c18:0) (P < 0.05) in DSA had the
lowest proportion. In gilts, cis-11-20c acid (c20:1) (P < 0.05) in DSA was the highest, while stearic acid
(c18:0) (P < 0.05) in subcutaneous adipose was the lowest among these deposits. Overall, the results
indicate that from external to inner carcass of boars, the sum of saturated fatty acids (SFA) increase, but
the sum of monounsaturated fatty acids (MUFA) decrease, while ASA of gilts have the greatest proportion
of MUFA and the lowest SFA. Sex and adipose locations as significant effects on the FA profile are
interaction.

© 2018, Chinese Association of Animal Science and Veterinary Medicine. Production and hosting
by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Adipose tissue, which is made of fatty acids (FA) and triglyceride,
plays an essential role in chemical and sensorial traits of curedmeat
products (Delgado et al., 2002). Fatty acids have critical physical
characteristics of fat, such as color, translucence and firmness
(Delgado et al., 2002), and they are also precursors of most com-
pounds for aroma. The types and proportions of FA are influenced
by many factors such as feeding (Rentfrow et al., 2003; Rossi et al.,
2010; Martins et al., 2012; Bee et al., 2002), breed (Franco et al.,
2006), genotype (Kouba et al., 2003; Piedrafita et al., 2001;
iation of Animal Science and
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Martins et al., 2012) as well as genetic conditions (Monziols et al.,
2007).

Ningxiang pig, as a well-known indigenous fat-type breed, ex-
hibits early sexual maturity and has a better meat quality than
other local pigs (Feng et al., 2012). This breed is highly appreciated
by consumers because of the tender succulent meat with special
flavor. Subcutaneous and visceral adipose tissues with different
anatomical locations show specific development and metabolism,
especially in the FA composition. However, the FA profile of Ning-
xiang pig has not yet been addressed. Therefore, the aims of this
research are to study and compare the FA profile in the 3 adipose
tissues (dorsal subcutaneous adipose [DSA], abdominal subcu-
taneous adipose [ASA], perirenal adipose [PA]) of Ningxiang pig
breed.
2. Materials and methods

2.1. Animals and experimental treatments

Feed ingredients were purchased from Hunan Liushahe Spotted
Pig Eco-Farm Co., Ltd. (Hunan, China). The nutrient levels of the
uction and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is
nses/by-nc-nd/4.0/).
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experimental diets met the NRC (2012) recommendations for pigs
and the Feeding Standard of Swine (NY/T 65-2004), and the
detailed FA composition of diets are listed in Table 1. Unless spec-
ified, other chemicals and reagents were purchased from Sigma (St.
Louis, MO, USA).

Twenty-four castrated boars (43.36 kg average BW) were
randomly allotted to 8 pens and 3 pigs per pen for a 56 d period.
Twenty-four castrated gilts followed the same setting. Pigs had free
access to feed and water at all times throughout the experimental
period. Methods were performed according to the guidelines of the
Declaration of Helsinki, and all experimental protocols involving
animal subjects were approved by Animal Welfare Committee of
College of Animal Science and Technology, Hunan Agricultural
University (No. 2013-06).

2.2. Sample collection and determination

At the end of the experiment, pigs (75.21 ± 1.40 kg BW) from
each pen were randomly selected for sample collection. After
anesthetized by the intravenous administration of sodium pento-
barbital (50 mg/kg BW), the pigs were euthanized by exsanguina-
tion. Samples (approximately 10 g of each tissue) of adipose tissues
(DSA, ASA and PA) were rapidly excised, and then stored at �20 �C
until further analysis.

Lipids were extracted from the adipose tissue samples by the
chloroformemethanol (1:1, vol/vol) procedure. Fatty acid methyl
esters were prepared for GC determination using KOH/methanol
(Demirel et al., 2004) and analyzed using an Agilent 6890N gas
chromatographer equipped with a flame ionisation detector
(Agilent Technologies). A CP-Sil 88 fused silica open tubular
capillary column (100 m � 0.25 nm; Chrompack) was used. The
oven temperature was initially set at 45 �C for 4 min, raised to
175 �C at a rate of 13 �C/min, and then held at 175 �C for 27 min,
then increased to 215 �C at a rate of 4 �C/min, and then held at
215 �C for 35 min. The injector and detector temperatures were
set at 250 �C. The carrier gas was hydrogen at a flow rate of
30 mL/min. Identification of individual FA methyl esters was
accomplished by the retention times of an authentic standard. The
concentration of individual FA was quantified based on the peak
area, and expressed as a percentage of total FA (Yin et al., 2000).

2.3. Statistical analysis

Data obtained from this study were subjected to one way
analysis of variance (ANOVA) using a general linear model of SAS
software (SAS Inst. Inc., Cary, NC, USA). The differences between
significant means were separated using Tukey's test. Probability
Table 1
Fatty acid composition of diet (air-dry basis)1.

Item Percentage, %

myristic acid (c14:0) 0.47
palmitic acid (c16:0) 22.88
palmitoleic acid (c16:1) 0.52
margaric acid (c17:0) 0.19
stearic acid (c18:0) 9.63
elaidic acid (c18:1n9t) 0.06
oleic acid (c18:1n9c) 2.19
linoleic acid (c18:2n6c) 58.77
a-linolenic acid (c18:3n3) 2.40
g-linolenic acid (c18:3n6) 1.04
arachidic acid (c20:0) 0.43
cis-11-20c acid (c20:1) 0.97
arachidonic acid (c20:4n6) 0.27
others 0.18

1 Fatty acids were determined values.
values of 5% level of significance (P < 0.05) were used to detect
significant levels.

3. Results

3.1. Fatty acid profile of three adipose tissues in boars

Table 2 shows that the proportion of saturated fatty acids (SFA)
and the ratio of SFA to unsaturated fatty acids (UFA) in DSA of boars
were significantly (P < 0.05) lower than those in ASA and PA, while
the proportion of UFA in DSA was significantly (P < 0.05) higher
than that in ASA and PA. The proportion of monounsaturated fatty
acids (MUFA) in DSAwas significantly (P < 0.05) higher than that in
ASA and PA. The proportions of a-linolenic acid (c18:3n3) and do-
cosahexaenoic acid (c22:6n3) were significantly different (P < 0.05)
in the 3 adipose tissues. The proportions of a-linolenic acid
(c18:3n3) in DSA and docosahexaenoic acid (c22:6n3) in ASA were
the highest. The proportions of myristic acid (c14:0), palmitic acid
(c16:0), margaric acid (c17:0), stearic acid (c18:0), linoleic acid
(c18:2n6c), elaidic acid (c18:1n9t) in DSA were significantly
(P < 0.05) lower than those in ASA and PA, while the proportions of
oleic acid (c18:1n9c) and cis-11-20c acid (c20:1) in DSA were sig-
nificantly (P < 0.05) higher, but no significant differences were
observed in myristic acid (c14:0), palmitic acid (c16:0), margaric
acid (c17:0), stearic acid (c18:0), linoleic acid (c18:2n6c), elaidic
acid (c18:1n9t), oleic acid (c18:1n9c) and cis-11-20c acid (c20:1)
between ASA and PA.

3.2. Fatty acid profile of three adipose tissues in gilts

Table 3 shows that UFA in the 3 adipose tissues in gilts was
higher than SFA. The SFA proportion was significantly different
(P < 0.05) among the 3 adipose tissues and the range was PA, DSA
and ASA fromhigh to low. The proportion ofMUFAwas significantly
different (P < 0.05) among ASA, DSA and PA. The proportions of
stearic acid (c18:0) and oleic acid (c18:1n9c) were significantly
different (P < 0.05) in the 3 adipose tissues. The proportion of
stearic acid (c18:0) in PAwas the highest (P < 0.05). The proportion
of oleic acid (c18:1n9c) in ASA was the highest (P < 0.05). The
proportions of myristic acid (c14:0), palmitoleic acid (c16:1), a-
linolenic acid (c18:3n3) and arachidonic acid (c20:4n6) in ASAwere
significantly (P < 0.05) higher than those in DSA and PA. These 3
locations of adipose from Ningxiang pigs had no significant influ-
ence on the proportions of palmitic acid (c16:0), margaric acid
(c17:0), g-linolenic acid (c18:3n6) and cis-8, 11, 14-eicosatrienoic
acid (c20:3n6).

3.3. Fatty acid profile of three adipose tissues in general

The proportions of FA in ASA, DSA and PA are shown in Tables 2
and 3. The results showed that the FA composition in these 3 adi-
pose tissues of Ningxiang pigs contained 4 major FA, which were
oleic acid (c18:1n9c), palmitic acid (c16:0), stearic acid (c18:0) and
linoleic acid (c18:2n6c). Within UFA, the proportion of MUFA was
higher than that of polyunsaturated fatty acid (PUFA).

4. Discussion

Generally, these 3 adipose tissues, which are made of fat cells
with lipid droplet, contain 90% to 98% triglyceride (Snyder, 1977).
The FA composition mainly depends on the metabolism. For
example, the difference in water content among these 3 tissues
may change the FA profile, and DSA have higher water content
than PA (Anderson et al., 1972). However, despite the difference in
water content, the FA profile was very similar in the 3 adipose



Table 2
Fatty acid profile of 3 deposits in Ningxiang boars, %.

Item DSA ASA PA P-value

myristic acid (c14:0) 1.34 ± 0.05b 1.71 ± 0.06a 1.55 ± 0.05a <0.001
palmitic acid (c16:0) 24.81 ± 0.43b 28.99 ± 0.47a 28.54 ± 0.42a <0.001
palmitoleic acid (c16:1) 1.95 ± 0.10ab 2.11 ± 0.18a 1.69 ± 0.07b 0.081
margaric acid (c17:0) 0.20 ± 0.01b 0.25 ± 0.01a 0.26 ± 0.01a <0.001
stearic acid (c18:0) 13.87 ± 0.55b 17.92 ± 0.90a 19.68 ± 0.44a <0.001
elaidic acid (c18:1n9t) 0.11 ± 0.010b 0.23 ± 0.02a 0.25 ± 0.02a <0.001
oleic acid (c18:1n9c) 46.93 ± 0.78a 37.19 ± 1.03b 36.72 ± 0.75b <0.001
linoleic acid (c18:2n6c) 8.75 ± 0.28b 10.54 ± 0.63a 10.29 ± 0.24a 0.014
a-linolenic acid (c18:3n3) 0.35 ± 0.01a 0.11 ± 0.00b 0.06 ± 0.01c <0.001
g-linolenic acid (c18:3n6) 0.03 ± 0.00a 0.03 ± 0.00ab 0.02 ± 0.00b 0.013
arachidic acid (c20:0) 0.23 ± 0.01 0.22 ± 0.01 0.22 ± 0.01 0.531
cis-11-20c acid (c20:1) 1.13 ± 0.05a 0.48 ± 0.03b 0.41 ± 0.01b <0.001
cis-8,11,14-eicosatrienoic acid (c20:3n6) 0.12 ± 0.01 0.12 ± 0.02 0.10 ± 0.01 0.477
arachidonic acid (c20:4n6) 0.13 ± 0.01a 0.02 ± 0.00b 0.15 ± 0.01a <0.001
docosahexaenoic acid (c22:6n3) 0.04 ± 0.00c 0.08 ± 0.01a 0.06 ± 0.00b <0.001
SFA 40.46 ± 0.79b 49.08 ± 1.22a 50.25 ± 0.73a <0.001
MUFA 50.12 ± 0.80a 40.02 ± 1.14b 39.08 ± 0.75b <0.001
PUFA 9.42 ± 0.31 10.90 ± 0.65 10.67 ± 0.23 0.055
UFA 59.54 ± 0.79a 50.92 ± 1.22b 49.75 ± 0.73b <0.001
S/U 0.68 ± 0.02b 0.97 ± 0.05a 1.01 ± 0.03a <0.001

DSA ¼ dorsal subcutaneous adipose; ASA ¼ abdominal subcutaneous adipose; PA ¼ perirenal adipose. SFA ¼ sum of saturated fatty acids; MUFA ¼ sum of monounsaturated
fatty acids; PUFA ¼ sum of polyunsaturated fatty acids; UFA ¼ sum of unsaturated fatty acids; S/U ¼ values of ratio saturated and unsaturated fatty acids.
a,bWithin a row, means with different superscript letters differ significantly (P < 0.05).
Data are presented as means ± SEM. n ¼ 8.

Table 3
Fatty acid profile of 3 deposits in Ningxiang gilts, %.

Item DSA ASA PA P-value

myristic acid (c14:0) 1.20 ± 0.03b 1.34 ± 0.04a 1.21 ± 0.03b 0.009
palmitic acid (c16:0) 23.92 ± 0.18 23.87 ± 0.20 24.44 ± 0.40 0.298
palmitoleic acid (c16:1) 1.57 ± 0.05b 2.43 ± 0.10a 1.35 ± 0.09b <0.001
margaric acid (c17:0) 0.20 ± 0.01 0.21 ± 0.01 0.20 ± 0.01 0.789
stearic acid (c18:0) 15.01 ± 0.34b 11.96 ± 0.38c 17.76 ± 0.63a <0.001
elaidic acid (c18:1n9t) 0.10 ± 0.01 0.10 ± 0.00 0.10 ± 0.01 0.867
oleic acid (c18:1n9c) 47.66 ± 0.45b 49.71 ± 0.54a 45.24 ± 0.77c <0.001
linoleic acid (c18:2n6c) 8.19 ± 0.26ab 8.60 ± 0.22a 7.86 ± 0.22b 0.103
a-linolenic acid (c18:3n3) 0.35 ± 0.01b 0.38 ± 0.01a 0.33 ± 0.01b <0.001
g-linolenic acid (c18:3n6) 0.03 ± 0.00 0.04 ± 0.00 0.04 ± 0.00 0.122
arachidonic acid (c20:0) 0.27 ± 0.01a 0.17 ± 0.01b 0.22 ± 0.02a <0.001
cis-11-20c acid (c20:1) 1.23 ± 0.03a 0.86 ± 0.05b 0.93 ± 0.06b <0.001
cis-8,11,14-eicosatrienoic acid (c20:3n6) 0.10 ± 0.01 0.12 ± 0.01 0.10 ± 0.01 0.524
arachidonic acid (c20:4n6) 0.13 ± 0.00b 0.16 ± 0.01a 0.14 ± 0.00b <0.001
docosahexaenoic acid (c22:6n3) 0.05 ± 0.00b 0.06 ± 0.00ab 0.07 ± 0.00a 0.012
SFA 40.59 ± 0.50b 37.55 ± 0.50c 43.83 ± 0.94a <0.001
MUFA 50.56 ± 0.47b 53.10 ± 0.59a 47.63 ± 0.81c <0.001
PUFA 8.85 ± 0.28ab 9.35 ± 0.23a 8.54 ± 0.24b 0.091
UFA 59.41 ± 0.5b 62.45 ± 0.5a 56.17 ± 0.94c <0.001
S/U 0.68 ± 0.01b 0.60 ± 0.01c 0.78 ± 0.03a <0.001

DSA ¼ dorsal subcutaneous adipose; ASA ¼ abdominal subcutaneous adipose; PA ¼ perirenal adipose; SFA ¼ sum of saturated fatty acids; MUFA ¼ sum of monounsaturated
fatty acids; PUFA ¼ sum of polyunsaturated fatty acids; UFA ¼ sum of unsaturated fatty acids; S/U ¼ ratio of SFA to UFA.
a,bWithin a row, means with different superscript letters differ significantly (P < 0.05).
Data are presented as means ± SEM. n ¼ 8.
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tissues of fat studied. The major FA were oleic and palmitic acid
(the sum of these 2 FA represented about 70% of the total FA in
DSA, ASA and PA), followed by stearic and linoleic acid, both of
them reaching about 25%. This is similar to the study of Franco
et al. (2006), Lorenzo et al. (2012) and Sellier et al. (2010).
Furthermore, due to the analysis of the data, the variety of MUFA
was richer than that of PUFA. The change in UFA mostly was
influenced by MUFA while PUFA tended to be stable. The pro-
portion of PUFA was much lower than that of SFA or MUFA
because animals generally lack D12 and D15 desaturases, which
means it is difficult for animals to produce PUFA (Pereira et al.,
2003). From the nutritional perspective, diets rich in UFA
decrease cholesterol levels in blood which leads to a low inci-
dence of cardiovascular diseases (Lorenzo et al., 2012). Further-
more, the proportion of MUFA in PA, which is the major part of
UFA, is lower than in ASA and DSA, which means that the PA is less
healthy than ASA and DSA.

By comparing FA profile in different adipose, the results showed
that there was a higher profile of SFA in PA compared with DSA in
gilts and boars, which exhibited a similar pattern to in the results of
Sellier et al. (2010). Furthermore, Nii et al. (2006) has proposed that
the summary of quantitative trait loci of total SFA in PA is higher
than inner layer dorsal back and outer layer back fat. Analyzed from
the function of PA, it is used to make a fixed position for kidneys
with higher temperature and DSA conjunct a lot of muscle for
movement. Therefore, it is possible that there are some connections
between the function of fat and the FA composition. The more SFA
the fat contains, the higher melting point the fat has. The fat be-
comes more consistent with more SFA benefiting to fix kidneys.
Lorenzo et al. (2012) showed a similar result in Celta pigs. Similar
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results were also shown in other livestock, such as lambs
(Szumacher-Strabel et al., 2004; Castro et al., 2005) and steers
(Turner et al., 2015; Mapiye et al., 2015). This might be a common
phenomenon in pigs or even in mammals.

This dissimilarity of PA and DSA could be majorly related to the
proportion of stearic acid. This is also the same with the study of
lambs (Szumacher-Strabel et al., 2004; Castro et al., 2005) and
steers (Turner et al., 2015; Mapiye et al., 2015). Generally, the less
mature adipose tissues situated externally, such as subcutaneous
adipose, and the more saturated adipose tissues situated internally,
such as PA (Lee et al., 2011; Jiang et al., 2013). This is related to a
greater D-9 desaturase activity index in external fat depots as
opposed internal ones, and replacement of stearic acid with oleic
acid in external fat depots.

As for FA profile in DSA and ASA, SFA in ASAwas higher than DSA
in boars, while SFA in DSAwas higher than ASA in gilts. The study of
Lorenzo et al. (2012) also showed a similar result but no signifi-
cance difference was observed. It may result from many factors,
such as species, feeding, environment and so on.
5. Conclusion

In the fat of Ningxiang pig breed, oleic acid, palmitic acid, stearic
acid and linoleic acid were major FA in DSA, ASA and PA. Significant
differences were observed in the proportions of SFA, MUFA and the
ratio of SFA to UFA related to the location of the fat in the carcass.
Cis-11-20c acid (c20:1), stearic acid (c18:0) and MUFA showed the
largest difference among 3 locations. These differences may have
some relationships with the metabolism of specific location and
sex, and relative factors need further study.
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