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Abstract

Background: In an earlier study, it was observed that the vaccination with Plasmodium falciparum
enolase can confer partial protection against malaria in mice. Evidence has also build up to indicate
that enolases may perform several non-glycolytic functions in pathogens. Investigating the stage-
specific expression and sub-cellular localization of a protein may provide insights into its

moonlighting functions.

Methods: Sub-cellular localization of P.

falciparum enolase was examined using

immunofluorescence assay, immuno-gold electron microscopy and western blotting.

Results: Enolase protein was detected at every stage in parasite life cycle examined. In asexual
stages, enolase was predominantly (>85-90%) present in soluble fraction, while in sexual stages it
was mostly associated with particulate fraction. Apart from cytosol, enolase was found to be
associated with nucleus, food vacuole, cytoskeleton and plasma membrane.

Conclusion: Diverse localization of enolase suggests that apart from catalyzing the conversion of
2-phosphoglycericacid into phosphoenolpyruvate in glycolysis, enolase may be involved in a host of
other biological functions. For instance, enolase localized on the merozoite surface may be involved
in red blood cell invasion; vacuolar enolase may be involved in food vacuole formation and/or
development; nuclear enolase may play a role in transcription.

Background

In recent years, it is being realized that many of the house-
keeping metabolic enzymes participate in a host of other
biological functions inside the cell. It is increasingly
becoming apparent that the ability of a protein to 'Moon-
light' i.e. to have multiple and sometimes vastly unrelated
functions embedded within one polypeptide chain, is a
general strategy to enhance the number of protein func-

tions that are encoded by the genome [1]. Many of the
metabolic enzymes, specifically the glycolytic ones from
different organisms have diverse functions in addition to
their role in glycolysis. For example, hexokinase2 in yeast
is involved in transcriptional regulation [2], glyceralde-
hyde 3-phosphate dehydrogenase functions in tubulin
binding, nuclear RNA export, phosphorylation, mem-
brane fusion, and transcriptional regulation [3-5], glu-
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cose-6-phosphate isomerase in cell motility and
proliferation [6] and aldolase binds actin and support
protein trafficking to the plasma membrane [7,8]. Thus,
functional moonlighting for many of these house-keeping
proteins, seems to be a general phenomenon [9].

Glycolytic enzymes play important roles in Plasmodium
biology. Intra-erythrocytic stages of Plasmodium falciparum
lacks functional TCA cycle and solely rely on glycolysis for
their energy needs [10-12]. The level of glycolytic flux in
parasite infected cells is ~100 fold greater than that of
uninfected red blood cells [13,14] and the activity of some
of the glycolytic enzymes (enolase, pyruvatekinase and
hexokinase) is greatly up-regulated [15]. In recent years,
glycolytic enzymes have also been shown to perform non-
glycolytic functions in apicomplexan parasites. In Toxo-
plasma and Plasmodium, aldolase has been implicated in
host cell invasion through its interaction with actin and
surface adhesion molecules [7,8,16]. Interestingly, glyco-
lytic and non-glycolytic functions of aldolase are made
mutually exclusive as adhesins bind at the active site
resulting in loss of catalytic activity. Similarly, glyceralde-
hydes 3-phosphate dehydrogenase (GAPDH) has also
been shown to perform certain non-glycolytic functions
in P. falciparum [17]. Due to their importance in Plasmo-
dium for energy production and other physiological func-
tions, glycolytic enzymes have been termed as important
therapeutic targets and validated in the new large scale
ventures for anti-malarials [12,18-21].

Enolase (2-Phospho-D-glycerate hydrolase; EC 4.2.1.11)
is one of the three glycolytic enzymes, whose levels are
highly elevated in parasite infected red blood cells (RBC)
(about 15-fold) as compared to the uninfected cells [15].
Recently, this glycolytic enzyme has also been reported to
have diverse biological functions in different organisms
[22-26]. Thus, enolases, which have been well character-
ized for their catalytic function in glucose metabolism, are
no longer considered to be the house-keeping enzymes
only. Enolase is better described as a multifaceted protein
with multi-tasking abilities at diverse sub-cellular loca-
tions [24]. Recent studies have shown that in many path-
ogenic species and in different cell types, enolase is
present on the cell wall, cell membranes and in the cell
nucleus. The unusual location of enolase has been
reported in the apicomplexan parasites viz. Plasmodium
yoelii [27], Toxoplasma gondii [28] and Eimeria tenella [29].
In T. gondii, there are two different isozymes (Enol and
Eno2), which have been demonstrated to exhibit stage
specific expression. A comparison of mRNA expression of
glycolytic genes between tachyzoite vs 'in vitro' bradyzoite
has shown that the two enolase genes are the only glyco-
lytic genes whose expression is regulated in a stage specific
manner. Enol is strongly up-regulated (~1450 fold) in
bradyzoite while all other glycolytic transcripts were ele-
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vated only by 4- to 8-fold. At protein level, ENO1 is spe-
cifically expressed in bradyzoites, while ENO2 expression
is specific to tachyzoite stage. Location of two enolase iso-
zymes in the nucleus of actively developing/dividing par-
asites has led to the suggestion that these proteins may
play a role in controlling some nuclear activities during
stage differentiation [28,30]. Among the genes that code
for glycolytic enzymes in T. gondii, silencing of ENO2 had
the most effect on parasite growth [31]. Such observations
of stage specific isozyme expression, nuclear localization
and growth inhibition on loss of function of this glyco-
lytic enzyme suggest interesting nuclear function for this
protein in T. gondii. Since Plasmodium has only one gene
for enolase, it is likely that such non-glycolytic func-
tion(s), if mediated, may be embedded in a single enolase
protein.

Evidence has emerged from the recent experiments that
enolase may have moonlighting functions in Plasmodium.
Preliminary immunofluorescence studies on P. yoelii
showed the presence of enolase in parasite nucleus and on
merozoite cell surface. Further evidence for novel surface
function(s) for enolase has emerged from the immuniza-
tion studies where vaccination with recombinant P. falci-
parum enolase (r-Pfen) resulted in partial protection
against P. yoelii induced malaria in mice and the detection
of anti-enolase antibodies in human serum samples from
malaria endemic region of India [32]. To examine the
involvement of a housekeeping protein in diverse cellular
functions, one can probe its sub-cellular localization and
identify the interactor proteins, as involvement of a pro-
tein in multiple functions invariably requires its recruit-
ment to different sub-cellular compartments and
interactions with different proteins. These possibilities
have been examined here using in situ (IFA and IEM) and
biochemical fractionation (sub-cellular fractionation,
pull down assays) methods for determining the localiza-
tion of enolase in P. falciparum and identify the interacting
proteins by co-localization and gel analysis.

Methods

Materials

Mouse monoclonal antibodies against Pfg-27 [33] and
mouse anti-Pf HSP70 antibodies [34] used here have been
characterized earlier. Anti-Pfs-48/45 monoclonal anti-
body was obtained from the MR4. Rabbit anti-P. falci-
parum aldolase antibody and a preparation of P. yoelii
sporozoites were a kind gifts from Prof. Victor Nussenz-
weig, Department of Pathology, N.Y. University Medical
Centre, New York, USA, and rabbit anti-Toxoplasma gondii
actin antibody was provided by Prof. David Sibley, Wash-
ington university, St. Louis, MO, USA. RPMI media were
from GIBCO-BRL, NY, USA. Protease inhibitor cocktail
was procured from Roche Applied Science, Indianapolis,
IN, USA. Saponin was from Sigma Chemical Co., St Louis,
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MO, USA. Alexa Fluor 488 conjugated anti-rabbit and
anti-mouse IgG and DAPI were from Molecular Probes,
NJ, USA and Vectashield-mounting medium was from
Vector laboratories, CA, USA

r-Pfen purification and anti enolase antibodies

The preparation of recombinant 6 x His-tagged P. falci-
parum enolase (r-Pfen) and production of rabbit and
mouse anti-enolase antibodies were carried out as
described earlier [35]. GST tagged r-Pfen was purified
using glutathione-sephadex beads. For the in situ localiza-
tion studies, the polyclonal anti-r-Pfen antibodies used
have previously been shown to have high specificity
against parasite enolase protein and did not cross react
with homologous host enolases or other parasitic proteins
under the experimental conditions employed here [32].

Preparation of different stages of the parasite

Plasmodium falciparum asexual and gametocyte cultures
(3D7 and NF54 isolates) were maintained as described
previously [36,37]. The growth rates and proportions of
various developmental stages of asexual and sexual para-
sites were monitored daily by microscopic examination of
Giemsa-stained blood smears. Culture enriched with
gametocytes was prepared and smears were made. Starting
with synchronized asexual parasites grown in suspension
culture as described, gametocytes were prepared by daily
media changes of static cultures at 37°C.

Indirect immunofluorescence assay (IFA)
Immunofluorescence assay was performed at room tem-
perature with the air-dried blood smears. Cells were fixed
with 4% formaldehyde in phosphate buffered saline
(PBS) for 10 minutes, washed five times, permeabilized
with 0.25% triton x-100 in PBS for 10 minutes, washed,
fixed with 3% BSA-PBS for 45 minutes, incubated for 1
hour with the following antibodies combination: (i)
mouse anti-enolase antibodies (1:200) with rabbit anti-P.
falciparum aldolase (1:100) or (ii) rabbit anti-enolase anti-
bodies (1:200) with mouse anti-HSP70 antibody (1:100).
All antibody dilutions were made into 1% BSA-PBS. After
antibody treatment, smears were washed 7-8 times with
PBS. These smears were then treated with the secondary
antibodies for 45 minutes (Alexa Fluor 488-conjugated
anti-mouse IgG and Alexa Fluor 568-conjugated anti rabit
IgG were used as secondary antibodies (1:500)) and
washed 10-12 times with PBS. Parasite nuclei were
stained with DAPI (1 pg- ml-!) and mounted with vectash-
ield.

Soluble and pellet fraction of asexual and gametocyte
stages

Two separate preparations of erythrocytes, mostly infected
with mature (stage IV-V) gametocytes and asexual stages
of P. falciparum were harvested using saponin. For asexual
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stages, P. falciparum culture was allowed to reach ~5% par-
asitaemia, harvested and washed with incomplete RPMI
solution. The gametocytes culture was similarly harvested
and it consisted mostly of stage IV and V parasites with
minor contamination (<3%) from mixed asexual stage
parasites. Infected erythrocytes from both cultures were
then treated with 0.05% saponin for 10 min at 4°C to
release the parasites from the host erythrocyte membrane
[38]. The parasite pellets were then solubilized in NETT
buffer (10 mM Tris-HCI, pH 7.4, 150 mM NaCl, 1 mM
EDTA, 0.5% Triton x-100) with cocktail protease inhibitor
at 4°C for 10 minutes and centrifuged at 20,000 g for 30
minutes. The supernatant and pellets were used for SDS-
PAGE and immunoblot analysis. Two dimensional gel
electrophoresis and Western blotting for the visualization
of the P. falciparum enolase variants was performed as
described earlier [27].

Cytochalasin-D treatment of parasites

Plasmodium falciparum culture containing wells were
treated with cytochalasin-D dissolved in DMSO at a final
concentration of 50 uM. Briefly, 5ul of 2 mM stock of
cytochalasin D in DMSO was mixed with 95 pl of com-
plete RPMI (100 pl of 100 uM cytochalasin-D), which was
added to 100 pl of culture to obtain 50 uM final concen-
tration of the drug. Only DMSO was added to the control
wells. DMSO was kept at < 0.1% (v/v) under the experi-
mental conditions. These were then incubated for 4 hours
at 37°C. The cells were spun in the pre-warmed tubes and
supernatant was removed to keep ~50% haematocrit.
Thin smears were prepared, air dried and used for indirect
immunofluorescence assay.

Treatment with Triton X-100 prior to fixation

Detergent extraction was carried out prior to the fixation
of the cells to remove the cytosolic and membrane associ-
ated proteins. Plasmodium falciparum-infected blood was
smeared on poly-Lysine coated glass slides, which were
then treated with 1% Triton x-100 for 10 minutes at room
temperature (20°C). These were then washed three times
with phosphate buffer saline and used for indirect
immunofluorescence assay. This allowed cytoskeleton
associated enolase to be visualized.

Immuno-gold electron microscopy (IEM)

Preparations of P. falciparum-containing red blood cells
were fixed in 4% paraformaldehyde (Electron Microscopy
Sciences, PA) in 0.25 M HEPES (pH 7.4) for 1 hr at room
temperature, then in 8% paraformaldehyde in the same
buffer overnight at 4°C. They were infiltrated, frozen and
sectioned as previously described [39]. The sections were
immuno-labeled with mouse anti-r-Pfen antibodies
(1:100 in PBS/1% fish skin gelatin), then with anti-mouse
IgG antibodies, followed directly by 15 nm protein A-gold
particles (Department of Cell Biology, Medical School,
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Utrecht University, the Netherlands) before examination
with a Philips CM120 Electron Microscope (Eindhoven,
the Netherlands) under 80 kV.

Interaction of enolase with actin, tubulin and human
plasminogen

For detection of direct interaction of enolase with actin (or
tubulin), GST tagged-r-Pfen was immobilized on glutath-
ione beads and was mixed with G-actin or tubulin. Sam-
ples were incubated for 2 hours at 37°C and subjected to
centrifugation. Beads were washed with G-actin buffer (5
mM Tris-HCl pH 8.0, 0.2 mM CaCl,, 0.1 mM ATP) or
tubulin buffer (80 mM Na-PIPES pH 6.9, 1 mM MgCl,, 1
mM EGTA, 1 mM GTP) respectively and analysed on a
12% SDS PAGE.

Binding of enolase with plasminogen was investigated
using ELISA. Wells were coated with 100 pl of 100 nM
plasminogen (or rabbit muscle pyruvate kinase). After
over coating with skimmed milk and washing, 100 pl of 6
x His-tagged r-Pfen in different concentrations was added
and incubated for 4 hours. Mouse anti r-Pfen serum
(1:2000) was used in the assay. Remaining steps were
same as described earlier [35].

Results

Expression levels of enolase at different stages of P.
falciparum

IFA analysis at different stages in the life cycle of P. falci-
parum is shown in Figure 1. Expression levels of enolase
appear to be very similar in most stages except in certain
sub-stages of the gametocyte. Figure 1A (a) shows sch-
izont and trophozoite stages of the parasite. One of them
is a multinucleated schizont stage (marked with —) and
the other two are trophozoites (marked with *). Figure 1A
(b) shows a schizont and four ring stage cells (marked
with Y). Figure 1B shows the distribution of enolase in the
gametocyte stages. From the shape of the gametocytes, it
appears that three elongated cells represent mature game-
tocytes (stage IV/V), whereas the small round, Pfg-27 pos-
itive cell may be an early stage Il gametocyte (marked with
#). Although Pfg-27, a gametocyte marker [40] appears to
express equally in the various gametocyte sub-stages, the
merged image showed that the stage Il gametocyte has rel-
atively lower levels of expressed enolase. In general, it was
also observed that the levels of enolase are comparable at
the gametes and the schizont stages (Figure 1C). The most
unusual distribution was observed in sporozoite stage.
Figure 1D shows a mosquito derived P. yoelii sporozoite
preparation. Enolase staining in these cells showed a
punctuate pattern where particulate enolase appears to be
present beneath the plasma membrane, which is quite
distinct from the homogenous staining observed for cir-
cum sporozoite protein (CSP).
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Sub-cellular distribution of enolase in Plasmodium
falciparum

In addition to cytosolic localization of enolase, its pres-
ence in the nucleus was observed in the ring and tropho-
zoite stages (Figure 2). The possibility of spill over of
cytosolic enolase into the nucleus during the processing of
parasite cells could be ruled out by observing the localiza-
tion of two other proteins, namely aldolase (Figure 2A)
and HSP-70 (Figure 2B). Both these proteins were present
in the cytoplasmic compartment and no nuclear presence
was detected. In a synchronized population of ring stage
parasites, wide variation in the relative distribution of
enolase between the nuclear and the cytosolic compart-
ments was observed. Certain cells had a faint staining for
nuclear enolase, indicating that cytosolic enolase is much
greater than the nuclear one while others had strong
nuclear staining for the enolase (cytosolic << nuclear)

(Figure 3).

In order to obtain better resolution, the sub-cellular local-
ization of enolase in P. falciparum was also examined by
immuno-gold electron microscopy (IEM). Figures 4, 5, 6,
7 show the parasite cells in the trophozoite, schizonts and
gametocyte stages labeled with anti-r-Pfen. For all the
images presented, a magnified view of food vacuole (FV)
and nucleus (n) is shown along side. The nucleus and
food vacuole have significantly higher levels of enolase
present in early (Figure 4) and mid stage trophozoites
(Figure 5) as compared to the late stage trophozoite (Fig-
ure 5) and the schizont (Figure 6). Nuclear enolase at
gametocyte stage is also low as compared to cytosol (Fig-
ure 7). These observations are similar to the pattern of
enolase distribution between nucleus and cytosol
observed using IFAs (Figure 2). It is interesting to note that
in all the stages observed in these IEM images, nuclear
enolase exhibited a preferential association with electron-
dense heterochromatin region (darker regions in the
nucleus). Cell surface localization of enolase was
observed at the merozoite stage, (Figure 6 g2). Further, in
all these images there was no observable association of
Pfen with infected host cell cytosol or cell membrane, sug-
gesting that Pfen is not secreted into the cytosol or trans-
located to the cell membrane of the infected rbcs. This
observation is at variance from the earlier reports [41].

Association of enolase with the cytoskeletal elements of
the parasite

Parasite cell extracts prepared with Triton-X-100 (TX100)
as the solubilizing agent, were analyzed on SDS-PAGE
and enolase was visualized by western blotting. Figure
8(A) presents the distribution of the enolase between the
soluble and particulate fractions in the sexual and asexual
stages of the parasite life cycle. While in asexual stages,
>80-90% enolase was present in TX100 soluble fraction
and only ~10-20% was associated with cytoskeletal com-
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(b)

Enolase

Enolase

Immunofluorescence assays (IFA) for the localization of enolase at different stages of Plasmodium life cycle. (A)
Asexual stages, (B) Gametocytes, (C) Gamete (mosquito stage) and (D) Sporozoite (mosquito salivary gland stage). Sporozoite
preparation was from P. yoelii, while all other stages shown are for P. falciparum. Ring stages (triangle), trophozoite (*), schizont
(—) and stage Il gametocyte (diamond). Different fluorescent probes used were, (i) DAPI as a nuclear marker, (ii) mouse anti-
r-Pfen (green), (iii) rabbit anti-r-Pfen (red), (iv) mouse anti-Pfg-27 (green) as gametocyte marker, (v) rabbit anti-male gameto-
cyte specific a-tubulin Il antibody (red) and (vi) mouse anti-CSP antibody (green) as sporozoite surface marker. The scale bars
shown corresponds to 5 um.

ponents, in sexual stages the distribution was quite the
opposite. Most of the enolase in sexual stages was associ-
ated with detergent insoluble fraction. In contrast, aldo-
lase was equally distributed between soluble and pellet
fractions in sexual stages, while its distribution in asexual
stages was more like enolase (soluble >> pellet). Observa-

cells or cross contamination of particulate fraction with
the soluble proteins.

For the in situ observation of the distribution of enolase
and aldolase in the gametocytes, immunofluorescence
assays were performed on TX100 treated and untreated

tion of differential distributions of aldolase and enolase
in soluble and particulate fractions, ruled out the possibil-
ity that such results may arise from incomplete lysis of

cells (Figure 8B(a)). Although both enolase and aldolase
are glycolytic enzymes, they show very different distribu-
tion in gametocyte stages as seen from fractionation as
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Figure 2

Immunofluorescence assays for the localization of enolase, aldolase and HSP-70 in P. falciparum asexual stages
(ring, trophozoite and schizont). (A) P. falciparum infected red blood cells were treated with DAPI (blue), mouse anti r-
Pfen antibody (green), rabbit anti-P. falciparum aldolase antibody (red). (B) Cells were treated with DAPI, rabbit r-Pfen antibody
(red), and mouse anti Pf HSP-70 antibody (green). Overlay panels show the merged of the three images.

well as IFA studies. Since cytosol has considerable amount
of enolase, it was important to ensure that the detergent
treatment did remove cytosolic and the membrane associ-
ated enolase. This was evident from the disappearance of
signals for aldolase (a cytosolic protein) (Figure 8B(a))
and a gametocyte membrane protein Pfs48/45 (Figure
8B(b)) in the detergent treated preparations. Figure 8B
shows a gametocyte (Figure 8B(c)) and a schizont (Figure
8B(d)) stained with DAPI, anti-enolase and anti-actin
antibodies, before and after the treatment with TX100.

Co-localization of enolase with actin is observed in the
gametocyte stage while it is rather sparse in the schizont
stage. Disruption of actin cytoskeleton by treatment with
cytochalasin D resulted in disruption of actin co-localiza-
tion pattern of enolase in gametocytes (Figure 9A(a)).
Such a treatment of ring stage parasites resulted in the loss
of translocation of Pfen to the nucleus (Figure 9A(b)).

Observations of co-localization of actin and enolase as
well as the effect of cytochalasin-D on enolase distribu-
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Immunofluorescence images showing variation in distribution of enolase between cytosol and nucleus in a
population of synchronized ring stage parasite cells. There were greater number of cells having more enolase signal

arising from nucleus than from cytosol.

tion suggested that two proteins may have direct interac-
tion. Possibility of such an interaction was investigated by
incubating GST tagged-r-Pfen (immobilized on glutath-
ione beads) with G-actin or tubulin. Results are shown in
Figure 9B. Pull-down assay did not show any interaction
with tubulin, however direct binding of actin with enolase
was observed (Figure 9B, lanes 3 & 5). In the spun-down
preparations of parasite actin filaments, enolase along

with several other proteins has been detected [42]. How-
ever, it was not evident from these studies, whether Pfen
and actin have direct interaction.

Enolase binds to human plasminogen

In addition to cytosolic and nuclear presence, Plasmodium
spp enolase has been shown to reside on the merozoite
surface (Figure 6) [32]. In certain pathogenic bacteria, cell
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Figure 4
Immuno-gold electron microscopic (IEM) imaging for the localization of enolase in early trophozoite satge of

P. falciparum using mouse anti-r-Pfen antibody. Magnified views of the food vacuole (FV) and nucleus (n) are also shown.
Arrows in food vacuole marks hemozoin associated enolase.
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Mid Trophozoite

R

Figure 5

Immuno-gold electron microscopic (IEM) imaging for the localization of enolase in mid and late stage tropho-
zoites of P. falciparum using mouse anti-r-Pfen antibody. Magnified views of the food vacuole (FV) and nucleus (n) are
also shown.
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Mid Schizont

Figure 6

Immuno-gold electron microscopic (IEM) imaging for the localization of enolase in mid and late stage sch-
izonts of P. falciparum using mouse anti-r-Pfen antibody. Magnified views of the food vacuole (FV) and nucleus (n) are
also shown. Presence of enolase on the surface of a merozoite is marked with arrows.
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Figure 7

Immuno-gold electron microscopic (IEM) imaging
for the localization of enolase in gametocyte of P. fal-
ciparum using mouse anti-r-Pfen antibody. Magnified
views of the food vacuole (FV) and nucleus (n) are also
shown.

surface enolase has been shown to serve as plasminogen
receptor. Through this interaction, these pathogens
exploit the fibrinolytic activity of plasmin(ogen) to their
advantage in tissue invasion [43]. In order to address
whether Pfen also interacts with plasminogen, an ELISA
assay was performed. A concentration dependent binding
of Pfen with human plasminogen was observed in this
assay. However, Pfen did not show any significant bind-
ing to rabbit muscle pyruvatekinase, which was used as a
control (Figure 10).

Discussion

Large scale stage specific analysis of P. falciparum pro-
teome has shown that the enolase is expressed in all stages
(Trophozoite, schizont, merozoite, gametocyte) in the life
cycle of the parasite [44,45] and was also associated with
the host cell plasma membrane of the infected red blood
cells (iRBCs) [41]. The results presented here showed that
indeed the Pfen is present in all the asexual and sexual
stages of the parasite. However, in the IFA and IEM images
presented here, there was no detectable Pfen associated
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with iRBC membranes or iRBC cytoplasm suggesting the
possibility of cross contamination during biochemical
sample preparations in the earlier studies. The validity of
the results reported here heavily rely on the specificity of
anti-Pfen antibodies to react only with Plasmodium eno-
lase. In an earlier report, several controls were performed
to ensure that indeed this was the case. It was shown that
under the experimental conditions employed here, these
antibodies did not show any cross reactivity towards pro-
tein extracts from uninfected RBCs, human & mouse leu-
kocytes, and mouse liver in western analysis. Whole cell
extracts from P. yoelii and P. falciparum showed a single
band at an expected molecular mass of about 50 kDa [33].
The results presented here also indicate that the expressed
levels of enolase protein do not match with the levels of
transcript at various stages of the parasite reported earlier
[46,47]. For instance, in sexual stages, gametocytes have
negligible amounts of Pfen transcript and in sporozoites
(mosquito salivary gland stage), Pfen transcript is unde-
tectable [46-48]. However, the images presented here
showed good quantities of Pfen protein in both gameto-
cytes and sporozoites (Figure 1). These results suggest the
possibility of expressed protein levels of enolase in the
parasite being controlled by post-transcriptional regula-
tion of translation.

The observed presence of Pfen in multiple sub-compart-
ments of the parasite cell may imply multiple physiologi-
cal functions for this protein. In the asexual stages, it is
largely soluble while in the sexual stages, it is mostly par-
ticulate (Figure 8A). It is possible that most of the enolase
in asexual stages is recruited for glycolytic function, while
in gametocyte stages, it may have non-glycolytic func-
tions. Punctate appearance of Pfen close to the sporozoite
surface (Figure 1D) also indicates additional non-glyco-
lytic function for this protein. Plasmodium invades tissues
at sporozoite (liver cells), merozoite (RBCs) and ookinete
(mosquito gut wall) stages. Results presented here showed
that the Pfen binds to human plasminogen and is surface
localized in merozoite stage. Two signatures of a-enolase
have been proposed for such interaction with plasmino-
gen, namely the Lysine residues at the C-terminal end and
in the central motif 2?DLDFKSDDPS [24,49]. The C-ter-
minal Lysine residue and the central motif
(26°DLDFKTPNNDKS in Pfen) are both conserved in P.
falciparum enolase [35], and therefore the binding to plas-
minogen is expected. The presence of plasminogen recep-
tors on cell surface and the non-fibrinolytic functions of
plasminogen have now been documented extensively [50-
52]. The nonfibrinolytic roles of plasminogen seem to
depend on its ability to activate matrix metalloprotein-
ases, which degrade matrix proteins [53]. Such plasmin-
dependent pericellular proteolysis may operate when
plasmin(ogen) is tethered to the cell surface through a
heterogeneous group of plasminogen receptors, and eno-
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(A) Comparison of the distribution of enolase, aldolase and actin in soluble and particulate fractions prepared
from P. falciparum cells in sexual and asexual stages. Cells were treated with 0.5% Triton X-100 for 10 minutes at 4°C.
Solubilized proteins were removed by centrifugation (10,000 g for 30 minutes). Soluble (S) and particulate (P) fractions were
analyzed on 12% SDS-PAGE and the presence of enolase was detected by Western blotting. (B) IFA of P. falciparum gametocyte
stages (a, b, ¢) and asexual schizont stage (d). Cells were fixed either after a treatment with 1% Triton X-100 for 10 minutes
(for the removal of cytosolic and membrane proteins) or without Triton treatment. Fixed cells were stained with rabbit or
mouse anti-r-Pfen antisera along with (a) rabbit anti-P. falciparum aldolase (red), (b) mouse anti Pfs48/45 (green), (c) rabbit anti-
T. gondii actin antibody (red) and (d) schizont (asexual stage) stained with DAPI, anti-r-Pfen and anti-actin antibodies after

detergent treatment.

lase is documented to be one such receptor [24,49]. It is
possible that surface localized enolase in Plasmodium zoite
forms may also act as a plasminogen receptor and play a
role in tissue invasion processes. This is consistent with
the observation that the anti-Pfen antibodies block mero-
zoite invasion into red cells [32].

Glycolytic proteins have been reported to perform diverse
functions at different sub-cellular locations. Plasmodium
aldolase has glycolytic function in cytosol while in associ-
ation with acto-myosin complex, it assists the parasite in
invasion and motility functions [8]. In a proteome-wide
yeast two hybrid screen La count et al [54], identified glyc-
eraldehydes-3-phosphate dehydrogenase (PF14_0598),
MSP-9 (PFL1385c), cysteine proteinase (PFB0330c) and
formin (PFL0925w) as direct interactors of enolase. These
authors also reported HSP-70 (PF11_0351) to be an indi-
rect interactor. Observation of direct binding of Pfen and
actin as also the extensive association of enolase with the
particulate fraction (especially in the sexual stages)
implies a role for enolase in the cytoskeletal organization.
In a recent study where protein modifications occurring
under oxidative stress were assessed, Pfen was found to
undergo major modifications [55] indicating that it is
likely to be a target protein for stress response.

In P. falciparum, presence of relatively high amounts of
nuclear Pfen was observed in the ring and the early tro-

phozoite stages (Figures 2, 3 &4). In IEM images, prefer-
ential association of enolase with heterochromatin was
noted, particularly in early trophozoite (or ring) stages
(Figure 4a2 &4b2). Translocation of cytosolic enolase to
nucleus, just when the growth phase begins is suggestive
of possible involvement of enolase in transcription
related processes. Possibility of such nuclear function for
enolase has been suggested in mammalian [56] and plant
cells [57]. The nuclear presence of enolase has also been
reported in closely related apicomplexan Toxoplasma gon-
dii and Eimeria tenella. However, a direct correlation
between translocation of Pfen and transcriptional regula-
tion has not yet been demonstrated in parasites [28,29].

Food vacuole in Plasmodium is an acidic proteolytic com-
partment central to the metabolism of the parasite [58]. In
Figure 4, magnified IEM images of vacuolar region of P.
falciparum showed close association of enolase with
haemozoin (marked with arrow heads in Figure 4b1). In
the growing trophozoite (Figures 4 and 5), there was con-
siderable amount of enolase present in the vacuole. How-
ever, in the mature trophozoite (Figure 5) and schizont
stages (Figure 6), the amounts of enolase associated with
FV seemed to decrease (although cytosolic enolase is quite
abundant), suggesting a role in early stages of vacuolar
development and/or haemozoin formation. The observed
pattern of enolase association with vacuole appeared very
similar to the proteins which have been implicated in
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Figure 9 (see previous page)

Demonstration of actin association with enolase in P. falciparum: (A) Effect of cytochalasin D (actin depolymer-
izing drug) on sub-cellular distribution of enolase in (a) gametocyte (sexual stage) and (b) rings (asexual stage).
Cells were treated with 50 uM cytochalasin D or DMSO (control) and IFA was performed with anti-r-Pfen antibodies (green)
and rabbit anti-T. gondii actin antibody (red). Disruption of actin cytoskeleton led to accumulation of enolase at the two ends of
the gametocyte cell (a), whereas in asexual stage translocation of enolase to nucleus was disrupted (b). (B) Direct interaction
of GST tagged-r-Pfen with rabbit muscle G-actin and tubulin. GST-r-Pfen was adsorbed on glutathione-sepharose beads and
was incubated with G-actin or tubulin for 2 hours at room temperature. Beads were collected by centrifugation and washed
with appropriate buffers. The samples were analyzed on 12% SDS-PAGE. Third lane (from left) showed a pull down of G-actin

with r-Pfen.

haem detoxification and vacuole biogenesis [59,60] rais-
ing the possibility of enolase being involved in such func-
tions. Further support for possible involvement of enolase
in haem detoxification arises from the observed associa-
tion with ferriprotoporphyrin IX (FPIX), prepared from
chloroquine treated parasites [61]. Other possible vacu-
olar function for Pfen can be its involvement in vacuolar
fusion and vacuolar protein sorting as observed in yeast
[25].

In eukaryotic cells multi-compartment localization of a
protein synthesized in cytoplasm is achieved by compart-
ment specific topogenic sequences. Plasmodium falciparum
enolase does not have any such signal sequences to be tar-
geted to nucleus or cell surface membrane. In Plasmodium,
there are no signal sequence(s) known, which ensure tar-
geting to food vacuole either. Post-translational modifica-
tions and association with other interactors provide

3.0 44
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=
w
=
-
a
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Figure 10

Binding of P. falciparum enolase to human plasmino-
gen. ELISA plates were coated with 100 pl of 100 nM plas-
minogen (O-O) or rabbit muscle pyruvate kinase (@-@).
Assay was performed as described in materials and methods.
Binding of the r-Pfen to plasminogen is evident from the
observed high OD at 405 nm as compared to pyruvatekinase
(control).

alternative mechanisms for such diverse localization [62].
Additional studies are needed to identify protein interac-
tors of enolase, post-transcriptional modifications that it
undergoes and whether it has any function in nucleus and
food vacuole of the parasite.

Conclusion

The results presented in this paper provide evidence for
multiple subcellular localization of enolase and the stage
specific variation in the levels of the expressed enolase
protein. P. falciparum enolase exhibits great diversity in
sub-cellular localization with stage specific variation viz-
a-viz - a) Presence of enolase on merozoite surface; b)
ability of anti-r-Pfen antibodies to interfere with invasion
process and accord partial protection against malaria; c)
nuclear and vacuolar localization and observed shift
between soluble to particulate fractions in asexual and
sexual stages. These variations are indicative of the
involvement of P. falciparum enolase in a host of biologi-
cal functions. Association of enolase with actin appears to
be important for its translocation to nucleus. An analysis
of the nature of interactions of enolase with its interactor
proteins and post-translational modifications that it
undergoes, may provide insights in to the molecular basis
for the multiple physiological functions that this protein
might perform in the parasite.
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