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Abstract: Diabetes is a chronic, endocrine disorder that effects millions of people worldwide.
Cardiovascular complications are the major cause of diabetes-related morbidity and mortality. Cardiacβ1-
and β2-adrenoceptor (AR) stimulation mediates positive inotropy and chronotropy, whereas β3-AR
mediates negative inotropic effect. Changes in β-AR responsiveness are thought to be an important
factor that contributes to the diabetic cardiac dysfunction. Diabetes related changes in β-AR expression,
signaling, and β-AR mediated cardiac function have been studied by several investigators for many
years. In the present review, we have screened PubMed database to obtain relevant articles on this
topic. Our search has ended up with wide range of different findings about the effect of diabetes on
β-AR mediated changes both in molecular and functional level. Considering these inconsistent findings,
the effect of diabetes on cardiac β-AR still remains to be clarified.
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1. Introduction

Diabetes is an endocrine disorder due to partial or complete insulin deficiency or to insulin
resistance in the target tissues. According to the World Health Organization (WHO) the number of
diabetic individuals rose from 108 million in 1980 to 422 million in 2014 [1]. The number of people
with diabetes is estimated to rise to 629 million (at ages 20–79) by 2045 [2].

Impaired glucose uptake to tissues in the absence of an insulin effect results in hyperglycemia.
Despite the different characteristics and treatment strategies, both type 1 (T1DM) and type 2 diabetes
(T2DM) have a similarly serious impact on the whole body because of hyperglycemia. Uncontrolled
diabetes causes partly irreversible changes to various organs, which in turn lead to diabetic complications.
In fact, people with T2DM are at higher risk for diabetic complications, since the diagnosis is often
made when the complications already occurred [1].

Cardiovascular complications of diabetes are one of the important causes of diabetic morbidity
and mortality. Diabetes is an independent risk factor for both ischemic and hemorrhagic stroke [3].
The risk of having myocardial infarction (MI) among diabetic patients without previous MI history has
been found as high as nondiabetics with a previous MI history [4]. Furthermore, the prevalence of
heart failure has been reported as four time higher among diabetic patients as compared to general
population [5]. Although hyperglycemia is an important contributor to diabetic cardiovascular
complications, regulating blood glucose is not enough to prevent them. Some clinical trials [6–8] have
shown that major cardiovascular events were not fully prevented despite of a tight glycemic control.
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β-adrenoceptors (β-AR) include the β1-, β2- and β3-AR subtypes [9]. β1- and β2-AR have been
considered as the only subtypes until the third one was cloned in 1989 by Emorine et al. [10]. The β3-AR
was first detected in rodent the adipose tissue where it mediates lipolysis and thermogenesis [11].
In 1996, Gauthier et al. [12] reported the presence of this subtype in human endomyocardial biopsies.
Despite the clinical trials on β3-AR as a therapeutic target in heart failure, there is an ongoing debate
on their presence in the healthy human heart [13].

Cardiac β1- and β2-AR essentially contribute to the control of inotropy and chronotropy [14–16].
Both subtypes are coupled to a stimulatory G protein (Gs) [17] and their signaling pathways include
stimulation of adenylyl cyclase (AC), cyclic AMP (cAMP) formation and protein kinase A (PKA)
activation. Following activation of AC and cAMP production, PKA is activated and phosphorylates L
type Ca++ channels [18]. Increased Ca++ influx stimulates Ca++ release from the sarcoplasmic reticulum
(SR) and cytosolic Ca++ levels are elevated. This enables cardiac contraction. β2-AR, on the other hand,
have a dual coupling. This subtype has been suggested to couple also to an inhibitory G protein (Gi) in
rat cardiomyocytes since pretreatment with pertussis toxin (PTX) resulted in an enhanced positive
inotropic response [19]. Similarly, the β2-AR agonist-mediated contractile response or [Ca++]i transient
amplitude were increased when murine cardiomyocytes were treated with PTX [20]. Furthermore,
β2-AR mediated inotropic effect through Gi coupling also involves the cAMP-PKA signaling pathway
as the response was abolished in the presence of a cAMP inhibitor [20]. It has been recently reported
that the β2-AR-G protein interaction (coupling either to Gs or Gi) is regulated by local membrane
charge [21].

The β3-AR has some structural differences as compared to β1- and β2-AR such as being less
sensitive to agonist stimulated desensitization because of lack of a phosphorylation site for PKA
and β-AR kinases [22–24]. The β3-AR gene of rats or mice has 79% homology with the human
ortholog [25]. Hence, an interspecies difference of the expression and function of β3-AR [26] should be
also considered. β3-AR are coupled to Gs and Gi, and the latter mediates a negative inotropic effect in
the heart through a signaling pathway including nitric oxide synthase (NOS)-nitric oxide (NO)-cyclic
guanosine monophosphate (cGMP)-protein kinase G (PKG) [27,28]. The expression of β3-AR in the
healthy human heart is limited [13]. Of note, β3-AR have been found upregulated in some cardiac
pathologies such as heart failure [29] and other hypoxic conditions [30]. This effect has been suggested
as a preventive mechanism as the heart is exposed to overstimulation by catecholamines in these
pathologies [31,32]. This idea inspired clinical trials that investigate the effectiveness of a β3-AR agonist
mirabegron on heart disease [33,34].

Diabetes has been shown to affect both the expression of β-AR subtypes and β-AR mediated
responsiveness [35]. The changes in the expression of β-AR subtypes or related signaling pathways
significantly contribute to cardiac dysfunction in this pathology. Thus, in the current review we aimed
to discuss the expression and signaling pathways of β-AR in the diabetic heart. For this purpose,
we have used ‘diabetes, heart, beta adrenoceptor’ and ‘diabetes, heart, beta adrenergic receptor’
keywords combination to search relevant articles in PubMed database.

2. β-Adrenoceptors in the Diabetic Heart

Diabetes causes impaired cardiac function in which decreased β-AR mediated responsiveness has
a major role [35]. This may at least partly be due to alterations in the expression of the β-AR subtypes
and the signaling pathways they couple to. These effects of diabetes may differ between the β-AR
subtypes. The contractile response mediated by β1- and β2-AR after stimulation with isoprenaline
was reduced in streptozotocin (STZ)-induced diabetic rat papillary muscle [36–39]. On the other hand,
β3-AR mediated relaxation was increased in the Langendorff perfused heart of STZ diabetic rats [40,41].
Similarly, diabetes has resulted in decreased expression of β1- and β2-AR whereas β3-AR have been
found to be upregulated in this pathology [41–43].
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Hereafter, we divide each of the three subsections mainly by type of diabetes and secondarily by
species. As STZ injections are by far the most frequently applied model of T1DM, subsequent data on
T1DM models always refer to that model unless explicitly noted otherwise.

2.1. mRNA and Protein Expression

Both mRNA and protein expression ofβ-AR subtypes in diabetes have been investigated, mostly in
animals but to a more limited extent also in humans. Both T1DM and T2DM animal models have been
used. Fewer experimental studies have been done in models of T2DM as compared to T1DM. This may
have resulted from the fact that using T1DM models, particularly STZ injections is easier and requires
less resources. Various species such as rodents, swine, dog, or hamster have been used. The duration
of diabetes in such reports varied widely from 4 days to 13 months.

Theβ-AR expression at the protein level has been studied mostly by using radioligand binding assays
and immunoblot studies. β-AR mRNA expression has been determined by using PCR. In radioligand
binding studies, [3H]-CGP 12,177, [3H]-dihydroalprenolol ([3H]-DHA), [125I]-iodocyanopindolol and
[125I]-iodopindolol have been used as ligands for detection of β-AR. In most of these studies, except
one [44], changes in β-AR protein density level have been given without any subtype distinction.
However, in the concentration of the ligands used in these studies, they do not detect β3-AR [45]. Thus,
radioligand binding studies effectively provide information on the regulation of β1- and β2-AR, but not
of β3-AR. Unlike radioligand binding studies, immunoblotting is used to understand subtype selective
regulation of β-AR. However, most of the commercial β-AR subtype antibodies are reported to have poor
target selectivity [46]; accordingly reported findings may not be true reflections of the expression ofβ3-AR
protein. These are important points that should be considered when interpreting the studies. In this
section, firstly, changes in protein level (data obtained from radioligand binding and immunoblotting
studies) and then changes in mRNA level are described separately in both T1DM and T2DM.

2.1.1. mRNA and Protein Expression in Type 1 Diabetes Mellitus

The expression of β-AR in the diabetic rat heart has been first reported by Savarese and Berkowitz
in 1979 [47]. They have demonstrated that the number of β-AR were 28% decreased in ventricular
tissue from diabetic Sprague Dawley rats as assessed by [3H]-DHA binding 8 weeks after STZ injection.
Such, downregulation of β-AR has been confirmed in many studies by using different methods at both
protein and mRNA level (Table 1). As mentioned in the previous section, the decrease of the expression
of β-AR subtypes has not been classified separately in most studies that performed radioligand
binding assay to determine changes in receptor protein level [48–71]. However, unchanged β-AR
density has been reported in female Wistar rats after 8-days of diabetes [72] and in 14-day diabetic
male Wistar rats [73]. While it could be assumed that this result was related to very short duration
of diabetes, similar findings have been reported after 6 weeks [69,74], 10 weeks [69], 12 weeks [75],
16 weeks [76], 90 and 200 days of diabetes in rats [77]. Similar β-AR density has also been reported in
16-week diabetic C57BL/6 mice compared to control group [78]. Moreover, one group even reported an
increased expression in two consecutive studies in female rats, both 2 weeks [79] and 3 weeks after
STZ injection [80].

Subtype specific alterations of β-AR have been also reported by using radioligand binding studies
in combination with subtype-selective competitors. β1- and β2-AR density has been found to be
downregulated in the AV node, whereas the expression of β1- and β2-AR were decreased and increased
in interventricular septum, respectively in 3-week diabetic Wistar rats [44]. Apart from the studies on
rodents, β-AR density in transmural left ventricle was not altered after 12 weeks of diabetes in male
pigs [81] whereas the receptor number was found to be reduced in the right atrium of 11-week diabetic
female swine [82]. β-AR density was decreased after 12 weeks of Alloxan-induced diabetes in New
Zealand white rabbits [83] while no alteration was found after 10–13 months of diabetes in the same
model [84]. β-AR density was reported to be increased after 3 and 14 weeks in Chinese spontaneously
diabetic hamsters, but unchanged after 24 and 35 weeks [85].
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Table 1. Cardiac β-Adrenoceptors (β-AR) protein and mRNA levels in type 1 (T1DM) and type 2 diabetes (T2DM).

Reference β-AR Protein
(Binding)

β-AR Protein
(Western Blot) β-AR mRNA Species Sex Diabetes Model Duration of

Diabetes

Amour et al., 2007 n/a β1-AR ↓
β3-AR ↑ n/a Wistar rat Male STZ induced T1DM 4-week

Amour et al., 2008 n/a β1-AR ↓
β3-AR ↑ n/a Wistar rat Male STZ induced T1DM 4- and 12-week

Aragno et al., 2012 n/a β1-AR ↓ n/a Wistar rat Male STZ induced T1DM 6-week

Arioglu-Inan et al., 2013 n/a β3-AR ↑ β1-AR ↓ SD rat Male STZ induced T1DM 8-week

Atkins et al., 1985 β-AR ↓ n/a n/a SD rat Male STZ induced T1DM 2- and 4-week

Austin and
Chess-Williams, 1991 β-AR ↑ n/a n/a Wistar rat Female STZ induced T1DM 3-week

Austin and
Chess-Williams, 1992 β-AR ↑ n/a n/a Wistar rat Female STZ induced T1DM 2-week

Beenen et al., 1997 β-AR ↓ n/a n/a SHR rat, WKY rat Male STZ induced T1DM 8-week

Bidasee et al., 2008 n/a
β1-AR ↓
β2-AR ↓
β3-AR ↑

n/a SD rat Male STZ induced T1DM 7-week

Bilginoglu et al., 2007 β-AR binding site ↓ n/a n/a Wistar rat Male
Female STZ induced T1DM 5-week

Bilginoglu et al., 2009 β-AR ↓ n/a n/a Wistar rat Male STZ induced T1DM 5-week

Bitar et al., 1987 β-AR ↓ n/a n/a SD rat Male STZ induced T1DM 2-month

Carillion et al., 2017 n/a β1-AR ↓
β3-AR ↑ n/a Wistar rat Male STZ induced T1DM 8-week

Cros et al., 1986 β-AR n.c. n/a n/a Rat n/a STZ induced T1DM 4-month

Dincer et al., 2001 n/a
β1-AR ↓
β2-AR ↓
β3-AR ↑

β1-AR ↓
β2-AR ↑
β3-AR ↑

Wistar rat Male STZ induced T1DM 14-week

Dubois et al., 1996 β-AR ↓ n/a n/a SHR rat, WKY rat Male STZ induced T1DM 8-week

Durante et al., 1989 β-AR ↓ n/a n/a Spontaneously diabetic
Bio-Breeding (BB) rats n/a Genetic T1DM 10-week

Eckel et al., 1991 β-AR ↓ n/a n/a Wistar rat Male STZ induced T1DM 3-week

Gotzsche, 1983 β-AR n.c. n/a n/a Wistar rat Female STZ induced T1DM 8-day

Gunasekaran et al., 1993 β-AR ↓ n/a n/a SD rat Male STZ induced T1DM 4-week
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Table 1. Cont.

Reference β-AR Protein
(Binding)

β-AR Protein
(Western Blot) β-AR mRNA Species Sex Diabetes Model Duration of

Diabetes

Heyliger et al., 1982 β-AR ↓ n/a n/a SD rat Male STZ induced T1DM 8-week

Huisamen et al., 2001 β-AR n.c. (6 and 10-week)
β-AR ↓ (20-week) n/a n/a Wistar rat n/a STZ induced T1DM 6, 10- and 20-week

Ingebretsen et al., 1983 β-AR ↓ n/a n/a Albino SD rat Male Alloxan induced T1DM 5-day

Kayki-Mutlu et al., 2014 n/a n/a β3-AR ↑ SD rat Male STZ induced T1DM 8-week

Lahaye Sle et al., 2010 n/a
β1-AR ↓
β2-AR n.c.
β3-AR ↑

n/a Wistar rat Male STZ induced T1DM 9-week

Latifpour and McNeill,
1984 β-AR ↓ n/a n/a Rat n/a STZ induced T1DM 6-month

Le Douairon Lahaye et al.,
2011 n/a β3-AR ↑ n/a Wistar rat Male STZ induced T1DM 9-week

Lee et al., 2004 β-AR ↓ n/a n/a New Zealand white rabbit Male Alloxan induced T1DM 12-week

Matsuda et al., 1999 β-AR ↓ n/a β1-AR ↓ Wistar rat Male STZ induced T1DM 6-week

Mishra et al., 2010 n/a β2-AR ↓ n/a (Ins2+/− Akita) mice Male Genetic T1DM 12-week

Monnerat-Cahli et al.,
2014 n/a n/a β1-AR ↓ Wistar rat Male STZ induced T1DM 8-week

Mooradian et al., 1988 β-AR n.c. n/a n/a CDF (F-344) rat Male STZ induced T1DM 6-week

Myers et al., 2016 β-AR n.c. n/a n/a C57BL/6 mice Male/Female STZ induced T1DM 16-week

Nishio et al., 1988 β-AR ↓ n/a n/a SD rat Male STZ induced T1DM 1-, 3- and 10-week

Okatan et al., 2015 n/a
β1-AR ↓
β2-AR ↓
β3-AR ↑

β1-AR ↓
β2-AR ↑
β3-AR ↑

Wistar rat Male STZ induced T1DM n/a

Plourde et al., 1991 β-AR ↓ n/a n/a Wistar rat Male STZ induced T1DM 10-day + 10-week

Ramanadham et al., 1983 β-AR ↓ n/a n/a SD rat Male STZ induced T1DM 4-week

Ramanadham and Tenner,
1983 β-AR ↓ n/a n/a SD rat Male STZ induced T1DM 4-week

Ramanadham and Tenner,
1986 β-AR ↓ n/a n/a SD rat Male STZ induced T1DM 1-,3- and 6-month

Ramanadham and Tenner,
1987 β-AR ↓ n/a n/a SD rat Male STZ induced T1DM 4-week
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Table 1. Cont.

Reference β-AR Protein
(Binding)

β-AR Protein
(Western Blot) β-AR mRNA Species Sex Diabetes Model Duration of

Diabetes

Ramanadham et al., 1987 β-AR ↓ n/a n/a SD rat Male STZ induced T1DM 4-week

Roth et al., 1995 β-AR n.c. n/a n/a Yucatan minipig Male STZ induced T1DM 12-week

Savarese and Berkowitz,
1979 β-AR ↓ n/a n/a SD rat Male STZ induced T1DM 8-week

Saito et al., 1991

β-AR ↓ (AV node)
β-AR ↓ (IVS)

β1-AR ↓ (AV node)
β1-AR ↓ (IVS)

β2-AR ↓ (AV node)
β2-AR ↑ (IVS)

β1/β2-AR (%) ↓ (AV node)
β1/β2-AR ↓ (%) (IVS)

n/a n/a Wistar rat Male STZ induced T1DM 3-week

Sellers and
Chess-Williams, 2001 β-AR n.c. n/a n/a Wistar rat Male STZ induced T1DM 14-day

Sharma et al., 2008 n/a
β1-AR ↓
β2-AR ↑
β3-AR ↑

n/a Wistar rat Male STZ induced T1DM 6-week

Sun et al., 2016 n/a β1-AR n.c. n/a SD rat Male STZ induced T1DM 8-week

Sundaresan et al., 1984 β-AR ↓ n/a n/a SD rat Male STZ induced T1DM 8-week

Stanley et al., 2001 β-AR ↓ n/a n/a Yucatan micropig Female STZ induced T1DM 11-week

Sylvestre-Gervais et al.,
1984 β-AR ↓ n/a n/a Wistar rat Male STZ induced T1DM 10-week

Takeda et al., 1996 β-AR n.c. (15, 18, 21, 24-day)
β-AR ↓ (27-day) n/a n/a SD rat Male STZ induced T1DM 15, 18, 21, 24 and

27-day

Tuncay et al., 2013 β-AR n.c. n/a n/a Wistar rat Male STZ induced T1DM 12-week

Uekita et al., 1997 β-AR ↑ (3- and 14-week)
β-AR n.c. (24- and 35-week) n/a n/a CHAD hamsters Male/Female Genetic T1DM 3-, 14-, 24- and

35-week

Williams et al., 1983 β-AR ↓ n/a n/a Wistar rat Male STZ induced T1DM 8-week

Zola et al., 1988 β-AR n.c. n/a n/a New Zealand white rabbit Male Alloxan induced T1DM 10–13 months

Daniels et al., 2010 n/a na β1-AR n.c. db/db mice Male/Female Genetic T2DM 10-week

Dincer et al., 2003 n/a n/a β1-AR ↓
β2-AR ↓ Human Male/Female T2DM <5-year

Dubois et al., 1996 β-AR ↓ n/a n/a Zucker obese rat n/a Insulin resistant
diabetes 20-week
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Table 1. Cont.

Reference β-AR Protein
(Binding)

β-AR Protein
(Western Blot) β-AR mRNA Species Sex Diabetes Model Duration of

Diabetes

Fu et al., 2017 n/a β1-AR n.c
β2-AR n.c. n/a C57BL/6 mice Male HFD induced T2DM 8-week

Garris, 1990 β-AR n.c. n/a n/a db/db mice Female Genetic T2DM 4- and 12-week

Haley et al., 2015 β-AR ↓
β1-AR ↓
β2-AR ↓

β3-AR n.c.
n/a SD rat Male HDF/low dose STZ

induced T2DM 8-week

Haley et al., 2015 β-AR n.c. (10-week)
β-AR ↓ (16-week)

β1-AR n.c. (10-week)
β1-AR ↓ (16-week)

β2-AR ↓ (10-/16-week)
β3-AR ↑ (10-/16-week)

n/a ZDF rat Male Genetic T2DM 10- and 16-week

Huisamen et al., 2001 β-AR n.c. n/a n/a Zucker obese rat n/a Insulin resistant
diabetes model

6-, 10- and
20-week

Jiang et al., 2015 n/a
β1-AR ↓
β2-AR ↓

β3-AR n.c.
n/a Zucker obese diabetic rat Male Genetic T2DM 15-week

Kleindienst et al., 2016 n/a
β1-AR n.c.
β2-AR n.c.
β3-AR ↓

n/a C57BL/6 mice Male HF/HS diet induced
T2DM 12-week

Lamberts et al., 2014 n/a β1-AR n.c. n/a Human Male/Female T2DM <1-year

Schaffer et al., 1991 β-AR n.c. n/a n/a Neonatal Wistar rat Male Non insulin dependent
diabetes 10- and 12-month

Thackeray et al., 2011 β-AR n.c (2-week)
β-AR ↓ (8-week)

β1-AR ↓ (8-week)
β2-AR n.c. (8-week) n/a SD rat Male HDF/low dose STZ

induced T2DM 2- and 8-week

Thaung et al., 2015 n/a
β1-AR ↓ (LV)
β1-AR ↑ (RA)

β2-AR ↑ (LV and RA)
n/a ZDF rat Male Genetic T2DM 20-week

Wang et al., 2017 n/a β1-AR n.c. n/a C57BL/6J mice Male HFD induced T2DM 6-month

AV: atrioventricular, HF: high fat, HFD: high fat diet, HS: high sucrose, IVS: interventricular septum, LV: left ventricle, RA: right atrium, SD: Sprague Dawley, SHR: spontaneously
hypertensive, STZ: streptozotocin, T1DM: type 1 diabetes mellitus, T2DM: type 2 diabetes mellitus, WKY: Wistar Kyoto, ZDF: Zucker diabetic fatty. n.c.: no change, n/a: no data available, ↓:
decreased, ↑: increased.
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Protein expression of β1-AR was found to be decreased in the diabetic rat heart by using
immunoblots [37–39,41–43,86–88]. β2-AR protein expression level was shown to be downregulated
in diabetic (Ins2+/− Akita) mice [89]. Protein expression of β2-AR was also reduced in 14-week STZ
diabetic rats [42]. Similar findings have been presented by other study groups in the same model [41,43].
On the other hand, Sharma et al. have reported upregulation of β2-AR protein in 6-week STZ diabetic
rat [87]. After the presence has been demonstrated in the cardiac tissue [12], the expressional status
of β3-AR has been an issue of interest. Protein expression of β3-AR was almost doubled in 14-week
STZ diabetic rat heart [42]. Of note, this was the first study to report the change of all subtypes in
the diabetic rat heart. The upregulation of β3-AR in the diabetic rat heart has been confirmed in the
studies in STZ-diabetic rat model [36,37,39,41,43,86–88,90].

Consistent with the reduced protein expression level, mRNA expression of β1-AR was decreased
in the diabetic rat heart [36,41,42,91]. Despite downregulation of protein expression, β2-AR mRNA
expression was found to be increased in 14-week STZ diabetic rats [42]. This finding has been supported
by other investigators [41,43]. In line with the change in protein expression level, mRNA expression
of β3-AR was shown to increased in 14-week STZ diabetic rat heart [42]. The upregulation of β3-AR
mRNA level has also determined by others in STZ-diabetic rat model [40,41].

2.1.2. mRNA and Protein Expression in Type 2 Diabetes Mellitus

β-AR protein level has been found to be unchanged after 4 and 12 weeks of diabetes in female
db/db mice by using radioligand binding assay [92]. Similar β-AR protein level has been observed after
10–12 months of diabetes in a neonatal rat model of T2DM compared to control group [93]. Similarly,
β-AR density was preserved in Zucker fa/fa obese rats at 6, 10, and 20 weeks of diabetes [69]. On the
other hand, Dubois et al. showed that a reduced β-AR protein level in obese Zucker diabetic fatty
(ZDF) rats [66].

β1-AR protein expression has found to be preserved in atrial appendages of diabetic patients [94].
However, high fat fed C57BL/6J mice did not present an alteration in the protein expression of
β1-AR [95,96]. Protein expression of β1-AR was decreased in high fat fed-STZ injected rats while
β2-AR density was not altered [97]. In another study, protein expression of both β1- and β2-AR were
preserved whereas β3-AR were downregulated in 12-week diabetes induced by high fat/high sucrose
diet and + %10 sucrose in drinking water [98]. However, Jiang et al. have demonstrated that β1- and
β2-AR protein expression were reduced and β3-AR density was not altered ZDF rats compared to
control [99]. Similar to these findings, β1- and β2-AR were shown to be downregulated whereas β3-AR
density was preserved in high fat fed-STZ injected rats [100]. After this study, the same investigator
group have determined the change of β-AR subtypes at 10 and 16 weeks of diabetes in ZDF rats.
They have reported that protein expression of β1- AR was preserved at 10th week, however it was
decreased at 16th week. On the other hand, β2- and β3-AR were downregulated and upregulated
respectively at both time points [101]. In addition, expressional change of β-AR in left ventricle and
right atrium was compared in 20-week old ZDF rats. The protein level of β1-AR and β2-AR was
decreased and increased respectively in the left ventricle of diabetic animals whereas both β1- and
β2-AR have been found to be upregulated in the right atrium [102].

The mRNA expression of β1- and β2-AR was decreased in the atrial appendage of diabetic
patients [103]. Daniels et al. have reported that mRNA expression of β1-AR was not altered in both
sexes in 10-week diabetic db/db mice [104].

2.2. β-AR Mediated Signaling Pathways

As explained in detail in Section 1, due to their Gs- and/or Gi-coupled structure, stimulation of the
three subtypes of the β-AR in cardiac tissue leads to activation of different downstream pathways,
resulting in contraction or relaxation of cardiomyocytes. In this section, we focus on the changes
in these downstream pathways and in related molecules for Gs- and Gi-coupled β-AR mediated
responses separately.
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2.2.1. Changes in Gs-Coupling β-Adrenoceptor Mediated Signaling Pathways in Diabetes

Stimulation of Gs-coupled β1- and β2-AR results in activation of AC-cAMP-PKA pathway and
later PKA-mediated phosphorylation of several key proteins which are responsible of contraction of
cardiomyocytes. Similar [82] and decreased Gs expression level [81] in cardiac tissue has been shown in
T1DM Yucatan micropigs and minipigs respectively. Uekita et al. reported that Gsα subunit expression
did not differ T1DM hamsters compared to the control group [85]. Basal AC activity mostly remained
unchanged in diabetic heart (Table 2), but increased basal AC activity has been shown in diabetes by
some investigators [85,105]. Most studies have shown that basal cAMP level in cardiac tissue has not
been changed in both T1DM [54,72,106–111] or T2DM [112] animals. Similarly, not cardiac but plasma
cAMP level has not been found different in T1DM patients compared to healthy subjects [113,114].
Decreased cAMP levels were shown in long term T1DM [69] and T2DM animals [115]. In an insulin
resistant rat model, basal cardiac cAMP level was found increased at 6 weeks, unchanged at 10 weeks
and decreased at 20 weeks of diabetes [69]. Interestingly, Uekita et al. have found an increased basal
cardiac cAMP level in hamsters [85]. While basal cAMP level remains mostly unchanged in diabetic
heart, β-AR mediated cAMP accumulation has been found decreased in some [72,106,107,112,116] but
not in all studies (Table 2).

Alteration in β-AR mediated AC activity in diabetes has been evaluated by using non-selective
β-AR agonist isoprenaline. There are studies which show similar AC activity [50,54,74,81,86] or
decreased AC activity [37,55,60,62,71,72,81,105,117–119] or increased AC activity [85] in response
to β-AR agonist stimulation in T1DM animals. Schaffer et al. showed similar receptor-mediated
AC activity in a non-insulin-dependent diabetes model [93]. Regardless of duration of diabetes,
receptor-mediated AC activity has been found similar in both T1DM and T2DM diabetic rats compared
to control group [69]. Bilginoglu et al. showed that β-AR mediated AC activity attenuated in male
but remained unchanged in female T1DM rats [70]. Heterotrimeric G protein-dependent AC activity
has been evaluated in studies of diabetes. Stimulation of heterotrimeric G protein has been shown to
result in similar AC activity [50,62,117,118] or decreased AC activity [81,82,105,119] or increased AC
activity [85] in diabetic animals compared to control group. Forskolin is a direct AC stimulator and
often used to investigate intrinsic AC activity. Forskolin-induced AC activity was found similar in both
T1DM [50,58,60,74,81,86,117] and T2DM animals [69] compared to the control group. On the other
hand, attenuation of forskolin-induced AC activity in T1DM [37,82,105,120] and in T2DM [99] has
been shown in other studies. Similarly, studies that found increased basal AC activity found increased
AC activity in diabetes in response to forskolin [67,85]. Austin and Chess-Williams showed increased
AC sensitivity to forskolin in T1DM [80].

Similar basal cardiac PKA activity has been shown in T1DM rats [87,110] and in T2DM mice [112].
Shao et al. also showed decreased basal PKA activity in T1DM rats [121]. Stimulation of PKA
using by either 8-Bromo-cAMP or dibutyryl-cAMP mostly been shown to cause reduced activity in
both T1DM and T2DM [37,99,110,120,122]. However, similar PKA activity was observed in diabetic
animals in response to cAMP-derivative stimulation as in control animals [86,121]. In addition to
this, isoprenaline stimulated PKA activity was decreased in T1DM rat [122] and T2DM mice [112].
While phosphorylation of PKA was not found different in 6-week T1DM rats [123], phospho-PKA/PKA
ratio has been shown to increase when the duration of diabetes reached 12 week [75].
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Table 2. The change in cardiac β-AR signaling pathway in T1DM and T2DM.

Reference Downstream Molecule Change Species Sex Diabetes Model Duration of
Diabetes

Amour et al., 2007

G protein catalytic subunit dependent AC activity
Receptor mediated AC activity

Stimulated PKA activity
NOS activity

NOS1 expression

↓

↓

↓

↑

↑

Wistar rat Male STZ induced T1DM 4-week

Amour et al., 2008
G protein catalytic subunit dependent AC activity

Receptor mediated AC activity
Stimulated PKA activity

n.c.
n.c.
n.c.

Wistar rat Male STZ induced T1DM 4-week

Aragno et al., 2012 p-AKT/AKT ↓ Wistar rat Male STZ induced T1DM 6-week

Arioglu-Inan et al., 2013 eNOS expression n.c. SD rat Male STZ induced T1DM 8-week

Austin and Chess-Williams,
1991 G protein catalytic subunit dependent AC sensitivity ↑ Wistar rat Female STZ induced T1DM 3-week

Atkins et al., 1985 Receptor mediated AC activity ↓ SD rat Male STZ induced T1DM 4-week

Beenen et al., 1997 G protein catalytic subunit dependent AC activity ↑ (SHR diabetic rat) SHR ratWKY rat Male STZ induced T1DM 8-week

Bilginoglu et al., 2007 Receptor mediated AC activity
Receptor mediated AC activity

↓ (male)
n.c. (female) Wistar rat Male/Female STZ induced T1DM 5-week

Bilginoglu et al., 2009 Receptor mediated AC activity ↓ Wistar rat Male STZ induced T1DM 5-week

Bockus and Humphries,
2015

Basal cAMP level
Basal PKA activity

Stimulated PKA activity

n.c.
n.c.
↓

C57BL/6J mice Male STZ induced T1DM 4-month

Das, 1973 Basal cAMP level
Basal AC activity

n.c.
n.c. SD rat Male STZ induced T1DM 7-day

El-Hage et al., 1985 Basal cAMP level
Receptor mediated cAMP level

n.c.
n.c.

CDI miceC57BL/Ksjj
mice

Male
Male

Alloxan induced T1DM
Genetic diabetes

10-day
10-day

Gotzsche, 1983
Basal cAMP levels

Receptor mediated cAMP levels
Receptor mediated AC activity

n.c.
↓

↓

Wistar rat Female STZ induced T1DM 8-day



Cells 2020, 9, 2548 11 of 30

Table 2. Cont.

Reference Downstream Molecule Change Species Sex Diabetes Model Duration of
Diabetes

Huisamen et al., 2001

Basal AC activity
G protein catalytic subunit dependent AC activity

Receptor mediated AC activity
Basal AC activity

G protein catalytic subunit dependent AC activity
Receptor mediated AC activity

Basal AC activity
G protein catalytic subunit dependent AC activity

Receptor mediated AC activity
Basal cAMP level

Receptor mediated cAMP level
Basal cAMP level

Receptor mediated cAMP level
Basal cAMP level

Receptor mediated cAMP level

n.c. (6-week)
n.c. (6-week)
n.c. (6-week)
n.c. (10-week)
n.c. (10-week)
n.c. (10-week)
n.c. (20-week)
n.c. (20-week)
n.c. (20-week)
n.c. (6-week)
n.c. (6-week)
n.c. (10-week)
n.c. (10-week)
↓ (20-week)

n.c. (20-week)

Wistar rat n/a STZ induced T1DM 6-, 10- and
20-week

Ingebretsen Jr et al., 1981
Basal cAMP level
Basal cGMP level

Receptor mediated cAMP level

n.c.
n.c.
↓

Albino SD rat Male Alloxan induced T1DM n/a

Ingebretsen et al., 1983

Basal AC activity
G protein catalytic subunit dependent AC activity

G protein dependent AC activity
Receptor mediated AC activity

n.c.
n.c.
n.c.
n.c.

SD rat Male Alloxan induced T1DM 5-day

Kayki-Mutlu et al., 2014 Giα2 expression
eNOS expression

↑

n.c. SD rat Male STZ induced T1DM 8-week

Le Douairon Lahaye et al.,
2011 NOS1 expression ↑ Wistar rat Male STZ induced T1DM 9-week

Menahan et al., 1977
Basal AC activity

G protein dependent AC activity
Receptor mediated AC activity

n.c.
↓

↓

Rat n/a Alloxan induced T1DM 13–14 days

Michel et al., 1985
Basal AC activity

G protein dependent AC activity
Receptor mediated AC activity

n.c.
n.c.
↓

Wistar rat Male STZ induced T1DM 4-month

Miller Jr, 1984 Basal cAMP level
Receptor mediated cAMP level

n.c.
↓

SD rat Male Alloxan induced T1DM 3–7 days

Mooradian et al., 1988 G protein catalytic subunit dependent AC activity
Receptor mediated AC activity

n.c.
n.c. CDF (F-344) rat Male STZ induced T1DM 6-week
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Table 2. Cont.

Reference Downstream Molecule Change Species Sex Diabetes Model Duration of
Diabetes

Nishio et al., 1988
Basal AC activity

G protein catalytic subunit dependent AC activity
Receptor mediated AC activity

n.c.
n.c.
↓

SD rat Male STZ induced T1DM 10-week

Plourde et al., 1991
Basal AC activity

G protein dependent AC activity
Receptor mediated AC activity

n.c.
n.c.
↓

Wistar rat Male STZ induced T1DM 10-day +
10-week

Ramanadham and Tenner,
1987 G protein catalytic subunit dependent AC activity n.c. SD rat Male STZ induced T1DM 4-week

Roth et al., 1995

Basal AC activity
G protein catalytic subunit dependent AC activity

G protein dependent AC activity
Receptor mediated AC activity

Gs expression
Gi expression

Gi/Gs

n.c.
n.c.
↓

↓

↓

↑

↑

Yucatan minipig Male STZ induced T1DM 12-week

Sharma et al., 2008
Basal PKA activity
p-AKT expression

β2-Gs couplingβ2-Gi coupling

n.c.
↓

n.c.
n.c.

Wistar rat Male STZ induced T1DM 6-week

Sharma et al., 2011 PKA phosphorylation
AKT phosphorylation

n.c.
↓

Wistar rat Male STZ induced T1DM 6-week

Shao et al., 2009

Basal PKA activity
Stimulated PKA activity

p-RyR2 (Ser2814) expression
p-RyR2 (Ser2808) expression

↓

n.c.
↑

↑

SD rat Male STZ induced T1DM 7-week

Smith et al., 1984

Basal AC activity
G protein catalytic subunit dependent AC activity

G protein dependent AC activity
Receptor mediated AC activity

n.c.
n.c.
n.c.
↓

SD rat Male STZ induced T1DM 8–9 weeks

Smith et al., 1997
NO expression

cNOS expression
iNOS induction

↑

↑

↑

SD rat Male STZ induced T1DM 8-week

Srivastava and
Anand-Srivastava, 1985

Basal AC activity
G protein catalytic subunit dependent AC activity

G protein dependent AC activity
Receptor mediated AC activity

↑

↓

↓

↓

SD rat Male STZ induced T1DM 5-day
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Table 2. Cont.

Reference Downstream Molecule Change Species Sex Diabetes Model Duration of
Diabetes

Stanley et al., 2001

Basal AC activity
G protein catalytic subunit dependent AC activity

G protein dependent AC activity
Receptor mediated AC activity

Gs expression
Gi expression

n.c.
↓

↓

n.c.
n.c.
n.c.

Yucatan micropig Female STZ induced T1DM 11-week

Sundaresan et al., 1984
Basal cAMP levels

Receptor mediated cAMP levels
Receptor mediated AC activity

n.c.
n.c.
n.c.

SD rat Male STZ induced T1DM 2-month

Tamada et al., 1998 G protein catalytic subunit dependent AC activity
Stimulated PKA activity

↓

↓
Wistar rat Male STZ induced T1DM 4–6 weeks

Trovik et al., 1994 Plasma cAMP level n.c. Human Male/Female Insulin dependent
T1DM n/a

Tuncay et al., 2013
p-PKA/PKA

p-PLN expression
p-RyR/RyR

↑

↓

↑

Wistar rat Male STZ induced T1DM 12-week

Uekita et al., 1997

Basal AC activity
G protein catalytic subunit dependent AC activity

G protein dependent AC activity
Receptor mediated AC activity

Na+-K+ ATPase activity
Basal cAMP levelGiα expression

Gsα expression

↑ (14-week)
↑ (14-/24-week)
↑ (14-/24-week)
↑ (14-/24-week)
n.c.↑ (14-week)

n.c.
n.c.

CHAD hamsters Male/Female Genetic T1DM 3-, 14-, 24- and
35-week

Vadlamudi and McNeill,
1983

Basal cAMP level
Receptor mediated cAMP level

Basal cAMP level
Receptor mediated cAMP level

n.c. (3-day)
n.c. (3-day)

n.c. (100–120 days)
n.c. (100–120 days)

Wistar rat Female STZ and/or alloxan
induced T1DM

3-day,
100–120 days

Wichelhaus et al., 1994 Receptor mediated cAMP level ↓ Wistar rat Male STZ induced T1DM 4–5 weeks

Yu et al., 1994 Stimulated PKA activity
Receptor mediated PKA activity

↓

↓
Wistar rat Male STZ induced T1DM 6-week

Fu et al., 2017

Gi expression
p-TnI/TnI

p-PLNSer16/PLN
Receptor mediated p-PLNSer16/PLN

n.c.
n.c.
n.c.
↓

C57BL/6 mice Male HFD induced T2DM 8-week
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Table 2. Cont.

Reference Downstream Molecule Change Species Sex Diabetes Model Duration of
Diabetes

Hilsted et al., 1987 Plasma cAMP level n.c. Human Male Insulin dependent
juvenile onset diabetes 12–16 years

Huisamen et al., 2001

Basal AC activity
G protein catalytic subunit dependent AC activity

Receptor mediated AC activity
Basal AC activity

G protein catalytic subunit dependent AC activity
Receptor mediated AC activity

Basal AC activity
G protein catalytic subunit dependent AC activity

Receptor mediated AC activity
Basal cAMP level

Receptor mediated cAMP level
Basal cAMP level

Receptor mediated cAMP level
Basal cAMP level

Receptor mediated cAMP level

n.c. (6-week)
n.c. (6-week)
n.c. (6-week)
n.c. (10-week)
n.c. (10-week)
n.c. (10-week)
n.c. (20-week)
n.c. (20-week)
n.c. (20-week)
↑ (6-week)

n.c. (6-week)
n.c. (10-week)
n.c. (10-week)
↓ (20-week)

n.c. (20-week)

Zucker obese rat na Insulin resistant
diabetes

6-, 10- and
20-week

Jiang et al., 2015 G protein catalytic subunit dependent AC activity
Stimulated PKA activity

↓

↓

Zucker obese diabetic
rat Male Genetic T2DM 15-week

Kleindienst et al., 2016

eNOS expression
p-eNOSSer1177 expression
p-eNOSThr495expression

nNOS expression
iNOS expression

↑

↑

↑

↓

↑

C57BL/6 mice Male HF/HS diet induced
T2DM 12-week

Schaffer et al., 1991
Receptor mediated AC activity
Receptor mediated cAMP level

Na+-K+ ATPase activity

n.c.
n.c.
↓

Neonatal Wistar rat Male Non insulin dependent
diabetes

10- and
12-month

Song et al., 2008 iNOS expression
iNOS actvity

↑

↑
ZDF rat Male Genetic T2DM 20-week

Wang et al., 2017

Basal cAMP level
Gi expression
p-PLN/PLN

p-AKT expression
p-TnI/TnI

↓

n.c.
↓

↑

↓

C57BL/6J mice Male HFD induced T2DM 6-month
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Table 2. Cont.

Reference Downstream Molecule Change Species Sex Diabetes Model Duration of
Diabetes

West et al., 2019

Basal cAMP level
Receptor mediated cAMP level

Basal cGMP level
Receptor mediated cGMP level

Basal PKA activity
Receptor mediated PKA activity

p23–24/Total TnI
p16/Total PLN

n.c.
↓

n.c.
↓

n.c.
↓

↓

↓

C57BL/6J mice Male HFD induced T2DM 4.5–5 months

AC: adenylyl cyclase, AKT: protein kinase B, cAMP: cyclic adenosine monophosphate, cGMP: cyclic guanosine monophosphate, cNOS: constitutive nitric oxide synthase, eNOS: endothelial
nitric oxide synthase, Gi: inhibitory G protein, Gs: stimulatory G protein, HF: high fat, HFD: high fat diet, HS: high sucrose, iNOS: inducible nitric oxide synthase, NO: nitric oxide, NOS:
nitric oxide synthase, nNOS: neuronal nitric oxide synthase, PKA: protein kinase A, PLN: phospholamban, p-AKT: phospho-AKT, p-eNOS: phospho- endothelial nitric oxide synthase,
p-PKA: phospho- protein kinase A, p-PLN: phospho- phospholamban, p-RyR: phospho- ryanodine receptor, p-TnI: phospho-troponin I, RyR: ryanodine receptor, SD: Sprague Dawley,
SHR: spontaneously hypertensive, STZ: streptozotocin, T1DM: type 1 diabetes mellitus, T2DM: type 2 diabetes mellitus, TnI: troponin I, WKY: Wistar Kyoto, ZDF: Zucker diabetic fatty.
n.c.: no change, n/a: no data available, ↓: decreased, ↑: increased.
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Changes in PKA-dependent phosphorylation of contractile proteins may also be responsible for
diabetes related cardiac dysfunction. Alterations in PKA mediated phosphorylation of phospholamban
(PLN), ryanodine receptor (RyR) and troponin I (TnI) proteins due to diabetes have been investigated
in the studies which we used to generate this review. p-PLN expression was shown to decrease in
T1DM rats [75]. Decreased p-PLN/PLN ratio was also found in T2DM animals [112,115]. p-PLN/PLN
ratio has been shown to unchanged in T2DM mice, however isoprenaline stimulation caused a decrease
in this ratio [96]. The p-RyR/RyR ratio was decreased in T1DM rats [75]. On the other hand, p-RyR
expression at both Ser2814 and Ser2808 sites was found to increase in T1DM rats [121]. Whereas,
decreased p-TnI/TnI ratio was shown in T2DM mice [112,115], unchanged p-TnI/TnI ratio was found
by other research group [96] in the same diabetes model. While modulation of ion channel function,
mostly various types of K+ and Ca++ channels, is an important effector pathway of cardiac β-AR,
our search did not identify studies describing alterations of such coupling in diabetes; therefore,
they are not discussed here.

2.2.2. Changes in Gi-Coupling β-Adrenoceptor Mediated Signaling Pathways in Diabetes

Different from β1-AR, stimulation of β2-AR also activates the phosphatidylinositol 3-kinase
(PI3K)/protein kinase B (AKT) pathway, which protects cardiac cells against apoptosis through its Gi

coupling [124]. Unlike β1- and β2-AR, stimulation of β3-AR activates NOS-NO-cGMP-PKG pathway
through its Gi-coupling, resulting in relaxation of cardiomyocytes. It has been shown that the Gi

expression level [82,96,115] and Giα subunit expression level [85] do not change in diabetes. On the
other hand, increased Gi expression level and Gi/Gs ratio was found in T1DM Yucatan minipigs [81].
Kayki-Mutlu et al. have reported increased Giα2 subunit expression level in T1DM rats [40].

Coupling of cardiac β2-AR with the Gs and Gi-protein did not differ between T1DM and control
rats [87]. It has been shown that AKT phosphorylation [123], p-AKT protein expression [87] and
p-AKT/AKT ratio [38] were reduced in T1DM animals. However, Wang et al. found an elevated p-AKT
expression level in T2DM [115]. In T2DM, β2-AR activate cGMP-PKG signaling through a Gi-coupled
pathway, which has antihypertrophic effect on heart [112]. In this study, basal cardiac cGMP levels did
not differ between diabetic and control animals, but an increased cGMP level has been observed in
response to isoprenaline stimulation in diabetic animals [112].

There are few studies investigating changes in β3-AR mediated downstream molecules in diabetes.
Basal cardiac cGMP levels were found to be unchanged in T1DM rats compared to their age-matched
controls [106]. Increased NOS activity [37] and NOS1 protein expression were reported in T1DM
rats [37,90]. Similarly, increased NO and cNOS expression level and iNOS induction were shown
in T1DM rats [125]. However, eNOS expression did not change in T1DM rats after 8 weeks of
diabetes [36,40]. Contrary to these findings, Kleindienst et. al. found increased eNOS and p-eNOS,
both at Ser1177 and Thr495 site, expression in T2DM mice compared to the control group [98]. Moreover,
it was found that nNOS expression decreased and iNOS expression increased in diabetic animals [98].
Consistent with this study, increased iNOS expression and activity were also found in genetically T2DM
rats [126]. β3-AR mediated activation of Na+-K+ pump has beneficial effects on heart in pathological
situation [127]. Unchanged Na+-K+ ATPase activity was found in T1DM hamsters [85]. However,
Schaffer et al. showed that diabetes could cause reduction in Na+-K+ ATPase activity in long term [93].

2.3. The Inotropic and Chronotropic Response to β-AR Stimulation in the Diabetic Heart

The impact of diabetes on β-AR mediated cardiac function has been widely investigated as β-AR
are the essential component of cardiac contraction [128]. The inotropic and chronotropic responses to
β-AR stimulation in the diabetic heart has been determined both in vivo and in vitro. Cardiomyocytes,
atrial or ventricular tissue or papillary muscle or whole heart preparations have been used in in vitro
studied. The studies have mostly been conducted on rats but also been done on mice, swine, rabbit and
humans both in T1DM and T2DM.
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In this section, β-AR functional changes in cardiac tissue is described, firstly, the contraction
and/or relaxation responses obtained in in vitro studies and Ca++-mediated responses, if any, and then
the responses obtained from in vivo studies in T1DM and T2DM separately.

2.3.1. Type 1 Diabetes Mellitus

Ventricular myocytes have been isolated from Wistar rats and the isoprenaline-induced contractile
response was not affected after 24 h of hyperglycemic exposure [129]. In line with this result, it has been
shown that hyperglycemia has no detrimental effect on ventricular cardiomyocytes after isoprenaline
stimulation [130]. The isoprenaline-mediated effect on peak shortening was reduced in ventricular
myocytes isolated from STZ-diabetic mice [131]. Different from these studies, rate of contraction and
relaxation time after isoprenaline treatment were augmented in cardiomyocytes of diabetic Ins2+/−Akita
mice [89].

The inotropic effect of isoprenaline was attenuated in chronic diabetic rat atria [132–134]. Reduced
inotropic effect in right atria has been also confirmed despite absence of a relevant change in the
chronotropic effect [135]. Decreased inotropic effect to β-AR stimulation has also been observed
in the left atria [136]. Reduced chronotropic effect of β-AR agonists has been reported by several
investigators [132,133,137,138]. While isoprenaline stimulated chronotropic response has been found
to be impaired in right atria of acute and chronic diabetes [51], isoprenaline induced inotropy has
mostly been found unaltered in the studies by same study group [56–58,139] except for the one study
with enhanced inotropic response [51]. The idea of increased inotropic effect of isoprenaline has
been supported in the left atria of 2-week diabetic rats which was reversed after 12 weeks of the
pathology [140]. Preserved inotropic effect of β-AR stimulation has been also shown in the right and
left atria of spontaneously diabetic Bio-breeding (BB) rats [61]. Isoprenaline induced chronotropic
effect of the right atrium was not different in diabetic Yucatan minipigs [82], whereas it was found to
be depressed in diabetic rats [141].

The discrepancy between the functional studies are also present in the isolated ventricular
tissue. A reduced maximum response to isoprenaline in right ventricular strips [142] and decreased
contractile response to isoprenaline in ventricular tissue [143] have been observed in diabetic rats.
Isoprenaline-induced developed tension of right ventricular strip was numerically decreased in alloxan
diabetic rabbit, but this effect has not been found to be statistically significant [84]. Gunasekaran et al.
have demonstrated that isoprenaline induced maximum response was not altered in right ventricular
strip of 4-week diabetic rats [64]. On the other hand, Wald et al. have demonstrated that force of
contraction was increased in the ventricle of STZ diabetic rats [144]. β-AR responsiveness has been also
investigated by using papillary muscles. Contractile force generation by isoprenaline stimulation was
reduced in the papillary muscle in 8-week diabetic rats [48]. This finding has been confirmed by other
groups [37–39,145–150] including our group [36]. On the other hand, preserved contractile response
to isoprenaline in the papillary tissue has also been reported in long term diabetes [79]. Preserved
positive lusitropic effect in response to isoprenaline administration, in the presence of β3-AR antagonist
and NOS inhibitor, in papillary muscle has also been reported in both acute and chronic diabetes [86].
We showed blunted relaxation response to BRL 37344, a mixed β2/β3-AR agonist, in the papillary
muscle [36]. The sensitivity to noradrenaline in right atria or ventricular papillary muscle was not
changed in diabetic rabbits [151]. However, Austin et al. showed increased sensitivity to isoprenaline
of both left atria and papillary muscle without any significant alteration in the maximum response to
isoprenaline in 14-day diabetic female rat [152].

Whole heart preparation has been used in some of the studies. The peak response to isoprenaline
stimulation was not changed in Langendorff perfused hearts in 9-week diabetic rats [88]. Maximum
inotropic response to isoprenaline was found to be increased in female rat heart while it was not
changed in male rats [70]. Preserved responses to β-AR agonists were also found by others [153,154].
Comparable results in maximum increase in developed tension, heart rate, +dp/dt and -dp/dt after
isoprenaline stimulation were observed among the groups although the increase at submaximal doses
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of the drug was greater in the diabetic group [73]. On the other hand, using Langendorff or working
heart preparation, an impaired response to β-AR stimulation was also shown [71,106,125,155–157].
Unchanged +dp/dt in response to isoprenaline stimulation was shown by using working heart
preparation in both alloxan and STZ diabetic female rats. However, -dp/dt was depressed at both acute
and chronic phase of diabetes in the same study [158]. In some of the studies, the functional response
to β-AR stimulation has been subtype specifically investigated. Dobutamine induced β1-AR mediated
inotropic effect was enhanced in the diabetic heart whereas salbutamol-induced β2-AR mediated
contractility was comparable in STZ diabetic spontaneously hypertensive (SHR) rats compared to
control group [67]. β1- and β2-AR mediated inotropic effect was preserved and reduced in STZ
diabetic rat heart, respectively. On the other hand, BRL 37344 stimulated β-AR mediated relaxation
was increased in Langendorff perfused hearts [41]. Augmented relaxation response to BRL 37344 in
the same diabetic model has been also shown by our group [40].

β-AR mediated responses have been also evaluated by the change in Ca++ transients. Increase in
Ca++ transient amplitude as a response to orciprenaline was lower in cardiomyocytes isolated from 1-
and 6-week diabetic rats [159]. Isoprenaline induced effect in Ca++ transient and cell shortening was
impaired in ventricular myocytes isolated from 4–6 week diabetic rats [120]. Parallel to these findings,
blunted [Ca++]i change in response to isoprenaline was reported in diabetic cells [122].

There are relatively fewer studies which have investigated β-AR mediated in vivo in T1DM.
In vivo cardiac parameters such as rate of contraction/relaxation and heart rate were attenuated after
isoprenaline treatment in STZ diabetic mice [110]. Similarly, isoprenaline induced in vivo inotropic
response was decreased in 16-week diabetic mice [78]. +dp/dt was depressed after isoprenaline
stimulation in 4-week diabetic rats whereas it was preserved in 2-week diabetic group [55]. Both +dp/dt
and -dp/dt and amplitude of response were reduced after in vivo isoprenaline administration in 7-week
diabetic rats [43]. Decreased response to in vivo β-AR stimulation in the diabetic rat heart has been
shown also by others [37,39,75,91,160–166]. Depressed isoprenaline stimulated response has also been
shown in alloxan diabetic rabbits [83]. However, unaltered or enhanced inotropic/lusitropic response to
in vivo β-AR stimulation have been also reported. Amour et al. have demonstrated that dobutamine
induced positive lusitropic effect was not changed after 4 or 12 weeks of diabetes despite diastolic
dysfunction [86]. Similarly, in vivo β-AR induced effect was well preserved in female diabetic rats [167].
On the other hand, dobutamine induced contractile function was found to be increased in diabetic
rats [168]. However, the effect of dobutamine on in vivo cardiac parameters were comparable between
control and STZ-diabetic Yucatan minipigs [169]. There are also few studies which have determined the
change in β-AR mediated effect in the human heart. β-AR sensitivity was increased in insulin dependent
diabetic patients [170]. On the other hand, it has been found that sensitivity to isoprenaline stimulation
was reduced in insulin dependent diabetic patients with hypoglycemic unawareness [114,171,172].
However, epinephrine induced increase in heart rate was demonstrated to be greater in diabetic patients
with autonomic neuropathy [113]. On the other hand, the effect of in vivo noradrenaline administration
on cardiac parameters was comparable in control and diabetic patients [173].

2.3.2. Type 2 Diabetes Mellitus

As mentioned in the previous sections, T2DM animal models have received attention because of
their greater translational value. Parallel to the studies in T1DM models, mostly rats, but also mice
have been used in studies on T2DM.

Isoprenaline-stimulated sarcomere shortening in cardiomyocytes isolated from high fat fed mice
was not found different compared to control cardiomyocytes [174]. Isoprenaline induced chronotropic
response was significantly increased in atria from fructose and sucrose fed rats which presents an
insulin resistance model [175]. β-AR mediated cardiac function in right atria from was not found
different among diabetic and healthy subjects [138].

The inotropic effect of isoprenaline was not altered in left ventricular trabecular muscle in neonatal
non-insulin-dependent diabetes model [143]. Similarly, trabeculae tissue was found to be unresponsive
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to dobutamine stimulation in T2DM individuals [94]. Positive inotropic effect of isoprenaline was
slightly and markedly decreased in papillary muscle from Zucker obese and ZDF rats, respectively [99].

β-AR mediated response on contraction and relaxation was impaired in ZDF rats by using the
Langendorff heart preparation. It has been suggested that β1-AR is the main subtype which regulates
heart function in both healthy and diabetic rats whereas β2-AR has an indirect influence on β-AR
mediated responses in the diabetic heart [176]. Dobutamine induced chronotropic effect was reduced
in unpaced hearts despite of preserved inotropic effect in whole heart in ZDF rats. Of note, contractility
in diabetic groups was decreased when the heart rate is set to 300 bpm with pacing [102]. Impaired
contraction and relaxation response to isoprenaline stimulation has been also shown in isolated
perfused heart in neonatal noninsulin dependent diabetes model [93]. Left ventricular developed
pressure after BRL 37344 stimulation was determined to be significantly increased by using Langendorff
heart preparation in high fat fed mice [98].

The in vivo effect of isoprenaline was attenuated in high fat fed rats [96,112,115]. The in vivo
inotropic response to dobutamine stimulation was reduced in ZDF rats [102]. Similar findings were
reported by Song et al. in the same model [126]. In line with these findings, in vivo inotropic and
lusitropic effect of dobutamine was found to be reduced in db/db mice [104]. However, Takada et al. have
demonstrated that positive inotropic response to in vivo β-AR stimulation was similar between control
and OLETF diabetic rats [177]. This finding was confirmed in diabetic individuals. Both chronotropic
and inotropic response toβ-AR stimulation was found to be unaffected in this study [178]. Chronotropic
response to dobutamine stimulation was decreased in conscious ZDF rats [179]. Chronotropic effect of
isoprenaline was augmented in ZDF rats and it has been implicated that β1-AR is the main subtype to
modulate chronotropic effect in control and diabetic animals [180]. Furthermore, heart rate was not
altered in db/db diabetic mice after a 2-h isoprenaline administration [111].

3. Discussion

Cardiovascular complications are the major risk factor for mortality in individuals with
diabetes [181]. It is important to understand underlying mechanisms that contributes to diabetes-induced
cardiac dysfunction to allow researchers and physicians to prevent or treat it. Sympathetic system
overactivity is well-known characteristic of diabetes. Thus, it seems logical that sympathetic overdrive
leads changes in β-AR mediated responses such as cardiac contraction and relaxation. This is an issue
of interest which has been investigated by several study groups for many years. However, there are
many inconsistent findings in the literature which makes it difficult to properly interpret the existing
data. Moreover, the literature is dominated by studies from animal models, which may or may not be
representative for the human situation. The conflicting results from the animal studies make it even
harder to extrapolate to humans. Therefore, more human studies are urgently needed. Two additional
under-investigated areas emerged from our search: There is little data on alterations of β-AR coupling to
ion channels in the diabetic heart and on differential regulation within the heart, for instance ventricular
tissues vs. conduction system.

Most investigators have reported a decreased expression of β-AR by using radioligand binding
studies in rodent models of T1DM, but a smaller number of studies did not confirm such changes,
and an increased expression has been reported in two studies from one group of investigators [79,80].
The balance of these findings indicates that expression is decreased, primarily due to a reduction in
β1- and β2-AR and less if any in β3-AR as explained in Section 2.1. Similarly to radioligand binding
studies, there are different findings about changes in subtype specific changes in β-AR by using
immunoblotting by different study groups. However, changes in same subtype could differ regarding
the different cardiac tissue that is used [102] or duration of diabetes [101] in the same study. There are
two studies which have reported both protein and mRNA level of β-AR in diabetic heart [41,42].
In both studies, the mRNA expression of β1-AR and β3-AR was found to be decreased and increased
respectively, consistent with the protein level. However, it was found that the β2-AR mRNA level was
increased despite the reduced β2-AR protein level, and this has been referred to the sensitization of
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the receptor [42]. While not confirmed in T2DM models, an increased expression of β3-AR is one of
the most consistent findings in the STZ model of T1DM. Similarly, upregulation of β3-ARs have been
reported in the heart failure. In both human [29] and canine cardiomyocytes [182], the expression of
β3-ARs was found to be increased. On the other hand, these studies have indicated conflicting results
about theβ3-AR mediated relaxation in the failed heart. The response toβ3-AR stimulation was blunted
in the human heart [29] while it was increased in the canine heart [182]. It has been suggested that this
discrepancy may have been caused by several factors such as interspecies differences, the severity of
the disease, tissue type or different measurement technique of the contractility [182]. β3-ARs have
been also related to a protective role in cardiac ischemia and reperfusion injury. The beneficial effects
due to β3-AR stimulation have been demonstrated in this pathology [183,184]. Of note, the favorable
effect mediated by β3-AR stimulation in ischemia and reperfusion injury was seen only in control rats
not in high fat high sucrose (HFS) fed mice [98]. This result has been linked to reduced expression of
β3-ARs in HFS mice. These findings imply that the expressional or functional changes of β3-ARs may
contribute to the cardiac pathologies.

Cardiac β-AR post-receptor signaling pathway regulation may contribute to changes in β-AR
responsiveness in diabetes. Supporting that, reduced β-AR responsiveness has been reported despite
unchanged β-AR protein and/or mRNA level in diabetic state in some studies [96,115]. However,
there are few studies which have linked the changes in β-AR subtype in molecular level and related
downstream molecules and receptor mediated functional response [36,40,96,115]. Some studies
have investigated the changes in the protein expression of β-AR and concomitant signaling pathway
molecules, with [60,82] or without [54,81] functional response studies. And some of them have evaluated
changes in signaling pathway molecules and further contraction and/or relaxation responses [110,111].
Studies investigating the cardiac β-AR signaling pathway have also revealed quite different results
(Table 2). Conflicted findings have been reported on the same downstream molecule in the studies
which have been done by same study group with the very same experimental approach despite similar
findings on β-AR protein expression changes [37,86].

Same as the molecular changes in β-AR, in vivo and in vitro studies have yielded different results.
Increased and decreased response to the same agonist, in the whole heart [40] and in the papillary
muscle [36], respectively, was also shown by our study group. It has been suggested in the studies
that discrepancies in findings may have resulted from experimental approach such as duration of
the diabetes or the cardiac section that was used in the study. However, to interpret existing data by
attributing to single or several variables cannot go beyond an assumption, considering the existence of
such inconsistent and different findings.

In conclusion, since the late 1970s, diabetes related changes in cardiacβ-AR have attracted attention
of several researchers but their findings are controversial. At the molecular level, antibody-based
approaches are troubled by low target selectivity and in general studies have a very poor reproducibility
rate. The studies primarily have been conducted on rodent cardiac tissues and few have been done
in other species including humans. In preclinical studies, mostly male animals have been preferred,
there are relatively fewer studies which have been done in female animals. Even though 90% of
diabetic patients have T2DM [185], more studies have been done on T1DM animal models. Apart from
inconsistent findings, these are other obstacles to interpret and generalize findings to the clinical stage.
Thus, it is unlikely to make a general interpretation and extrapolation regarding to the studies which
have been done so far. We think that investigators who do or will work on cardiac β-AR in diabetes
should be aware of the inconsistency in the literature. More studies are needed to come through an
overall conclusion about the role of β-AR in diabetic cardiac dysfunction.
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