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Failure of ductus arteriosus closure after preterm birth is associated with significant

morbidities. Ductal closure requires and is regulated by a complex interplay of molecular

and mechanical mechanisms with underlying genetic factors. In utero patency of the

ductus is maintained by low oxygen tension, high levels of prostaglandins, nitric oxide and

carbon monoxide. After birth, ductal closure occurs first by functional closure, followed

by anatomical remodeling. High oxygen tension and decreased prostaglandin levels

mediated by numerous factors including potassium channels, endothelin-1, isoprostanes

lead to the contraction of the ductus. Bradykinin and corticosteroids also induce ductal

constriction by attenuating the sensitivity of the ductus to PGE2. Smooth muscle

cells of the ductus can sense oxygen through a mitochondrial network by the role

of Rho-kinase pathway which ends up with increased intracellular calcium levels and

contraction of myosin light chains. Anatomical closure of the ductus is also complex

with various mechanisms such as migration and proliferation of smooth muscle cells,

extracellular matrix production, endothelial cell proliferation which mediate cushion

formation with the interaction of blood cells. Regulation of vessel walls is affected

by retinoic acid, TGF-β1, notch signaling, hyaluronan, fibronectin, chondroitin sulfate,

elastin, and vascular endothelial cell growth factor (VEGF). Formation of the platelet

plug facilitates luminal remodeling by the obstruction of the constricted ductal lumen.

Vasa vasorum are more pronounced in the term ductus but are less active in the

preterm ductus. More than 100 genes are effective in the prostaglandin pathway or in

vascular smooth muscle development and structure may affect the patency of ductus.

Hemodynamic changes after birth including fluid load and flow characteristics as well as

shear forces within the ductus also stimulate closure. Current pharmacological treatment

for the closure of a patent ductus is based on the blockage of the prostaglandin

pathway mainly through COX or POX inhibition, albeit with some limitations and side

effects. Further research for new agents aiming ductal closure should focus on a clear

understanding of vascular biology of the ductus.

Keywords: ductus arteriosus, oxygen, vasa vasorum, hemodynamics, indomethacin, ibuprofen, acetaminophen,

prostaglandins
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Ovalı Mechanisms of Ductal Closure

Fetal circulation is a unique event, functionally different from
pediatric and adult circulation. Ductus arteriosus (DA) is a small,
simple vessel with just a few milimeters length and width, but
has a profound impact on the survival of the fetus and newborn
and plays an essential role in normal postnatal adaptation after
birth. It functions as a bridge between two large vessels in fetal
life, but sometimes it becomes the “bridge between life and death”
in preterm infants. It has baffled scientists since ancient times,
and beginning from Galen and Ibn-al Nafis, Vesalius, Leonardo
Botallo andWilliamHarvey have commented on its structure and
function (1).

During fetal development, cardiovascular septation occurs
during days 22–28 of gestation and looping of ventricles
completes. At this stage, bilateral aortic arches and bilateral DA
form but over the next week, the right aortic arch and ductus
involutes. Ductus arteriosus arises from the left sixth embryonic
arch; leaves the pulmonary artery very close to the bifurcation
point and inserts at the transition zone between the aortic arch
and descending aorta, distal to the origin of the left subclavian
artery. Usually it has a tubular shape but may be funnel-shaped
with a narrow end on the pulmonary side and a wide end
on the aortic side (2). Although they all derive from the same
embryonic tissue, histological structure of the DA is completely
different from that of the aorta or pulmonary arteries. The walls
of both great vessels are composed of mainly elastic layers,
whereas DA wall is mainly muscular. The inner layer of its wall is
composed of longitudinal arranged smooth muscle cells whereas
the arrangement of outer layer is mainly circular. On the luminal
side, a layer of intimal endothelial cells resides on an internal
elastic lamina. This unique structure of the DA sets the stage for
the constriction of the vessel after birth.

Ductus arteriosus needs to be remain open in fetal life, in
order to sustain the “serial” circulation of the blood. Magnetic
resonance studies show that 41% of combined ventricular output
passes through the DA in fetal life (3). However, after birth, as
the lungs begin to function, a “parallel” circulation is maintained,
rendering DA non-functional. Initially it was thought that
the ductus was a flabby structure that remained passively
open. However, in fetal life, ductus in actively kept dilated by
continuous intramural production of prostaglandins (4). The
transition from intrauterine to extrauterine life is a critical period
and dysregulation of this process may lead to cardiopulmonary
instability. Cardiopulmonary adaptation is completed by the
closure of DA, followed by closure of ductus venosus and lastly
by foramen ovale. In 88% of normal term infants, the ductus is
closed by the 8th week of life (5). Preterm infants are born before
complete maturation of the cardiovascular system, and they
manifest most of the characteristics of fetal life. In a retrospective
study of 280 preterm infants who did not receive any therapy
directed at closing the ductus, the median time to closure was
71 days in infants born <26 weeks; 13 days in infants born 26–
27 weeks, 8 days in infants born 28–29 weeks and 6 days in
infants born >30 weeks (6). This implies that extremely preterm
infants will be subjected to a period of left-to-right shunting and
complications relevant to this shunting.

Ductal closure occurs in two steps: The functional step
(vasoconstriction) and the anatomical step (remodeling).

Interestingly, the closure of DA resembles the process after
vascular injury or atherosclerosis in the adult arteries (7).
Understanding different mechanisms which are involved in
maintaining ductal tone is essential to comprehend why preterm
infants have a high incidence of ductal patency, why some of
them do not respond to treatment and where to direct novel
therapeutic approaches. On the other hand, it must be stated that
most of the experiments and studies toward understanding the
physiology of ductal closure are done in animals such as rats or
lambs and extrapolated to humans. However, some mechanisms
as well as their magnitudes may not be the same in humans.

DUCTAL PATENCY IN UTERO

Smooth muscle tone is regulated by
phosphorylation/dephosphorylation of myosin light chain
(MLC). MLC is phosphorylated by Calcium/calmodulin-
dependent MLC-kinase (MLCK) and dephosphorylated by
calcium independent MLC-phosphate (MLCP). Increased
cytosolic calcium activates MLCK, which leads to MLC
phosphorylation and vasoconstriction (8) (Figure 1). Patency
of DA is regulated by counteractive forces causing vasodilation
or vasoconstriction. In the fetus, DA needs to remain
open, therefore vasodilating factors are more active than
vasoconstrictive factors. Prostaglandins play a dominant role
to oppose constriction. Since the pulmonary artery pressure is
very high, the pressure within the DA is very high, preventing it
from constriction.

Prostaglandins
Prostaglandins are synthesized from arachnidonic acid by
cyclooxygenases COX1 and COX2 within the ductal muscle.
Circulating prostaglandins, originated from the placenta
contribute to the patency of DA (Figure 2). Prostaglandins are
metabolized in the lung and low pulmonary blood flow in the
fetus leads to reduced clearance of prostaglandins, increasing
their concentration further.

Prostacylin (PGI2) is the major arachnidonic acid product
of the ductus but although it is more prevalent, it is less
potent than prostaglandin E2 (PGE2), which is the most
important prostaglandin to regulate the patency of DA (9). PGE2
interacts mainly with its receptor EP4. EP4 activates voltage-
gated potassium channel (Kv) and outward K+ current increases,
thereby inducing membrane hyperpolarization, which inhibits
Ca2+ influx via the voltage-gated L-type calcium channels
(CaL) and decreases intracellular calcium (10). PGE2also
activates cyclic adenosine monophosphate (cAMP), which inturn
activates protein kinase (PKA), which inhibits myosin light
chain creatine kinase (MLCK). Inhibition of MLCK blocks
phosphorylation of myosin light chains, which results in
inhibition of vasoconstriction, hence vasodilation occurs (11–
13) (Figure 1). In utero vasodilation of the ductus is maintained
by dephosphorylation of MLC to MLCP. MLCP is enhanced
due to the inhibitory effect of PKG on the Rho-kinase pathway.
PKG also activates Kv channels, leading to hyperpolarization
and inhibition of Ca2+ influx through CaL channels. Stimulation
of sarcoplasmic reticulum calcium ATPase (SERCA), by PKG
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Ovalı Mechanisms of Ductal Closure

FIGURE 1 | Vasoconstrictive and vasodilatory effects in the ductal smooth muscle cell. Smooth muscle cells are lined with an internal elastic lamina, on which

endothelial cells reşide. Vasodilation is maintained by the interaction of PGE2 with its receptor EP4, which triggers potassium outflow through voltage-sensitive

potassium channels, which leads to membrane hyperpolarization. Thereby, calcium entry into the cells decreases and binding of calmodulin to MLCK is inhibited.

cAMP and cGMP are also effective during this process. After birth, high oxygen tension, which is sensed through the mitochondria triggers the formation of H2O2

which blocks Rho-kinase pathway as well as potassium channels leading to membrane depolarization and calcium entry into cells. Calcium entry is also stimulated by

endothelin-1, hypo-osmolarity and glutamate. Calcium activates MLCK, which leads to MLC phosphorylation and vasoconstriction. cAMP is also effective in smooth

muscle migration and intimal cushion formation. AC, adenylyl cyclase; ANP, Atrial Natriuretic peptide; ATP, Adenosine Tri Phosphate; BK, Bradykinin; BK1, Bradykinin

receptor; CaL, calcium channels; cAMP, cyclic adenosine monophosphate; cGMP, cyclic guanosin monophosphate; CO, Carbon monoxide; CYP3A13, cytochrome

P450; eNOS, endogenous nitric oxide synthase; EP4, Prostaglandin receptor 4; ET-1, Endothelin-1; ETA, endothelin receptor A; epac, exchange protein activated

cAMP; H2, Hydrogen sülfite; GluR1, glutamate receptor-1; KATP, KV, Voltage-dependent potassium channels; NE, Norepinephrine; MLC, Myosin Light Chain; MLCK,

Myosin Light Chain Kinase; MLCP, Myosin Light Chain Phosphatase; NO, nitric oxide; PKA, cAMP-dependent protein kinase; PGE2, Prostaglandin E2; PKG,

cGMP-dependent protein kinase; RA, Retinoic acid; ROCK-1, Rho-associated protein kinase-1; SR, Sarcoplasmic Reticulum; SMC, Smooth Muscle Cell; TRMP3,

transient receptor potential melastatin 3 (Figure courtesy of Fahri Ovali).

FIGURE 2 | Prostaglandin pathway and metabolism. Inhibitors of various steps are shown in red., COX-1, cyclooxygenase-1; EP4, Prostaglandin receptor 4; Indo,

Indomethacin; Ibu, Ibuprofen; PG, prostaglandin; 15-PGDH, 15-hydroxyprostaglandin dehydrogenase; 15-KETO-PG2 (Figure courtesy of Fahri Ovali).
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Ovalı Mechanisms of Ductal Closure

leads to uptake of Ca2+ in sarcoplasmic reticulum, lowering
intracellular calcium (14, 15).

Nitric Oxide
Nitric oxide (NO) is produced by endothelial nitric oxide
synthase in the luminal endothelium and endothelium of
vasa vasorum and maintains the patency of DA by acting
through cGMP. After its production, it diffuses into the SMC
and binds with soluble guanylyl cyclase, producing cyclic
guanosine monophosphate (cGMP). cGMP activates cGMP-
dependent protein kinase (PKG), which induces vasodilation (16)
(Figure 1). NO is also formed in small amounts in the SMC
by inducible nitric oxide synthase (iNOS) and neuronal NOS,
which contribute to ductal relaxation (17). Nitric oxide is used
commonly in preterm infants for the management of pulmonary
hypertension and may affect the patency of the ductus. PGE2 and
NO are coupled for reciprocal compensation such that inhibition
of one of them increases the concentration of the other one (18).
This might explain why some preterm infants fail to close their
ductus in response to COX inhibitors.

Carbon Monoxide
Hem oxygenase 1 and hem oxygenase 2 which produce carbon
monoxide (CO) are found in the endothelial and smooth muscle
cells of the DA. CO dilates the ductus by inhibition of O2 sensing
cytochrome P450, thus interrupting endothelin-1 signaling (19,
20) (Figure 1). Carbon monoxide produced under physiological
conditions seems to be negligible with regard to ductal patency
but in cases of upregulation such as endotoxemia, it may have a
relaxing effect on the ductus. Carbon monoxide is also formed
in a molar ration during bilirubin production. Theoretically,
high bilirubin levels may be associated with ductal patency.
However, since high bilirubin levels are not allowed and treated
accordingly in human neonates, this effect does not seem to be
an important contributor to PDA. Similarly hydrogen sulfide
inhibits DA tone (21).

Phosphodiesterase 3 (PDE3) inhibitors such as milrinone
and amrinone have positive inotrope and vasodilator effects.
Inhibition of PDE3 also induces dilation of the fetal and postnatal
ductus arteriosus in humans. This effect is mediated by an
increase in cAMP and cGMP in vascular smooth muscle (22)
(Figure 1).

Transient receptor potential melastatin 3 (TRPM3) is
expressed heavily in ductal SMC and acts as a calcium channel
which increases intracellular Ca2+ independent of CaL channels.
Progesterone is a natural inhibitor of TRPM3 and may prevent
ductal closure in utero (23).

Factors that maintain ductal patency in utero are summarized
in Table 1 (24).

FUNCTIONAL CLOSURE

Functional closure of the ductus occurs by 8 h in 44% of normal
term infants and almost 100% are closed by 72 h. (25). The
rate and degree of this closure is determined by the balance of
vasodilator and vasoconstrictive factors. Several changes in late
gestation contribute to an increase in ductal tone.

Constriction of the ductus is maintained via3 factors:

a) Decreased concentration of prostaglandins by the loss of
placental source and increased removal by the lungs, and
decreased number of EP4 receptors on the ductal wall.

b) Increased arterial oxygen pressure.
c) Decreased pulmonary vascular resistance resulting in

decreased blood pressure within the lumen of the DA.

Decreased Prostaglandins
After the cord is clamped, PGE2 concentrations drop rapidly due
to removal of placental production and increased metabolism in
the lungs (9). The metabolism of PGE2in the lung is mediated
by PG transporter, which controls the uptake of PGE2into type
II alveolar epithelial cells (26). In the alveolar epithelial cell,
PGE2is degraded reversibly to biologically inactive metabolite
15-keto-PGE2 by 15-hydroxyprostaglandin dehydrogenase (15-
PGDH) (27). The activity of 15-PGDH increases with increasing
gestational age (28). 15-keto-PGE2is metabolized irreversibly to
13, 14-dihydro- 15-keto-PGE2by 1-13-reductase. After birth,
expression of EP4 decreases and increased oxygen reduces
the sensitivity of the ductus to PGE2 (29). On the other
hand, lungs also produce bradykinin (27). Bradykinin induces
vasodilation in utero, but in higher concentrations, it induces
vasoconstriction (30).

In the preterm infant, the sensitivity of DA to PGE2 is higher
than that in the term infant, which is attributed to increased
binding to EP2, EP3, and EP4 receptors (18). The catabolism of
PGE2 is slower due to low 15-PGDH activity in early gestation.
The preterm ductus is also six times more sensitive to dilation to
NO than the mature DA (31). Postnatal increase in oxygen might
enhance NO production, which induces vasodilation (9).

Although PGE2 is the most important agent in maintaining
ductal patency in fetal life, there is some evidence that in late
gestation, it may paradoxically prepare the ductus for postnatal
closure. At that time, PGE2 may promote the expression of some
genes involved in vasoconstriction (32, 33). In late gestation,
some phosphodiesterases that degrade cAMP are upregulated,
which results in limited accumulation of cAMP and attenuates
the vasodilator effects of PGE2 (34).

Increased Oxygen
There are a number of oxygen sensing tissues in human body,
such as fetoplacental arteries in the placenta, pulmonary artery,
DA, adrenomedullary chromaffin cells, neuroepithelial body and
carotid body. This oxygen-sensing and responding system is
called the Homeostatic Oxygen Sensing System (HOSS) and
should be considered one of the body’s major systems such as
cardiovascular, nervous or endocrine systems (35).

During fetal life, oxygen pressure in the ductal lumen is about
18–28 mmHg, which is suitable for maintaining the ductus open
(36). After birth, arterial oxygen rises sharply to 80–100 mmHg,
which leads to vasoconstriction of almost all vascular smooth
muscle, with the exception of pulmonary artery (37). Oxygen-
induced constriction begins within 4.6 ± 1.2min after a rise in
PaO2 (38).
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Ovalı Mechanisms of Ductal Closure

TABLE 1 | Factors that maintain ductal patency in utero.

Low oxygen tension

High levels of circulating prostaglandins

Increase in nitric oxide production

Increase in carbon monoxide production

High levels of circulating adenosine

Increase in intracellular cAMP and cGMP

Raised plasma concentrations of atrial natriuretic peptide

Activation of potassium channels Kv1.5, Kv1.2, Kv2.1, KATP, BKca

Oxygen-induced vasoconstriction is a multistep process.
Oxygen sensing involves a change in redox state, determined
by mitochondria and nicotinamide adenine dinucleonide
phosphate (NADPH) oxidase. Proximal electron transport
chain is the major oxygen sensor in the ductal SMC. This
is reflected in the observation that electron transport chain
inhibitors (i.e., rotenone and antimycin) mimic hypoxia and
constrict the ductus, as well as activating the carotid body.
When PO2 rises, mitochondria respond by production of
reactive O2 species (ROS) especially H2O2, which changes
the cellular redox potential and alters the function of redox-
sensitive genes, second messenger systems and oxygen-sensitive
potassium channels, which control SMC membrane potential.
Production of adenosine triphosphate (ATP) through oxidative
phosphorylation increases with rising oxygen levels and
inhibits KATP channels (39). These channels compose of many
subunits such as Kv1.2, Kv1.5, Kv2.1, Kv31b, Kv4.3, Kv9.3, and
BKca (40).

Response to oxygen is mediated through potassium channels.
Although the pulmonary artery and the ductus are continuous
and have similar Kv channels, their response to oxygen is
reversed. Hypoxia causes pulmonary artery vasoconstriction and
ductal vasodilation. Reduced expression of Kv1.5 and Kv2.1
channels results in failure of ductal closure. It may be speculated
that the failed response of premature infants’ ductus to normoxia
may be related to “deficient” Kv channels, reduced PGE2induced
gene expression of ion channels (41) and a gene transfer
which restores K2.1 or Kv1.5 expression might be helpful for
vasoconstriction (40).

Inhibition of potassium channels leads to membrane
depolarization, influx of calcium into the cells through L type
(CaL) and T type (CaT) calcium channels, and opening of inositol
triposphate (IP3) sensitive sarcoplasmic reticulum calcium stores
which release calcium (11, 42). This causes DA constriction
without depolarization. Subsequent calcium entry through these
channels promotes constriction of the DA.

L-type calcium channels are themselves oxygen-sensitive (43).
T-type calcium channels also regulate calcium entry into the
cells and they are upregulated with increased oxygenation (44).
In response to oxygen, calcium may also enter the cell through
reverse-mode function of the Na/Ca exchanger also. Maturation
of the sensor, mediator and effectors goes in parallel (45).

Cytochrome P450 enzymes catalyze a number of reactions
to modulate inflammation, angiogenesis and vascular tone. A

member of this system also acts as a sensor for oxygen (46).
Monooxygenase and lipooxygenase metabolites of arachidonic
acid have the ability to respond to changes in oxygen tension
(47). Stimulation of the endothelin A receptor and production
of endothelin-1 (ET-1) mediates ductal constriction (48).

Isoprostanes are prostaglandin-like compounds which are
produced in response to oxidative stress via non-enzymatically
free radical mediated peroxidation of arachidonic acid, without
the effect of COX enzymes. They increase as a response
to increased arterial PO2 and increased ROS and mediate
inflammation as well as constriction of the DA (49).

Retinoic acid is also active in oxygen signaling and maternally
administered vitamin A accelerates the development of oxygen
sensing mechanism by increasing the expression of Cav1.2 and
Cav3.1 in the rat DA (50).

Rho-kinase pathway is effective in sustaining the contractile
state of the ductus. Increased ROS, mainly H2O2 in the
mitochondria induces RhoB and Rho-associated protein kinase-
1 (ROCK-1) expression, which promotes phosphorylation of
myosin phosphatase inhibiting MLCP. Activation of the Rho-
kinase pathway induces calcium sensitization, which sustains
ductal constriction through positive feedback mechanism (51).
Rho-kinase system balances MLCK and MLCP (Figure 1).
Inhibitors of Rho-kinase such as fasudil lead to pulmonary
vascular relaxation, thus pulmonary hypertension (52). In the
preterm infant, mitochondrial ROS system is immature, and
together with failure to upregulate Rho-kinase expression to
oxygen, leads to ductal vasodilation. ExogenousH2O2 mimics the
effects of increased oxygen.

Oxygen stimulates the release and synthesis of endothelin-1
(ET-1), acting on type A receptors (ETA). Stimulation of these
receptors induces IP3 production by phospholipase c, which leads
to an increase in intracellular Ca2+ (53). Endothelin receptor
antagonists are found to inhibit ductal constriction (54).

In the preterm infant smooth muscle myosin isoforms are
immature and the contractile capacity of the muscle cells are
weak. L-type calcium channels are immature with impaired
calcium entry into the cells. Reduced expression of Rho kinase
expression and activity as well as oxygen sensing KV channels
contribute to the ductus patency (45). Inhibition of these
potassium channels by oxygen leads to SMC depolarization,
opening of the voltage-gated L-type Ca channels, influx of
calcium into the SMC and vasoconstriction. The preterm
ductus has increased sensitivity to the vasodilating effects of
prostaglandins and nitric oxide, which prevents constriction.
This sensitivity is affected by increased cAMP signaling and
decreased cAMP degradation by phosphodiesterases (55). High
rates of response to PG inhibitors such as indomethacin and
ibuprofen may be explained by this exaggerated sensitivity of the
ductus to PGs. On the contrary, elevated levels of PGs during
sepsis or necrotizing enterocolitis may mediate the re-opening of
ductus in preterm infants (56).

Non-oxygen Pathways
In the preterm ductus energy metabolism begins to fall after
birth, with decreased amounts of glucose, oxygen and adenosine
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triphosphate (ATP). This is not profound enough to cause cell
death but interferes with the ability of the ductus to close (57).

Glutamate promotes ductal constriction by glutamate
inotropic receptor subunit 1 (GluR1)-mediated noradrenalin
production in animal models (58). It may be suggested that
nutritional supply of glutamate may have a therapeutic role in
the closure of PDA (59).

Caffeine is an adenosine receptor blocker, but it also affects
several mechanisms involved in ductal closure. It increases
cAMP, releases Ca+2 from endoplasmic reticulum, and inhibits
the production and activity of prostaglandins. It is used
frequently in extremely low birth weight infants for the
prevention and treatment of apnea and bronchopulmonary
dysplasia. However, it does not affect the contractile response of
the ductus at therapeutic concentrations (60).

There is a transient decline in serum osmolarity after
birth, which recovers to adult levels within a few days There
is some evidence that hypo-osmolarity may mediate ductal
closure. In preterm infants with hemodynamically significant
PDA, osmolarity is 5 mOsm/L higher compared to non-
hemodynamically significant PDA group (61). Hypo-osmotic
receptor transient receptor potential melastatin 3 (TRPM3) is
upregulated in the ductus and regulates calcium influx into
the cells, promoting vasoconstriction. Rats with transient hypo-
osmolarity after birth have increased rates of ductal closure (62).

B-type Natriuretic peptide (BNP) plays an important role in
regulating the body fluid volume and blood pressure. It is secreted
from the ventricles in response to increased cardiac stress and
increases intracellular cGMP, inducing vasodilation. In PDA,
the volume of left-to-right shunting is associated with the BNP
level and higher levels predict a hemodynamically significant
PDA and a poor response to indomethacinin preterm infants
(63, 64). Bradykinin induces ductal constriction through BK-1
receptors (29).

Progesterone
Progesterone regulates prostaglandin synthesis and
prostaglandin sensitivity of smooth muscle cells. Progesterone
withdrawal in late pregnancy coincides with the increasing
sensitivity of ductus arteriosus to constriction by indomethacin
(65). This effect is similar to that of glucocorticoids (66).
However, this effect seems to be pharmacological, rather than
physiological (67).

In summary, the overall mechanism of functional closure
of the ductus involves a drop in PGE2 levels after birth,
which impairs ductal vasodilation and a concomitant rise in
oxygen which leads to vasoconstriction. Intracellular calcium
increases, secondary to inhibition of Kv channels and KATP

induced membrane depolarization. Increased calcium within the
cell activates Ca2+–Calmodulin dependent MLCK activation,
which phosphorylates MLC (8). Calmodulin expression is
upregulated after birth (68). Increased ET-1 synthesis releases
intracellular calcium from the sarcoplasmic reticulum (69). Rho-
kinase pathway inhibits MLCP, inducing calcium sensitization
by reducing the requirement for calcium influx, maintaining
vasoconstriction (9).

Factors that contribute to ductal constriction after birth are
summarized in Table 2 (23).

ANATOMIC CLOSURE AND REMODELING

The initial constriction of the ductus alone is insufficient for
the permanent cessation of blood flow through it. Permanent
anatomic closure is essential to prevent re-opening, which occurs
through a process of remodeling. This process involves intimal
cushion formation, disassembly of internal elastic lamina and loss
of elastic fibers in the medial layer, migration and proliferation
of the SMCs, extracellular matrix production and endothelial cell
proliferation and finally blood cell interaction. Each step is related
to each other and occurs in a sequential way. After complete
anatomic closure, the ductus undergoes apoptosis and becomes
the ligamentum arteriosum.

Vasa Vasorum
A substantial amount of nutrients of the ductal wall is provided
by vasa vasorum, which supply the outer portion of the wall. Vasa
vasorum enters the outer wall of the ductus and grow toward the
lumen. They stop growing ∼400–500µm from the lumen. The
distance between the lumen and the tip of vasa vasorum is called
the avascular zone of the vessel. The thickness of the avascular
zone defines the furthest distance that still maintain oxygen and
nutrient homeostasis in the tissue. Vasa vasorums appear in the
ductal wall only after wall thickness exceeds 400µm which is
not evident before 28 weeks of gestation (70, 71). The thickness
of the ductal wall in the full term fetus is 1,000µm. When the
ductus constricts after birth, it increases up to 1,250µm, in lieu
of the lumen (9). In the preterm fetal ductus, the wall thickness
is about 480µm and it increases to 670µm after birth, when
constricted (9) (Figure 3). In the full-term ductus, the increased
tissue pressure occurring during ductus constriction occludes the
vasa vasorum and prevents flow of nutrients to the outer wall of
the vessel. This results in the effective avascular zone expanding
from 500µm to the entire thickness of the vessel wall. When
this occurs, the center of the ductus wall becomes profoundly
ischemic (73). However, in the 24-week-old preterm infant, the
ductus is only 200µm thick. The vasa vasorum do not penetrate
the muscle media. This thin walled ductus does not need the vasa
vasorum for nutrient flow. As a result, there is no vulnerable
region of the wall during closure of the ductus. The preterm
ductus arteriosus is less likely to develop the severe degree of
hypoxia that is necessary for ductal remodeling (74).

In the term infant, increased intramural pressure occludes
vasa vasorum leading to the inhibition of provision of nutrients
and oxygen to the muscular layer. Thereafter, the blood and
hence the oxygen supply to the cellular layer subsides, leading
to hypoxia and cell death (73). The profound hypoxia that
follows induces local production of hypoxia inducible factors
1α and VEGF, inhibits the production of PGE2 and results
in apoptosis of SMCs. The proliferation of endothelial cells is
mediated by VEGF. Adhesion of mononuclear cells is mediated
by VEGF whereas the formation of the platelet plug is mediated
by platelet-derived growth factor. This induces an inflammatory
response and monocytes and macrophages begin to recruit
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TABLE 2 | Factors that contribute to ductal constriction after birth.

High levels of oxygen

Low levels of circulating prostaglandins

Increase in endothelin-1

Activation of cytochrome P450

Rise in intracellular calcium

Decrease in intracellular cAMP and cGMP

Inhibition of potassium channels

Production of isoprostanes

Response to acethycholine

Response to norepinephrine

Activation of transient receptor potential channels

Activation of Rho-kinase family members

Release of angiotensin II

to the ductal wall, producing platelet-derived growth factor
which is essential for migration and proliferation. During
the initial functional vasoconstriction, loss of luminal blood
flow causes hypoxia in the ductal muscle, inducing VEGF
secretion (74).

Since the ductal vessel wall is very thin in the preterm infant,
it does not contain vasa vasorum and the cells receive oxygen by
diffusion from the lumen. This means that as long as luminal
patency continues, the cells will receive oxygen and will fail to
undergo anatomic remodeling. The preterm ductus requires a
greater degree of constriction than that of the term infant in order
to achieve a similar degree of hypoxia to trigger the cascade of
events necessary for anatomic closure. At the same time, they will
be responsive to prosglandins, and be susceptible to re-opening in
case of prostaglandin surge as it happens in sepsis or necrotizing
enterocolitis. In contrast, preterm ductus produces NO after
birth, due to the growth of new vasa vasorum that synthesize
NO (63). Therefore, the ductus becomes more dependent on
vasodilators other than prostaglandins after the first few weeks.
This is reflected in the decreased response to indomethacin with
increasing postnatal age. In animal data, combined use of NO-
synthase inhibitors with indomethacin produces a greater ductus
constriction than indomethacin alone (75).

Elastic Fibers
The structure of the ductal wall is strikingly different from the
aortic wall with regard to its elastic content. In great arteries,
complex extracellular matrix and elastic fibers are essential
to overcome the mechanical and hemodynamic stress of the
pulsatile flow. Well-developed elastic fibers in the aorta prevents
it from collapsing. However, in the ductal wall, there are very few
and thin elastic fibers which do not prevent, but in fact facilitate
ductal collapse. Ductal wall is composed of just a media layer
which consists SMCs and a superficial thin internal elastic lamina
(Figure 3). This lamina is also very prone to fragmentation. The
intima layer contains the endothelial cells facing the lumen of
the ductus. The structural features of the ductus prepares it for
immediate closure after birth. Abnormalities of the elastic fibers
and elastic lamina may be responsible for some of the PDA cases

by preventing intimal cushion formation and collapse of the
ductal wall (73).

In the ductal wall, there is less elastin binding protein leading
to less elastin deposition.Moreover, increased chondroitin sulfate
in the ductus leads to dissociation of tropoelastin from the
cell surface, interfering with elastin fiber assembly further (76).
Tropoelastin is a chemoattractant for SMCs. Lysl oxidase (LOX)
catalyzes elastin cross-linking and it is degraded in the ductal
cell when EP4 receptor is stimulated by the prostaglandins (77).
EP4 is a Gs protein coupled receptor which increases intracellular
cAMP by adenylyl cyclases. Signaling coupled with PGE2 and EP4
stimulates vascular dilation and intimal thickening.

Intimal Cushion Formation
After the functional phase, progressive intimal thickening and
fragmentation of the internal elastic lamina occurs, ultimately
forming protrusions which occlude the ductal lumen. During
the remodeling process; endothelial cells and internal elastic
lamina separate, leaving a subendothelial space in-between for
the migration of SMCs and endothelial cells. Integrins, which
are transmembrane receptors on the cell surface participate
in the interaction of these cells, promoting Intimal cushion
formation. In patients whose ductus is not closed, integrin
expression is downregulated (78). Intimal thickening is due
to the migration of smooth muscle cells from the media
layer to the intima and to the proliferation of luminal
endothelial cells. During this process, the first step is the
migration of SMC from the media to the subendothelial
layer, leading to neointimal cushion formation (79). SMC
migration is mediated by PGE2, Transforming Growth Factor
Beta (TGFβ-1), notch signaling, Vascular Endothelial Growth
Factor (VEGF) and fibronectin coupled with hyaluronan. The
proliferation of SMCs is mediated by retinoic acid and notch
signaling. Mounds are formed by expansion of the neointima
by hyaluronan, which creates a suitable space for migrating
SMC from the muscle into the intima and proliferating
endothelial cells. The process begins with the accumulation of
hyaluronan beneath the endothelial cells, accompanied by loss
of laminin and type IV collagen and their separation from
the internal elastic lamina. Influx of water into the hyaluronan
widens the subendothelial space. Hyaluronan potentiates the
migration of SMCs to the subendothelial space through
hyaluronan binding protein, synthesized by SMCs (80). This
wide space is suitable for SMC migration. Smooth muscle
migration is facilitated by impaired elastin assembly and elastin
fragmentation. Accumulation of hyaluronan is associated with
increased production of TGFβ and prostaglandins via activation
of adenylylcyclase 6 (81). Ductal SMCs also secrete fibronectin
and chondroitin sulfate which facilitate the migration of these
cells (82). SMC also secrete laminin, which is a promigratory
protein (83).

In addition to its effects on vasodilation, PGE2 stimulates
SMC migration through exchange protein activated cAMP
(epac) pathway in the ductal wall (84) (Figure 1). Cyclic
AMP has 2 targets: protein kinase A (PKA) and epac.
Epac is a guanine nucleotide exchange protein independent
of PKA, which regulates the activity of small G proteins.
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FIGURE 3 | Vaso vasorum in term and preterm infants before and after birth. By the obliteration of vaso vasorum, the thickness of the vaso vasorum increases after

birth and the lumen shrinks. In the preterm infant, vaso vasorum are absent or very scarce and the elastic lamina is thin [Figure adapted from (72)].

It is upregulated during the perinatal period and promotes
SMC migration without hyaluronan production (85). cAMP is
degraded by phosphodiesterases (PDE) to 5’AMP. Activation
of PDE can suppress cAMP mediated EP4 signaling and PDE
inhibitors can enhance it (12). Neointimal mounds are less well-
developed in the preterm infant, rendering the occlusion of the
lumen difficult.

Retinoic Acid
Retinoic acid stimulates the growth of SMCs and decreases
apoptosis (86). Prenatal administration of vitamin A increases
the production of fibronectin and hyaluronic acid, leading to
intimal tickening, as well as the intracellular calcium response
and the contractile response of the ductus to oxygen (50).
This response is activated by the upregulation of α1G subunit
of voltage-dependent calcium channel, which is activated by
oxygen-induced inhibition of potassium channel (32). In other
words, retinoic acid stimulates both functional and anatomic
closure of the ductus. Early trials in human neonates concluded
that administration of vitamin A after birth does not result in
constriction of DA, but retinoic acid receptor activation may be
have a therapeutic potential for treating PDA (87, 88). However,
in a recent trial on preterm infants administering 10,000 units
of Vitamin A on alternate days for 28 days, rate of PDA was
significantly reduced (89).

TGF-β1
TGF-β1 binds the SMC through integrins to the extracellular
matrix, slowing down the migration. This is necessary during the
remodeling process for maintaining the tension to sustain DA
contraction (90).

Interleukin-15
(IL-15) has many pro-inflammatory effects, but also inhibits
SMC proliferation and hyaluronan accumulation during the
remodeling process of the ductus. The up-regulation of IL-15
in the ductus is mediated through the prostaglandin pathway.
IL-15 upregulates the expression of EP4 mRNA, as well as
stimulating angiogenesis through binding to endothelial cells
(91). In late gestation, several factors try to promote the
structural closure of the ductus in preparation for the postnatal
life and IL-15 may balance this tendency by a counteractive
mechanism (92).

Notch Signaling
Notch receptors are critical for cell differentiation and there are
4 Notch receptors in humans. Notch 2 and Notch3 receptors
are abundant in smooth muscle and they regulate proliferation,
migration and angiogenesis in the vasculature. A decrease
in the number of Notch receptors in SMCs is associated
with downregulation of gene expressions related to contractile
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elements (84). Notch signaling is required for contractile SMC
differentiation in mice (91).

Extracellular Matrix Production and
Proliferation
Extracellular matrix consists of hyaluronan, fibronectin,
chondroitin sulfate and elastin, which are mediated by retinoic
acid, TGFβ, PGE2, IL-15, and oxygen (51).

Hyaluronan is effective in SMC migration and regulated by
PGE2, IL-15, and TGFβ. PGE2-mediated EP4 activation increases
the cAMP production through protein kinase A (PKA), which
stimulates hyaluronan production in the SMCs (93).

Fibronectin is secreted by the SMCs and promotes SMC
migration in the process of intimal cushion formation. Ductal
SMC produce twice more fibronectin than aortic SMCs (94).
It is possible that preventing fibronectin dependent intimal
thickening may be utilized for the patency of DA in congenital
heart diseases (82). Other mediators which play an important
role in the proliferation and migration of SMCs include versican,
a hyaluronan-binding proteoglycan and tanacin, a hexameric
glycoprotein (95, 96).

Chondroitin sulfate causes the release of elastin binding
protein from the SMCs, impairing the elastin assembly and
stabilizing the hyaluronan. Therefore, it indirectly promotes
the migration of SMCs and upregulates the synthesis of
fibronectin (97).

Elastin contributes to the patency of the ductus by
maintaining the elasticity of the ductal wall. Its production
is regulated by oxygen and PGE2. Inhibition of elastogenesis
by PGE2 causes vascular collapse and ductal closure. Oxygen
reduces elastin secretion in the SMCs. Stated otherwise, PGE2
and oxygen stimulates elastogenesis, leading to vasodilation and
patency of the ductus (72, 98).

Blood Cell Interactions
Vascular wall ischemia induces a local inflammatory response,
which activates mononuclear cells in the blood. Leukocyte
interactions with P-selectin and Intercellular AdhesionMolecule-
1 (ICAM-1) is necessary for recruitment when physiologic shear
forces are present and this interaction is only possible when
the flow is very slow. Therefore, leukocytes can adhere to the
ductal wall only after vasoconstriction and loss of ductal flow has
occurred (99, 100) Monocytes and phagocytes adhere to the wall
of the ductus via vascular cell adhesion molecule-1 (VCAM-1),
whose expression increase after birth (7, 91). VEGF is a direct
chemoattractant for monocytes (101). The magnitude of this
adhesion is correlated by the extent of intimal cushion formation
(102). Monocytes also stimulate PDGF-B, which is a mediator of
smooth muscle migration (103).

During the initial process of vasoconstriction, detachment of
endothelial cells triggers the adhesion of platelets to the “injured”
site, forming a platelet plug, which further blocks the lumen.Mice
with disrupted platelet function or administered antibody against
platelets have impaired ductus remodeling (104). The effect of
platelets on ductal closure is minimal in term infants but it is
more pronounced in preterm infants. Since the intimal cushion
formation is mainly triggered by hypoxia and the preterm ductus

is less likely to become hypoxic when it constricts after birth,
platelets play a more significant role in ductal plug formation
and closure in this setting (105). It is reported that platelet-
derived growth factor is lower in infants with PDA (106). Low
platelet count is also correlated with hemodynamically significant
PDA and delayed closure of the ductus (104, 107), whereas
high platelet counts promote the initial constriction of the
ductus (108).

GENETIC BACKGROUND

Although they originate from the same neural crest lineage, there
are major transcriptional differences between the DA and aorta.
Several studies highlight the effect of genetic predisposition to the
patency of DA. These include either the prostaglandin pathway
(i.e., smooth muscle contraction), or vascular smooth muscle
development or structure. Most of these information is obtained
through mouse models. Overall, there are more than 100 genes
are effective in the development of DA (33, 109).

Arachidonic acid is metabolized by PGH2 synthase to
prostaglandin H2, which in turn is metabolized by PGE synthase
to prostaglandin E2 (PGE2). Prostaglandin endoperoxide
synthase 1 (Ptgs1 or COX1) and (Ptgs2 or COX2) is the rate
limiting enzyme in the production of prostaglandins from
arachidonic acid. Mice deficient in Ptgs1 have normal survival
after birth whereas 35% of mice deficient in Ptgs2 die shortly
after birth because of PDA (110). If both are lacking, 100%
of mice die in the first day (111). Prostaglandin E2 binds
to the cell through its receptor EP4 (Ptger4) and mediates
vascular smooth muscle relaxation and intimal thickening.
Mice lacking these receptors die due to PDA (11). Furthermore,
Hpgd gene encodes hydroxyprostaglandin dehydrogenase
15-(NAD) which is responsible for PGE2 metabolism. The
deletion of this gene leads to elevated levels of PGE, leaving
the DA open and resulting in death (112). Mice deficient in
prostaglandin transporter gene Slco2a1 also die within 2 days
after birth (113).

The effects of prostaglandins are mediated through cyclic
guanosine monophosphate (cGMP) and cyclic adenosine
monophosphate (cAMP). Phosphodiesterases degrade these
compounds and several genes have been proposed for
phosphodiesterases. Pde5a mediates vasoconstriction in
SMC of DA and its expression decreases in 6 h after birth (114).

The genes upregulated during ductal closure are
phosphodiesterase 4B (PDE4B), desmin pyruvate dehydrogenase
kinase isozyme 4 (PDK4), and insulin-like growth factor
binding protein 3 (IGFBP3). Downregulated genes include
cyclin-dependent kinase inhibitor 1C (CDKN1C) and alpha-
2-glycoprotein1 (AZGP1). PDE4B limits the accumulation
of cAMP, minimizing the vasodilator effect of endogenous
prostaglandins. Therefore, increasing PDE4B would facilitate
ductal constriction. Desmin is a component of the cytoskeleton
and its increase indicates the maturation of SMCs. PDK4 and
IGFBP3 regulate cell proliferation and apoptosis, which are
operative in ductal closure. Increased transforming growth
factor β-receptor II regulates PDK4 also (90, 115, 116). Wingless
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integrin pathway (Wnt), which is a part of IGFBP3 system
plays a major role in ductal closure through upregulation
of cyclooxygenase 2 and apoptotic processes mediated by
macrophages (117).

Smooth muscle of the DA contracts in response to oxygen.
Mice deficient in myosin heavy chain gene (Myh11) have delayed
closure of DA (118). Myocardin regulates expression of genes for
contractile proteins in smooth muscle cells (SMC) and selective
deletion or ablation of Mycocd results in death (119). Tcfap2b is
the gene which encodes the transcription factor in neural crest
cells, from which the DA originates. Mice deficient in Tcfap2b
die within the first day of life with PDA and pulmonary overload
(120). The DA of these mice lack markers of differentiated SMCs
such as calponin and hypoxia-inducible factor 2α (HIF2α) which
are also involved in oxygen sensing, suggesting that Tcfap2b
plays an important role in the development of SMCs (121).
Some genes act together resulting in PDA. Whereas, the deletion
of Notch2 gene results in PDA in only 40% of cases, when
combined with the deletion of Notch3, PDA is observed in
100% of cases (122). Deletion of the Notch ligand, jag1 also
results in lethal PDA on day 1 because of significant defects in
SMC differentiation (123). On the other hand, deletion of the
Brahma-related gene (Brg1-a) which is responsible for chromatin
remodeling results in cardiovascular anomalies, including PDA
(124). Genes involved in platelet production or adhesion such as
Nfe2 or Itga2b affect the complete occlusion and remodeling of
the DA (104).

Changes in the expression of structural genes also affect
the patency of DA. Vascular SMC contraction is mediated by
myosin II. Myosin II has two components, namely heavy chains
and light chains. The genes encoding these proteins such as
Myh11, Myl2, Myl5, Myl7, and Myl9 may be effective in the
regulation of ductal patency, butmore studies are needed to reach
a definite conclusion (68, 125). Contraction of the myosin light
chains requires phosphorylation and this step is regulated by the
Rho-Rho kinase system. The gene encoding the RhoBGTPase
(Rhob) and its effector Rock2 is upregulated in the newborn
DA and inhibition of this system may result in the patency of
DA (38).

L-type calcium channels are essential for ductal closure and
the genes encoding the Na/K ATPase (Akq1b1) and a subunit
of L-type calcium channels (Cacna2d1) are highly expressed in
the DA (126). Potassium channels control the resting membrane
potential of SMCs and the genes encoding these channels
(Kcnk3 and Abcc9) are also upregulated in the DA (127). Large
conductance calcium-activated potassium channels (BKca) are
abundant in vascular smooth muscle and they are expressed
significantly higher in DA (109). These ion channels may be
promising targets for novel PDA therapies.

Vasoconstrictive effect of oxygen in the DA is mediated by
endothelin-1 (ET-1). There are 2 membrane receptors for ET-1,
ETA receptor is encoded by the Ednra gene and ETB receptor is
encoded by the Ednrb gene. ETB receptor functions as a scavenger
for ET-1 and inhibits endothelin dependent vasoconstriction.
Downregulation of this receptor would result in increased levels
of ET-1, leading to vasoconstriction of the ductus, which takes
place in late preterm infants (68, 126).

In humans, there are a number of syndromes associated
with PDA, as well as non-syndromic PDA which are associated
with single nucleotide polymorphisms (128). In twin studies,
a familial component has been suggested for PDA in preterm
infants (129). Consanguineous marriages provide insights
to specific chromosome regions associated with increased
susceptibility to PDA (130). A polymorphism in the estrogen
receptor alpha gene ESR1 rs2234693, prostaglandin I2 synthase
gene (rs493694) and another polymorphism in the interferon
gamma gene rs2430561 is associated with a decreased risk of PDA
and bronchopulmonary dysplasia (131, 132). On the other hand,
polymorphisms in the TNF receptor associated factor 1 TRAF1
(rs1056567) gene, angiotensin II type 1 receptor AGTR1 gene
and TFAP2β (rs987237) gene, are associated with increased risk
of PDA (133, 134). TFAP2β is also associated with altered levels of
calcium and potassium channels in SMCs, which are essential for
proper contraction (135). Angiotensin II is vasoconstrictive for
the ductus and its receptor (Agtr2) is upregulated in late preterm
infants also (128).

Although their significance remain to be elucidated, there are
other genes involved in the development of matrix molecules
of the DA, such as Tcfab2b, lysyl oxidase (Lox), and fibronectin
(Fn1) genes which may draw attention in the future (128).
Lysyl oxidase is a cross-linking enzyme for elastic fibers
and stabilizes the extracellular matrix. Reduction of LOX
activity is demonstrated in the pathogenesis of many vascular
diseases (136). Activation of PGE2-EP4 pathway promotes the
degradation of this enzyme, leading to poor elastogenesis,
suggesting that control of elastogenesis is clinically important
(72). Paradoxically, there are some data that indomethacin
treatment of preterm infants may have an adverse effect
on the inhibition of elastic fiber formation (72). Regulation
of the LOX protein through PGE2-EP4 pathway may be a
basis for further therapeutic strategies that target vascular
elastogenesis (72).

MECHANICAL AND HEMODYNAMICAL
FACTORS

Hemodynamic Changes After Birth
In fetal life, high pulmonary arterial pressure, coupled with
low systemic resistance in the placenta results in right to left
shunting of blood through the ductus so that a large proportion
of blood coming from the umbilical circulation is directed to
the systemic circulation without passing through the pulmonary
vascular bed. During fetal life, 10–20% of total biventricular
cardiac output enters the lungs but in late gestation, this increases
to 30% (137). After birth, umbilical cord clamping increases the
systemic resistance whereas ventilation of the lungs decreases
the pulmonary vascular resistance and increases the pulmonary
blood flow; the shunt through the ductus reverses to left to
right. This sudden reversal of shunting across the DA rises the
pulmonary blood flow even further. In term infant, dominant
left to right shunting is achieved by 10min after birth and it
is entirely left to right by 24 h of age (138). In critical cyanotic
congenital heart disease, patency of ductus is life-saving. In
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persistent pulmonary hypertension, high resistance in pulmonary
arteries results in persistance of right to left shunting through
the ductus. In the preterm neonate, if the ductus remains
open, left to right shunting will occur both during systole and
diastole and large amounts of blood would flood the lungs.
This will expose the endothelium to increased shearing forces,
which will induce the production of vasodilatory mediators
such as nitric oxide, bradykinin, prostacyclin, and inactivate the
production of vasoconstrictor mediators such as thromboxane,
endothelin and leukotriens. Arachnidonic acid may be released
from pulmonary tissue damaged by shear stress, secondary to
mechanical ventilation. Prolonged mechanical ventilation can
also induce the release of prostacyclin, often associated with
increased ductal shunting (139). This would lead to alveolar
edema, and increased need for respiratory support. Positive
pressure ventilation during resuscitation, oxygen, and exogenous
surfactant treatment induce a rapid fall in PVR. Especially
in preterm infants <32 weeks, surfactant administration is
associated with an increase in the right ventricular output and
absolute ductal diameter (140, 141). Acute rise in pulmonary
blood low causes a significant increase in left heart preload and
rise in left atrial pressure which results in increased pressure
in the left atrium and contraction of foramen ovale (142). The
myocardium of the preterm infant is less contractile due to
fewer contractile units, increased water content and immature
sarcoplasmic reticulum (143). Thus, hemodynamic stability of
the preterm infant is highly dependent on myocardial function,
and a sudden increase in the workload of myocardium after birth
may result in failure of the myocardium resulting in pulmonary
overload and hypertension. In preterm infants, delayed cord
clamping does not seem to affect the incidence of PDA (144).
Early adrenal insufficiency may also have a role in prolonged
ductal patency (145).

Fluid dynamics state that the shunt volume across a tubular
structure is directly proportional to the 4th power of the radius
of the tube (i.e., ductus) and the pressure gradient between
both ends (i.e., aorta and pulmonary artery), and inversely
proportional to the blood viscosity and length of the tube (i.e.,
ductus). Moreover, increased venous return from the lungs to the
left ventricle will cause an increase in the left ventricular end-
diastolic pressure, which will increase atrial natriuretic peptide
(ANP), with evolution of pulmonary venous hypertension and
pulmonary hemorrhage. On the other hand, left to right shunting
at the ductus will decrease the systemic perfusion (i.e., ductal
steal) leading to systemic hypoxia and organ dysfunction. Shorter
diastolic time and increased myocardial oxygen demand may
result in endocardial ischemia (142).

There is scarce information on the effects of dilation mediated
by the mechanical force of the flow, or through shear forces
and shear stress. Although there is no clear evidence, it may be
speculated that there are somemechanosensors in the ductal wall,
which can sense the biomechanical changes in the lumen and
regulate ductal closure. The effect of laminar flow vs. turbulent
flow across the ductus is also understudied. In case of laminar
flow, endothelial cells are less likely to proliferate and nitric oxide
synthase and prostacyclin are upregulated (146, 147). However,
if turbulent flow develops, endothelial cells begin to upregulate

vasoconstrictors such as endothelin-1 and adhesion molecules
such as VCAM-1 and ICAM-1 (148, 149). Matrix modeling is
an essential component of intimal cushion formation. Stretch
of the ductal wall induces the release of angiotensin II from
the endothelial cell, leading to smooth muscle proliferation
and production of matrix metalloproteinases which trigger
extracellular matrix remodeling and vasoconstriction (149, 150).
Circumferential stretch also triggers phenotypic switching of
SMCs from contractile to synthetic cells, which means more
proliferation and migration of SMCs (150).

Fluid Load
A sharp decrease in pulmonary artery pressure, as it happens
after surfactant replacement therapy may increase the left-to-
right shunt through the ductus, leading to pulmonary overflow
and hemorrhage. In preterm infants, increased pulmonary fluid
and protein load is eliminated by an increased lung lymph
flow, named as “edema safety factor.” Therefore, ductal closure
within the first 24 h of birth do not have any significant effect
on the course of respiratory distress syndrome. However, if
ductus remains open for several days, this compensation cannot
be maintained and alteration in the pulmonary mechanics
and pulmonary edema ensue. The impact of patent ductus
arteriosus on patient outcomes seems to be a function of
magnitude of shunt, rather than its mere presence. Closure of
the ductus improves lung mechanics in these infants (151). Early
ductal closure is associated with less pulmonary hemorrhages in
preterm infants (152). Ibuprofen leads to increased expression
of sodium channels and increased removal of fluid from the
alveolar compartment (153). In some studies, fluid restriction is
recommended as an alternative to treatment; such an approach
may reduce pulmonary circulation but also compromises end
organ flow in patients already suffering from ductal steal
phenomenon (154). However, high (liberal) fluid intake is
associated with an increased risk of PDA and BPD (155).
Therefore, close monitoring of fluid intake and individualized
treatment of infants are of utmost importance in preterm infants,
especially in the first days of life.

Early Adrenal Function
Cortisol is central to the ability of the infant to attenuate
its response to inflammation and is potent inhibitor of
inflammatory edema. Animal and human studies have shown
that adrenal insufficiency can lead to increased inflammatory
response to injury and that glucocorticoids can affect patency
of the ductus (156, 157). Glucocorticoids induce production
of lipocortin which inhibits phospholipase A2. Phospholipase
A2 stimulates the release of arachnidonic acid precursors
needed for prostaglandin synthesis; thus in response to steroids,
prostaglandin production is inhibited (158). Animal studies
have shown that glucocorticoid administration decreases the
sensitivity of ductal tissue to the dilating influence of PGE2
(156). Sick infants do not have elevated serum corticol levels
compared to well infants. These infants are also prone to
developing bronchopulmonary dysplasia (159). Therefore, it is
not surprising that patent ductus arteriosus is one of the most
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prominent risk factors in the development of bronchopulmonary
dysplasia (160).

Effects of Surgical Ligation
Surgical ligation of the ductal immediately after birth increases
the expression of genes involved in lung inflammation and
decreases the expression of genes involved in epithelial sodium
channels (161). Therefore, the pulmonary mechanics do not
improve as much as expected. Furthermore, early ligation may
slow down lung growth (162). On the other hand, in the presence
of atelectasis, the persistence of left to right shunt through the
PDA maintains an elevated arterial oxygen pressure in the lungs
and after PDA ligation, a decrease in the systemic arterial pressure
may be observed (163).

EFFECTS OF PHARMACOLOGICAL
AGENTS

Oxygen is the most powerful agent for closure of the ductus.
In numerous studies investigating the effect of different levels
of oxygen on preterm morbidities, ductal closure was associated
with high levels of oxygen but oxygen-related co-morbidities
in these infants raised significant concerns (164). These
trials including Surfactant, Positive Pressure, Pulse Oxymetry
Randomized Trial (SUPPORT), Canadian Oxygen Trial (COT),
and Benefits of Oxygen Saturation Targeting (BOOST) II
trials have reported neurodevelopmental outcomes after various
oxygen targeting, as well as other complications; however the
discussion of these trials are out of the context of this article
(165–167).

All available pharmacological treatments aiming for changing
the ductal tone use the prostaglandin pathway by either the
cyclooxygenase pathway (indomethacin and ibuprofen) or the
peroxidase pathway (acetaminophen). The infant’s gestational
age, as well as the infant’s race, ethnicity, growth, and exposure
to antenatal corticosteroids modify the effects of prostaglandins
and determine the rate of drug-induced closure (168, 169).

In the term infant PGE2 receptors are down-regulated after
birth. However, in the preterm infant, the production of receptors
increases, rendering the ductus susceptible to vasodilation and
resistant to indomethacin or ibuprofen. COX1 and COX2
expression increases with advancing maturity in the fetus (170,
171). COX inhibitors decrease vaso vasorum flow, leading to
hypoperfusion and ischemic injury in the vessel wall (85).
Preterm ductus also synthesizes other vasodilators such as
NO, TNF-α, and IL-6 in response to wall hypoxia. Decreased
ATP concentrations also prevent the ductus from contracting
(172). Therefore, the preterm ductus becomes more resistant to
treatment with constrictor agents (173).

Cyclooxygenase (COX) Inhibitors
Indomethacin and Ibuprofen non-selectively inhibit
cyclooxygenase enzymes; thus preventing arachidonic acid
conversion to prostaglandins (Figure 2). Both drugs are
associated with increased amiloride-sensitive alveolar epithelial
sodium channels, suggesting improved lung water clearance
and lung compliance (174). Ductal sensitivity to indomethacin

increases with gestational age. Response rate to indomethacin
is about 5–10% in infants <27 weeks of gestation, whereas it is
almost 100% above 34 weeks (175). Half-life of indomethacin is
4–5 h longer (i.e., 17 h) in preterm infants<32 weeks of gestation.
It can be given by intravenous, oral, rectal or intraarterial route.
Closure rates vary from 48 to 98.5%, depending upon the dose,
method and duration of administration (176, 177). Early use
of indomethacin within the first few days of life decreases the
risk of pulmonary hemorrhage, intraventricular hemorrhage
and the need for surgical ligation, although does not affect the
development of BPD (178). If needed, a second course may be
given, with a success rate of 40–50% (179). Since more courses
are associated with periventricular leukomalacia, repeat doses
are not recommended (180). Efficacy of indomethacin declines
with decreasing gestational age and becomes doubtful at 22–23
weeks of gestation (176). Indomethacin have several side effects
including renal failure, oliguria, proteinuria, hyperkalemia,
cerebral white matter damage, necrotizing enterocolitis,
intestinal perforation and platelet dysfunction (181).

Ibuprofen is a non-selective COX inhibitor with less side
effects than those of indomethacin. It can be given orally or
intravenously. Elimination is slower after oral administration and
the rate of closure is also higher (182). Its efficacy for ductal
closure is the same as indomethacin. Major side effects include
gastrointestinal hemorrhage, oliguria, high bilirubin levels, and
pulmonary hypertension (183, 184). These effects may vary
depending on the relevant genetic polymorphisms (185).

Peroxidase (POX) Inhibitors
Paracetamol (Acetaminophen) inhibits POX enzyme which
catalyzes the conversion of PG2 to PGH2, without any peripheral
vasoconstriction (Figure 2). Although it is commonly discussed
under the family of non-steroidal anti-inflammatory drugs,
it does not have any anti-inflammatory effect (186). Its
gastrointestinal tolerance is better than other NSAIDs and it
lacks antiplatelet activity. Paracetamol induced POX inhibition is
competitive and independent of COX activity (187). Paracetamol
induced reduction in PGH2 production can be counteracted
by lipid peroxides and PGG2 itself (188). The maturational
difference in lipid hydroperoxide production in preterm
newborns may contribute to paracetamol-induced ductal closure
(188). Since the mechanism of action is different than that
of indomethacin or ibuprofen, the efficacy of paracetamol in
extremely low birth weight infants may be less than other
NSAIDs, although solid evidence is lacking. On the other hand,
its pharmacokinetics has not been well-studied in ductal closure.
Inhibition of the POX dilators may lead to an increase in
the pulmonary vascular resistance via peroxynitrite production
(189). Furthermore, there are some data that paracetamol may
synergistically enhance the inhibitory effects of other anti-
inflammatory drugs on platelets (190). In preterm infants, very
few cases of toxicity have been reported, which may be attributed
to the low activity of cytochrome P450 in the immediate postnatal
period, minimizing the formation of toxic metabolites (191).
Meta-analysis comparing oral paracetamol vs. oral ibuprofen
concluded that paracetamol confers comparable efficacy with
fewer adverse effects (192). Paracetamol may be used as a rescue
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treatment for infants with persistent PDA (193). Due to the small
number of studies, it is difficult do decide whether paracetamol
is superior or inferior to other NSAIDs. Although there are
no randomized controlled trials, there are some observational
studies which suggest that paracetamol use in pregnancy or
in early infancy might be associated with attention deficit/
hyperactivity disorder, autism spectrum disorder or hyperactivity
symptoms. Although the exact mechanism is unknown and a
cause-effect relation is difficult to establish, a small but significant
odds ratio is observed in many studies (194–196). However,
another study suggests that there is not an increased risk of
autism in these infants at 2-year follow-up (197). There is
no data on the possible long-term neurodevelopmental effects
of paracetamol use in preterm infants. Therefore, paracetamol
should be used cautiously until further safety data exists.

Some authors have suggested to use a combination therapy
of ibuprofen and paracetamol as a first line therapy for
ductal closure. However, preliminary reports suggest that the
effectiveness of combination therapy does not differ compared to
monotherapy of either drug (198). In another study, in infants
who failed two previous cycles of monotherapy, combination
therapy with oral ibuprofen and oral paracetamol was effective
in 9 infants out of 12 (199). Results of an ongoing randomized
controlled trial are pending (https://clinicaltrials.gov/ct2/show/
NCT03103022).

Other non-steroidal anti-inflammatory drugs such as aspirin,
metamizol, nimesulid, and diclophenac have constrictor effects
on the ductus (200–203).

Glucocorticoids have also vasoconstrictive effects on the
ductus, as well as synergistic effects with non-steroidal anti-
infective drugs (NSAIDs), as a result of decreasing the sensitivity
of the ductal SMCs to prostaglandins (204) (Figure 2). In the
preterm fetus, elevated levels of corticosteroids is associated with
decreased sensitivity of the ductus to the vasodilating effects of
prostaglandins and prenatal administration of corticosteroids,
mainly for the prevention of respiratory distress syndrome have
also decreased the incidence of PDA in these infants (205).
Similarly, postnatal corticosteroid administration may constrict
the ductus (206). Angiotensin II does not have a role in ductal
closure after birth (207).

There are many substances and foods with anti-inflammatory
and anti-oxidant properties, such as those rich in polyphenols
or flavonoids. For example, 30–40% of solid extract of green
tea composes of polyphenols, mainly catechins. They exert their
anti-inflammatory effects through the inhibition of endogenous
prostaglandins. Similar effects have been reported with black
tea, resveratrol, mate tea, orange juice and dark chocolate (207).
Excessive consumption of such foods by the pregnant woman
may influence the dynamics of the DA, by inhibiting COX
and PG synthesis pathway. The amount of flavonoids necessary
to trigger clinically significant ductal closure remains to be
determined (208).

Genetic therapies may include endothelin-signaling genes or
blockage of potassium channels. Channel isoforms have distinct
pharmacological and physiological characteristics, making them
ideal targets for ductal-selective therapies (209). Glibenclamide is
a non-specific KATP channel inhibitor, used for treating diabetes.

It is shown that DA constricts in response to glibenclamide,
and constriction is inhibited by diazoxide, a KATP channel
activator (210). Children with Cantu syndrome, which is caused
by mutations in the subgroup of KATP channel genes, have PDA,
often resistant to medical treatment, requiring surgical closure
most of the time (16). Agonist or antagonist molecules targeting
KATP channels may modulate DA tone.

Novel treatment strategies for PDA include combined use
of ibuprofen and paracetamol (211), EP4 inhibition (212),
NOS inhibition (213), enhancing ion channel expression (50),
glutamate supplementation (59) especially in situations where
COX inhibitors have proven to be ineffective.

Prostaglandin E1
PGE1 is the main drug used for vasodilatatory effects of
the ductus. PGE1 binds to the EP4receptor which increases
intracellular cAMP. Milrinon is a phosphodiesterase 3
inhibitor, which can also increase cAMP levels and dilate
the ductus (12).

Non-selective endothelin receptor antagonist TAK-044 and
inhibition of Notch pathway may have vasodilating effects on
the ductus (51, 91). Natriuretic peptide (NP) is an activator of
PKG-cGMP and can prevent ductal closure also (51).

Antenatal corticosteroids are used for the maturation of
preterm lung, but their effects on the development of patent
ductus arteriosus, intracranial hemorrhage, and necrotizing
enterocolitis are also well-studied (214). However, some reports
conclude that the incidence of PDA is not effected significantly
by antenatal corticosteroids (215). Antenatal steroids increase
15-PGDH activity, thereby promoting PGE2 breakdown (216).

Antenatal MgSO4 which is a calcium channel blocker may
result in delayed ductal closure in infants (217). However, recent
evidence in extremely low birth weight infants suggests that
antenatal MgSO4 exposure is not associated with an increased
risk of hemodynamically significant PDA; in fact, it may be
associated with a decreased likelihood of hemodynamically
significant PDA (218). Diazoxide, which is a KATP channel
activator may induce ductal opening (173). Furosemide increases
renal PGE2 production, thus dilating the ductus in animals but
its effect is limited in humans (219).

CONCLUSION

Ductus arteriosus is an intriguing and complex vessel with
many distinct features. Understanding the precise mechanisms
of regulation of the ductus is essential in order to improve
individual pharmacological treatments. The debate about PDA
should not be “treat all” or “treat none,” but rather, “who to treat.”
This approach necessitates individualized treatment. Treatments
targeting endogenous ductus regulation pathways other than
prostaglandins, such as cell cycle regulators, transcription
factors, and epigenomic regulators should be developed. Since
vascular constriction and ductal wall remodeling are required
for complete closure, treatments that favor vasoconstriction and
remodeling would also be ideal for infants with persistent PDA.
Novel therapies for ductal closure in preterm infants should also
focus on a clear understanding of genes which are operative
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on ductal patency, as new genome-wide studies uncover genes
associated with PDA. Evolving pediatric clinical pharmacology
heralds next generation solutions for unresolved issues of today,
such as drugs with selective DA effects, without any side effects.
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