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Abstract

In frequency-division duplexing (FDD) massive multiple-input multiple-output (MIMO) sys-

tems, 1-bit compressed sensing (CS)-based superimposed channel state information (CSI)

feedback has shown many advantages, while still faces many challenges, such as low accu-

racy of the downlink CSI recovery and large processing delays. To overcome these draw-

backs, this paper proposes a deep learning (DL) scheme to improve the 1-bit compressed

sensing-based superimposed CSI feedback. On the user side, the downlink CSI is com-

pressed with the 1-bit CS technique, superimposed on the uplink user data sequences (UL-

US), and then sent back to the base station (BS). At the BS, based on the model-driven

approach and assisted by the superimposition-interference cancellation technology, a multi-

task detection network is first constructed for detecting both the UL-US and downlink CSI. In

particular, this detection network is jointly trained to detect the UL-US and downlink CSI

simultaneously, capturing a globally optimized network parameter. Then, with the recovered

bits for the downlink CSI, a lightweight reconstruction scheme, which consists of an initial

feature extraction of the downlink CSI with the simplified traditional method and a single hid-

den layer network, is utilized to reconstruct the downlink CSI with low processing delay.

Compared with the 1-bit CS-based superimposed CSI feedback scheme, the proposed

scheme improves the recovery accuracy of the UL-US and downlink CSI with lower process-

ing delay and possesses robustness against parameter variations.

Introduction

Massive multiple-input multiple-output (MIMO) has become the key technology of the fifth

generation (5G) wireless communication system, due to its advantages in system capacity and

link robustness [1, 2], etc. As premises of these advantages, the base station (BS) needs to

obtain accurate downlink channel state information (CSI), and rely on downlink CSI for pre-

coding [3], antenna selection [4], radio resource allocation [5], and communication interfer-

ence management [6], etc. In time division duplex (TDD) mode, the downlink CSI can be

obtained from uplink CSI by exploiting channel reciprocity [7, 8]. For frequency-division

duplex (FDD) mode, it is difficult to develop the channel reciprocity due to the different fre-

quency bands used by uplink and downlink [9, 10]. Thus, the downlink CSI is usually
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estimated by users and fed back to the BS in FDD massive MIMO system [9]. However, due to

a large number of antennas in massive MIMO systems, CSI feedback incurs significant feed-

back overhead, resulting in serious uplink bandwidth occupation.

To reduce feedback overhead, lots of compressive sensing (CS)-based CSI feedback meth-

ods have emerged [11–14]. In recent years, deep learning (DL)-based CSI feedback methods

[15–17] are proposed to further reduce feedback overhead. Although the feedback overhead is

reduced to some extent, both CS-based CSI feedback and DL-based CSI feedback still occupy

significant uplink bandwidth resources. To avoid the occupation of uplink bandwidth

resources, the superimposed CSI feedback was proposed in [18], yet causes mutual interfer-

ence due to superimposition operation. In [10, 19, 20], the 1-bit CS-based, DL-based, and

extreme learning machine (ELM)-based superimposed CSI feedbacks are respectively pro-

posed to reduce this mutual interference. Inspired by the advantages of superimposed CSI

feedback based on 1-bit CS and DL, we propose a DL-based 1-bit superimposed CSI feedback

scheme in this paper.

Related works

In FDD massive MIMO system, the DL-based CSI feedback methods have been investigated

according to the superimposed CSI feedback, e.g., [10, 19, 20], and feedback reduction, e.g.,

[21–26], etc.

For reducing feedback overhead, the DL-based data-driven CSI feedback can be divided

into two categories. The first category is mainly based on the combination of CS technique

and DL technique, while the other category employs the DL technique for the quantized data.

In the first category, [21] is the first application of DL for CSI feedback. In [21], the CSI feed-

back was mainly based on a convolutional neural network called CsiNet, which achieved supe-

rior performance over various CS-based CSI feedbacks. Yet, the time correlation, frequency

correlation, spatial correlation, feedback delay and feedback errors, etc., were not considered

in CsiNet, and led to limited applications. To remedy these defects, some improvements have

been proposed in [22–24]. In [22], a CsiNet long short-term memory (CsiNet-LSTM) was pro-

posed by exploiting the time correlation, which is suitable for practical application in time-

varying channels. The recurrent neural network-based CsiNet in [23] was developed to capture

the temporal and frequency correlations of wireless channels. Considering the spatial correla-

tion among antennas, the bidirectional LSTM (Bi-LSTM) and bidirectional convolutional

LSTM (Bi-ConvLSTM) were proposed in [24]. Another category of feedback reduction pro-

posed for DL-based CSI feedback is mainly based on the quantization operation, e.g., [25, 26].

In [25], a bit-level CsiNet+ was proposed, which made the current CSI feedback network

applicable in real communication systems and minimized the introduced quantitative distor-

tion to improve the reconstruction quality. By employing the quantization and entropy coding

blocks into a full convolution network, the work of [26] obtained drastic improvement in CSI

reconstruction quality at even extremely low feedback rates. Although the DL-based CSI feed-

back in [21–26] has achieved significant improvements in feedback reduction compared with

the CS-based approaches, the uplink bandwidth resources were still seriously occupied due to

the massive MIMO scenarios.

To avoid the occupation of uplink bandwidth resources, superimposed CSI feedback

schemes were proposed in [18–20]. In [18], the downlink CSI was spread and then superim-

posed on the uplink user data sequences (UL-US) as feedback to the BS, while the recoveries of

the UL-US and downlink CSI were deteriorated by superimposition interference. To remedy

this defect, a DL-based superimposed CSI feedback was proposed in [19], and an ELM-based

superimposed CSI feedback with lower computational complexity was proposed in [20].
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Considering the simplicity and cost-effectiveness, a low-consumed CSI feedback using 1-bit

CS has been studied in [27], in which 1-bit operation means to discard the signal amplitude

and only retain its sign information. In this work, the downlink CSI was quantified by 1-bit CS

to achieve low-consumed feedback, while this work still occupied uplink bandwidth resources.

To remedy this defect, the superimposed CSI feedback and 1-bit CS technique were combined

in [10] and presented many advantages, e.g., the avoidance of uplink-bandwidth-resource

occupation and the reduction of mutual interference, etc. However, it is facing challenges in

recovery accuracy and processing delay [28], etc.

By integrating the promising advantage of deep learning and inspired by the superimposed

CSI feedback by using 1-bit CS in [10], we propose a DL-based 1-bit superimposed CSI feed-

back scheme in this paper. First, the downlink CSI is compressed by the 1-bit CS technique

and then superimposed on the UL-US as feedback to the BS. At the BS, to recover the bit infor-

mation for both the UL-US and downlink CSI, a multi-task detection network with transmit-

ted signal feature extraction is first constructed. Then, with the recovered bits of the downlink

CSI, a lightweight reconstruction network, which consists of an initial feature extraction of the

downlink CSI with simplified traditional method and a single hidden layer network, is utilized

to reconstruct the downlink CSI with a low processing delay. Specifically, the advantages of

superimposed CSI feedback by using 1-bit CS are inherited, i.e., without any occupation of

uplink bandwidth for CSI feedback, and effective interference cancellation in [10], and the

recovery accuracies for both the UL-US and downlink CSI are improved.

Contributions

In this paper, a DL-based 1-bit superimposed CSI feedback scheme is proposed to improve the

superimposed CSI feedback 1-bit CS approach in [10]. To the best of our knowledge, there is a

little literature focusing on the DL-based 1-bit superimposed CSI feedback method. And there

is also no research on the introduction of deep learning into 1-bit superimposed feedback. The

main contributions of this paper are as follows:

• We propose the DL-based scheme for 1-bit CS-based superimposed CSI feedback. By using

the nonlinear mapping and feature extraction ability of the DL, we develop a detection net-

work and a reconstruction network to further suppress nonlinear superimposition interfer-

ence, and improve the detection and reconstruction performances. The proposed scheme

retains the advantages of 1-bit CS-based superimposed CSI feedback [10], while obtains bet-

ter recovery accuracy for both the UL-US and downlink CSI with much lower processing

delay.

• We construct a multi-task detection network to recover the bit information for both the

UL-US and downlink CSI, based on the model-driven approach and assisted by the superim-

position-interference cancellation technology. This detection network is jointly trained to

detect the UL-US and downlink CSI simultaneously, capturing a globally optimized network

parameter. We use the ability that DL solve nonlinear problems to solve the superimposition

separation, which shortens processing delay while improving the detection performance

without any second-order statistical information about channel and noise.

• We develop a lightweight reconstruction network by using the linear approximation ability

of the traditional superimposed coding aided binary iterative hard thresholding (SCA-BIHT)

algorithm and the advantages of deep learning to deal with nonlinear problems. In this net-

work, the initial feature of downlink CSI is extracted by SCA-BIHT algorithm with only a

few iterations, and then a single hidden layer refinement network is constructed to refine the

downlink CSI reconstruction. The reconstruction network not only greatly reduces the
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iterations of the traditional SCA-BIHT algorithm to raise efficiency, but also obtains a better

reconstruction performance of the downlink CSI with a lower processing delay.

The remainder of this paper is structured as follows: In Section II, we introduce the system

model of the 1-bit superimposed CSI feedback. The DL-based 1-bit superimposed CSI feed-

back method is presented in Section III and followed by numerical results in Section IV.

Finally, Section V concludes our work.

Notations: Boldface upper case and lower case letters denote matrix and vector respectively.

(�)T and (�)† denote transpose and matrix pseudo-inverse respectively. IP is the identity matrix

of size P × P. BNð�Þ denotes the operation of batch normalization. k�k2 is the Euclidean norm.

sign(�) denotes an operator of taking symbolic information, e.g., the sign function returns +1

for positive numbers and 0 otherwise. Re(�) and Im(�) represent real and imaginary part opera-

tions, respectively. K(x) represents computing the best k-term approximation of x by thresh-

olding.� denotes the operation of Hadamard product for two vectors or matrices.

System model

The system model is shown in Fig 1. Considering a massive MIMO system that consists of one

BS with N antennas and U single-antenna users, after the processing of matched-filter, the

received signal from user-u, u = 1, 2, . . ., U, denoted as Ru, is given as

Ru ¼ guxu þ Nu; ð1Þ

where gu 2 C
N�1

denotes the uplink channel vector from user-u to the BS, Nu 2 C
N�P

is the

circularly symmetric complex Gaussian noise (CSCG) of feedback link, P is the length of the

UL-US. To avoid occupying the limited and crowded uplink bandwidth resources [29, 30],

xu 2 C
1�P

adopts superimposition technology, and denotes the transmitted signal of user-u,

which is given by [10]

xu ¼
ffiffiffiffiffiffiffiffi
rEu
p

su þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 � rÞEu

p
du; ð2Þ

where ρ 2 [0, 1] is the power proportional coefficient of the downlink CSI, Eu is the transmit-

ted power of user-u, and su 2 C
1�P

and du 2 C
1�P

stand for the modulated superimposition

signal and the UL-US, respectively.

In this paper, the downlink CSI, satisfying hu 2 C
1�N

, is a sparse vector with K-sparsity

[10], i.e., only K non-zero elements in hu. According to the 1-bit CS technique [31], hu is

Fig 1. System model.

https://doi.org/10.1371/journal.pone.0265109.g001
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compressed by

yreal;u ¼ signðReðhuÞΦuÞ

yimag;u ¼ signðImðhuÞΦuÞ
;

8
<

:
ð3Þ

where Φu 2 R
N�M

is the measurement matrix [10], and yreal;u 2 R
1�M

and yimag;u 2 R
1�M

denote

the real and imaginary parts of the compressed CSI, respectively.

For the convenience of digital modulation, the support-set of the downlink CSI hu, denoted

as zu 2 {0, 1}1×N, is labelled by the bit-form [10], i.e.,

zu;k ¼
1; hu;k 6¼ 0

0; hu;k ¼ 0
; k ¼ 1; 2; . . .N;

8
<

:
ð4Þ

where zu,k and hu,k are the k-th element in zu and hu, respectively. In order to reconstruct a

more accurate downlink CSI at the BS, zu needs to be fed back to the BS with yreal,u and yimag,u

by using the feedback vector pu. The feedback vector pu is formed by merging yreal,u, yimag,u, zu

[10], i.e.,

pu ¼ ½yreal;u; yimag;u; zu�: ð5Þ

It is worth noting that pu can be viewed as a bit stream with the elements of pu only being 0 or

1. With the digital modulation, we have

wu≜ fmoduðpuÞ; ð6Þ

where fmodu(�) denotes the mapping function of digital modulation, such as the quadrature

phase shift keying (QPSK). In Eq (6), pu is mapped as modulated feedback vector (MFV)

wu 2 C
1�L

, where L = d(2M + N)/2e. Without loss of generality, the UL-US’s length P is larger

than L due to main task of user services [19, 20]. Similar to [10, 20], to superimpose MVF with

UL-US, a spread spectrum method is utilized, which could capture spread spectrum gain to

suppress the interference caused by the superimposition processing. Thus, the superimposi-

tion signal su, given in Eq (2), is obtained by using a spreading matrix to spread the MFV wu,

i.e.,

su ¼
1
ffiffiffi
L
p wuQu; ð7Þ

where Qu 2 R
L�P is a spreading matrix, which satisfies QuQ

T
u ¼ PIL, e.g., the Walsh matrix

[32]. By combining Eqs(2) and (7), the transmitted signal of user-u xu is rewritten as

xu ¼

ffiffiffiffiffiffiffiffi
rEu

L

r

wuQu þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 � rÞEu

p
du: ð8Þ

At the user-u, the downlink CSI hu is compressed by using 1-bit CS (given in Eq (3)), and

thus the transmitted signal xu is formed by weighting and superimposing the UL-US du and

superimposition signal su according to Eqs (2)–(8). With the received Ru at the BS, the detec-
tion network and reconstruction network are designed to detect the UL-US du and superimposi-

tion signal su, and recover the downlink CSI hu, respectively. The detection and reconstruction

networks will be deliberated in Section III.
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DL-based superimposed CSI feedback using 1-bit CS

In this section, according to the superimposed CSI feedback scheme with the 1-bit CS [10], the

detection network and reconstruction network are developed to recover the UL-US and down-

link CSI. A transmitted signal feature extraction is first employed to coarsely extract the feature

after equalizing the uplink wireless channel. Then, with the extracted transmitted signal fea-

ture, we design the detection network and reconstruction network.

Transmitted signal feature extraction

From Eqs (2)–(8), the transmitted signal xu is formed by superimposing the UL-US du and the

modulated superimposition signal su. To recover du and su, the transmitted signal xu should be

first extracted, and thus the uplink channel gu in Eq (1) needs to be removed by channel equal-

ization. From [10, 19], the transmitted signal feature extraction is employed in this paper. That

is, the uplink wireless channel is equalized through zero forcing (ZF) equalization, so as to

extract the transmission signal feature. The feature extraction is given as

_xu ¼ gyuRu ¼ xu þ gyuNu; ð9Þ

where_xu denotes the coarse extracted vector of transmitted signal xu. It should be noted that,

relative to the use of ZF equalization to extract the transmitted signal feature, the use of mini-

mum mean square error (MMSE) channel equalization can obtain better feature extraction

performance, while encounters higher computational complexity. Especially, the MMSE

equalization requires second-order statistics of uplink channel gu and noise Nu [10, 18], which

leads to application difficulties. Therefore, we use low-complexity ZF equalization to extract

the transmitted signal feature, leaving the feature improvement to the subsequent detection

network.

With the extracted transmitted signal feature _xu, we construct the detection network to

detect UL-US du and superimposition signal su. From Eq (7), su is obtained by spreading the

MFV wu. In addition, the compressed downlink CSI yreal,u and yimag,u can be recovered from

wu (given in Eqs (3)–(6)).

Detection network

In order to eliminate superimposed interference and obtain better downlink CSI and UL-US

reconstruction accuracy, the detection network is designed by using unfolding method [33].

That is, the iteration steps in [10] are replaced by the groups of CSI-Net and Det-Net, includ-

ing six subnets, i.e., CSI-Net1, Det-Net1, CSI-Net2, Det-Net2, CSI-Net3, and Det-Net3, in

which the UL-US du and MFV wu are detected by solving a multi-task problem.

Architecture. The architecture of detection network is illustrated in Fig 2. From the per-

spective of convenience and ease of implementation, we first use the easiest single hidden layer

neural network architecture to design CSI-Neti and Det-Neti (i = 1, 2, 3). After experimental

verification, this architecture is not only easy but also improves performance. The architecture

of detection network is described as follows:

• CSI-Net1, DET-Net1, CSI-Net2, DET-Net2, CSI-Net3, and DET-Net3 are successively cas-

caded to form the multi-task network. To reduce mutual interference, some expert knowl-

edge is inserted between each cascaded subnets, i.e., the interference cancellation technology

[18, 19]. In more detail, the CSI interference reduction (CSI IR) is introduced between the

CSI-Neti and Det-Neti (i = 1, 2, 3), while the UL-US interference reduction (UL-US IR) is

inserted between Det-Neti and CSI-Net(i + 1) (i = 1, 2).

PLOS ONE Deep learning for 1-bit compressed sensing-based superimposed CSI feedback

PLOS ONE | https://doi.org/10.1371/journal.pone.0265109 March 10, 2022 6 / 23

https://doi.org/10.1371/journal.pone.0265109


• The same network structures are employed by the CSI-Neti and Det-Neti (i = 1, 2, 3). Each

subnet consists of an input layer, a hidden layer, and an output layer with a fully connected

mode. For each CSI-Neti (DET-Neti) (i = 1, 2, 3), the number of neurons in the input layer,

hidden layer, and output layer are 2L (2P), 4L (4P), and 2L (2P), respectively.

• For each subnet, a batch normalization (BN) is employed to normalize its input sets, con-

verting the subnet input to zero mean and unit variance.

• The activation functions of linear activation, leaky rectified linear unit (LReLU) [34] and

hyperbolic tangent (Tanh) are adopted by the input layer, hidden layer and output layer of

each subnet, respectively.

• The outputs of CSI-Net3 and DET-Net3 are the detected MFV _wu (_wu ¼
_x ð3Þu ) and the

detected UL-US _du (_du ¼
_d ð3Þu ), respectively.

The network architecture is summarized in Table 1.

Process of detection network. • Data preprocessing. Due to the requirement of real-val-

ued data sets in common DL-based framework, we transform the coarse extracted complex-

Fig 2. Detection network.

https://doi.org/10.1371/journal.pone.0265109.g002

Table 1. Architecture of detection network.

Subnet CSI-Neti Det-Neti

layer Input Hidden Output Input Hidden Output

BN
p

× ×
p

× ×
Neurons 2L 4L 2L 2P 4P 2P

Activation None LReLU Tanh None LReLU Tanh

https://doi.org/10.1371/journal.pone.0265109.t001
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valued vectors_xu, UL-US du and MFV wu to the real-valued vectors, i.e.,

_x real
u ¼ ½Reð

_xuÞ; Imð
_xuÞ�

dreal
u ¼ ½ReðduÞ; ImðduÞ�

wreal
u ¼ ½ReðwuÞ; ImðwuÞ�

:

8
>>><

>>>:

ð10Þ

To match the real-valued operation, the spreading matrix Qu is also transformed to real-val-

ued matrix _Qu, which is obtained as

_Qu ¼
Qu 0

0 Qu

#

:

"

ð11Þ

Then, to train the detection network, _xreal
u is employed as the network input, while dreal

u and

wreal
u are used as training labels in the CSI-Neti and Det-Neti (i = 1, 2, 3), respectively. In addi-

tion, to facilitate the unified description of the sub-network input in the detection network, we

use ~wð1Þu to represent the input_xreal
u of the detection network, i.e., ~wð1Þu ¼

_xreal
u .

• Processing procedure. The processing procedure of trained detection network is given in

Table 2, and some steps are explained as follows.

Process of CSI-Neti: The CSI-Neti (i = 1, 2, 3), is used to detect the MFV, which is

expressed as

_wðiÞ
u ¼ s2ðW

ðiÞ
12ðs1ðW

ðiÞ
11BNð~wðiÞu Q

_
T
u Þ þ bðiÞ

11
ÞÞ þ bðiÞ

12
Þ; ð12Þ

where σ1 and σ2 denote the activation functions of LReLU and Tanh, respectively. In Eq (12),

WðiÞ
11 (bðiÞ

11
) and WðiÞ

12 (bðiÞ
12

) are the weights (biases) of hidden layer and output layer, respectively.

We use CSI-Neti to detect MFV wu and obtain the network output _wðiÞu , which is briefly

described in steps (1-1), (2-1), and (3-1) in Table 2.

Table 2. Processing procedure.

Input: _w ð1Þu ¼
_x real

u .

(1-1): Use CSI-Net1 to detect MFV wu, then capture _w ð1Þu .

(1-2): Perform CSI IR by using expert knowledge and acquire ~dð1Þu .

(1-3): Detect UL-US by using DET-Net1 to obtain _dð1Þu .

(1-4): Use expert knowledge to carry out UL-US IR and get ~wð1Þu .

(2-1): Employ CSI-Net2 to detect MFV and capture _w ð2Þu .

(2-2): Conduct CSI IR by using expert knowledge and acquire ~dð2Þu .

(2-3): Detect UL-US by using DET-Net2 to obtain _dð2Þu .

(2-4): Perform UL-US IR by using expert knowledge and get ~w ð2Þu .

(3-1): Use CSI-Net3 to detect MFV, then capture _w ð3Þu .

(3-2): Use expert knowledge to conduct CSI IR and acquire ~dð3Þu .

(3-3): Detect UL-US by using DET-Net3 to obtain _dð3Þu .

Output: _wu ¼
_w ð3Þu , and _du ¼

_d ð3Þu .

https://doi.org/10.1371/journal.pone.0265109.t002
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CSI IR: In steps (1-2), (2-2), and (3-2) in Table 2, to reduce the interference from MFV, a

spreading is employed by CSI IR, which is expressed as

~dðiÞu ¼
_x real

u �

ffiffiffiffiffiffiffiffi
rEu

L

r
_wðiÞ

u Q
_

u; ð13Þ

where_Qu is obtained according to Eq (11). Then, ~dðiÞu is fed into Det-Neti to detect the UL-US.

Process of Det-Neti: The Det-Neti (i = 1, 2, 3), is used to detect the UL-US, which is

expressed as

_d ðiÞ
u ¼ s2ðW

ðiÞ
22ðs1ðW

ðiÞ
21BNð~dðiÞu Þ þ bðiÞ

21
ÞÞ þ bðiÞ

22
Þ; ð14Þ

where WðiÞ
21 (bðiÞ

21
) and WðiÞ

22 (bðiÞ
22

) denote the weights (biases) of hidden layer and output layer,

respectively.

UL-US IR: In steps (1-4) and (2-4) in Table 2, to reduce the interference from the UL-US,

the outputs of Det-Neti (i = 1, 2, 3) are processed by expert knowledge, which is expressed as

~wðiÞu ¼
_x real

u �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 � rÞEu

p _dðiÞu : ð15Þ

With the process given in Table 2, the UL-US du and MFV wu are detected, where the real-

valued descriptions of the detected UL-US du and MFV wu are denoted by_du and_wu, respec-

tively. Then, with the detected MFV _wu, we develop the reconstruction network to recover the

downlink CSI hu.

Reconstruction network

A reconstruction network is designed to further improve the reconstruction accuracy of hu on

the basis of the reconstruction algorithm, and to reduce the processing delay caused by multi-

ple iterations of the reconstruction algorithm. The reconstruction network is given in Fig 3,

and the processing procedure is summarized in Table 3. Generally, the corresponding de-map-

ping is first employed to restore the compressed downlink CSI. Then, the reconstruction algo-

rithm given in [10] with reduced complexity is utilized to perform an initial feature extraction

of the downlink CSI. According to the initial feature extraction, two dense layers are used to

refine the reconstruction of the downlink CSI. These details will be presented as follows.

Fig 3. Reconstruction network.

https://doi.org/10.1371/journal.pone.0265109.g003
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Inverse mapping operation. From Eqs (6) and (10), the real-valued wreal
u is formed by dig-

ital modulation and the mapping from complex-valued to real-valued form. Correspondingly,

we adopt inverse mapping to recover the complex-valued and unmodulated forms. An inverse

mapping, denoted by fR!Cð�Þ, is first employed to map the real-valued _wu back to its complex-

valued form. Then, the digital demodulation mapping, denoted as fdemo(�), is used to demodu-

late this complex-valued vector. The whole inverse mapping process is expressed as

½_yreal;u;
_y imag;u;

_zu�≜fdemoðfR!Cð
_wuÞÞ: ð16Þ

Then, the estimation of sparsity K of the downlink CSI, denoted as_K , is obtained by calculat-

ing the number of non-zero entries in_zu.

Initial feature extraction. With _y real;u, _y imag;u, _zu and_K , we employ the reconstruction

algorithm, named SCA-BIHT in [19], to conduct an initial feature extraction of the downlink

CSI, while leaving the refinement reconstruction to the subsequent refinement network. In

particular, this initial feature extraction is executed by SCA-BIHT with only a few iterations

instead of dozens or hundreds of iterations in [10]. Here, β times of iteration are adopted in

this paper. The initial feature extraction procedure is presented in Table 4.

Based on the initial feature extraction, we then input ~hu to a single hidden layer network to

refine the reconstruction accuracy of the downlink CSI hu.

Refinement network. According to the initial feature extraction, a single hidden layer

network is employed to refine the reconstruction of the downlink CSI, and its network archi-

tecture is summarized in Table 5. Similar to CSI-Neti and Det-Neti (i = 1, 2, 3) of the detection

network, the refinement network is also designed as the easiest single hidden layer neural net-

work architecture.

Table 3. Procedure of reconstruction network.

Input: _wu.

1): Map the real-valued _wu to ½_y real;u;
_y imag;u;

_zu�

2): Use ½_y real;u;
_y imag;u;

_zu� to rough extract the feature of downlink CSI and obtain ~hu by the SCA-BIHT algorithm

with β times of iteration.

3): Use the refinement network to refine the reconstructed downlink CSI _hu.

Output: _hu.

https://doi.org/10.1371/journal.pone.0265109.t003

Table 4. Initial feature extraction procedure.

Input: Compressed downlink CSI ½_y real;u;
_y imag;u�, Support-set _zu.

1): Initialization: the real part and imaginary part of reconstructed data are set to zero (i.e., h0

real ¼ h0

imag ¼ 0),

t = 0, and maximum number of iterations β.

2): t = t + 1.

3): ht
real ¼ Kðht� 1

real þ ð
_y real;u � signðht� 1

realFuÞÞF
T
u Þ, h

t
imag ¼ Kðht� 1

imag þ ð
_y imag;u � signðht� 1

imagFuÞÞF
T
u Þ.

4): ht
real ¼ ht

real �
_zu; h

t
imag ¼ ht

imag �
_zu.

5): Go to step 2) if t < β, else go to next step.

6): h ¼ ht
real þ jht

imag.

7): Normalization: ~hu ¼ h=khk2.

Output: ~hu.

https://doi.org/10.1371/journal.pone.0265109.t004
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The the initial feature of downlink CSI ~hu and the label hu are complex-valued, and thus

need to be mapped to real-valued form, i.e.,

~hreal
u ¼ ½Reð~huÞ; Imð~huÞ�

hreal
u ¼ ½ReðhuÞ; ImðhuÞ�

:

8
<

:
ð17Þ

Then, using the refinement network, the refined reconstruction of the downlink CSI is

obtained from the expression

_hu ¼W32ðs1ðW31BNð~hreal
u Þ þ b31ÞÞ þ b32; ð18Þ

where W31 (b31) and W32 (b32) denote weights (biases) of the hidden layer and output layer of

the refinement network, respectively.

Model training specification

Since model training is significant for network performance, we give the training details in this

subsection. In the following, we discuss the training method, data preparation, and loss func-

tion, respectively.

Training method. In this paper, the detection network and reconstruction network are

separately trained to reduce the complexity of parameter tuning. For detection network, there

are six subnetworks needed to be trained, including the training parameters WðiÞ
11 , WðiÞ

12 , WðiÞ
21 ,

WðiÞ
22 , bðiÞ

11
, bðiÞ

12
, bðiÞ

21
, and bðiÞ

22
(i = 1, 2, 3). From Fig 2, the detection network is a multi-task net-

work in reality, which generates the estimated MFV _wu and UL-US _du, respectively. Thus, we

jointly train the six subnets of detection network to resolve this multi-task issue. In the recon-

struction network, only the refinement network needs to be trained to optimize its network

parameters W31, W32, b31, and b32. With the trained detection network and the corresponding

initial feature extraction of reconstruction network, we then train the refinement network

solely.

Data preparation for training. The training set is acquired by a simulation approach, in

which a significant amount of data samples are generated to train two networks, i.e., the detec-

tion network and the refinement network. Specially, these data samples are generated as

follows.

hu and gu are randomly generated on the basis of the distribution CN ð0; ð1=NÞÞ. To train

the detection network, we first collect the_xu according to Eq (9) to form input sets. Then we

save the corresponding du and wu as target sets, where du is formed by QPSK modulation with

randomly generated Bernoulli binary sequences. All the complex-valued data sets are con-

verted to real-valued form. For example, the input and label of the detection network are set as

fð_x real
u Þ; ðd

real
u ;wreal

u Þg according to Eq (10). Similarly, the input and label of the refinement

network are set as fð~hreal
u Þ; ðh

real
u Þg according to Eq (17). In addition, to validate the trained net-

work parameters during the training phase, a validation set is generated by following the same

Table 5. Architecture of refinement network.

Layer Input Hidden Output

Batch normalization
p

× ×
Neuron number 2N 4N 2N

Activation function None LReLU Linear

https://doi.org/10.1371/journal.pone.0265109.t005
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generation method of training set, and thus we could capture a set of optimized network

parameters.

Loss functions. The detection network is trained by optimizing weights and biases of

each subnet, i.e., CSI-Neti and Det-Neti, to minimize the loss function [35, 36]. In addition,

the l2 regularization is employed in the detection network to avoid gradient explosions [37].

Thus, the loss function for training the detection network is expressed as

Loss
Det
¼ loss1 þ a1kΘ1k

2

2
; ð19Þ

where α1 is the regularization coefficient and Θ1 denotes the training parameters, i.e., weights

and biases of the detection network. In Eq (19), loss1 represents the weighted sum of the losses

of six subnets, which is given as

loss1 ¼
1

6

X3

i¼1

�
�
�
�
_d ðiÞ

u � dreal
u

�
�
�
�

2

2

þ
X3

i¼1

�
�
�_wðiÞ

u � wreal
u

�
�
�

2

2

 !

; ð20Þ

where_d ðiÞu and_wðiÞu are the output of the CSI-Neti and Det-Neti, respectively. With this detec-

tion network, we obtain the MFV _wð3Þu and UL-US _dð3Þu , i.e., _wu and_du.

With the trained detection network, the reconstruction network is trained according to
_yreal;u,_y imag;u, and_zu, which are detected by the detection network and expressed in Eq (16).

In reconstruction network, only the refinement network with single hidden layer needs to be

optimized, and thus the loss function is given by

Loss
Rec
¼

�
�
�
�
_hu � hreal

u

�
�
�
�

2

2

þ a2kΘ2k
2

2
; ð21Þ

where_hu is the estimated downlink CSI, α2 is the regularization coefficient and Θ2 denotes all

training parameters of refinement network.

To reap an effective and feasible regularization coefficient and verify the generalization per-

formance of detection network and reconstruction network, Fig 4 compares the convergence

behaviors of LossDet and LossRec under different regularization coefficients (i.e., α1/2 = 10−9,

10−8, . . ., 10−4). From Fig 4, we can observe the convergence values of training loss and valida-

tion loss are almost the same, which indicates the excellent generalization performance of

detection and reconstruction network. In addition, a smaller value of α1 (or α2) leads to a

smaller convergence value of training loss or validation loss. Yet according to Eq (21), the

value of LossRec is related to α2, the α2 that minimizes the LossRec may not achieve the best

reconstruction performance. The optimized α2 is determined by the reconstruction perfor-

mance of the downlink CSI, which will be given in the experimental analysis.

By using the trained detection network and reconstruction network, the UL-US _du and

downlink CSI _hu can be recovered from the proposed scheme. Compared with the 1-bit CS-

based superimposed CSI feedback scheme in [10], both the recoveries of the UL-US and down-

link CSI are improved by the proposed scheme, while the requirements of second-order statis-

tics of noise are avoided. Besides, these improvements are robust against parameter variations,

which will be presented in the experimental analysis.

Experiment results

In this section, we give numerical results of the proposed scheme. Definitions and basic

parameters involved in simulations are first given. Then, to verify the effectiveness of the pro-

posed scheme, we show the bit error rate (BER) of UL-US and MFV, and the normalized

mean squared error (NMSE) of reconstructed downlink CSI is presented. Finally, we compare
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the online running time between the proposed scheme and conventional scheme. The source

code is available at https://github.com/qingchj851/DL-1BitCS-SC-CSI-Feedback2.

Parameter setting

Definitions involved in simulations are given as follows. The signal-to-noise ratio (SNR) in

decibel (dB) of the signal received at BS from user-u is defined as [19]

SNR ¼ 10log
10

Eu

s2
u

� �

: ð22Þ

Fig 4. (a) Training loss of the detection network. (b) Validation loss of the detection network. (c) Training loss of the reconstruction network. (d) Validation loss of

the reconstruction network.

https://doi.org/10.1371/journal.pone.0265109.g004
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The NMSE is utilized to evaluate the recovery performance of downlink CSI, and defined as

[19]

NMSE ¼

�
�
�_hu � hreal

u

�
�
�

2

2

khreal
u k

2

2

: ð23Þ

In the experiment phase, P = 512, N = 64, and the sampling rate c is defined as c = M/N. The

measurement matrix is randomly generated and obeys the Gaussian distribution [38], and it is

guaranteed that its row vector and the column vector of the compressed signal cannot be

sparsely represented by each other. The Walsh matrix generated by the Walsh sequence is

employed as the spreading matrix Qu [32]. The UL-US du is formed by applying QPSK modu-

lation upon randomly generated Bernoulli binary sequences. The training input data-sets are

generated according to Eqs (1)–(9). Trainings of detection network and reconstruction net-

work are carried out under the noise-free setting, and this is different from the training of the

DL-based network in [19], where the training SNR is set as 5dB. Testing data-sets are gener-

ated by using the same method as the training data-sets. The sizes of training set, validation set

and testing set of detection network are 60,000, 20,000, and 20,000, respectively. For the recon-

struction network, 45,000, 15,000, and 15,000 samples are respectively employed for the train-

ing, validation, and testing. Both in detection network and reconstruction network, we use

Adam optimizer as the training optimization algorithm, and the values of epoch and learning

rate are set to 50 and 0.001, respectively. In the simulations, we stop the testing for BER perfor-

mance when at least 1000-bit errors are observed [19, 20].

For the convenience of expression, we utilize “Proposed” and “Ref [10]” to denote the pro-

posed DL-based 1-bit superimposed CSI feedback and the traditional 1-bit superimposed feed-

back (mentioned in [10]), respectively.

BER performance

In this subsection, the effectiveness and robustness of the detection network will be verified.

To clarify the effectiveness, the comparison of BER’s performance between “Proposed” and

“Ref [10]” is first presented in Fig 5. Next, to verify the robustness of the detection network,

the impacts against the parameters of ρ and c are given in Figs 6 and 7, respectively.

To verify the effectiveness of the detection network, both the UL-US and MFV’s BER per-

formances are illustrated due to the UL-US being superimposed with MFV. Fig 5 depicts the

BER curves of the UL-US and MFV in terms of SNR, where c = 2.0 and ρ = 0.10 are considered.

From Fig 5, the BERs of UL-US and MFV obtained by “Proposed” are respectively smaller

than those of “Ref [10]” in the whole given SNR regions. For example, when SNR = 10dB, the

BER of UL-US (or MFV) by “Proposed” is around 3.4 × 10−3 (or 4.5 × 10−2), while the BER of

UL-US (or MFV) of “Ref [10]” is nearly 1.4 × 10−2 (or 8.5 × 10−2). That is, compared with “Ref

[10]”, both the UL-US and MFV’s BERs are improved by the proposed detection network.

Especially, these improvements are significant to be observed in the relatively higher SNR. The

possible reason is that the detection network is trained under noise-free setting.

To verify the robustness of BER performance’s improvement against the impact of ρ, the

BER curves with different values of ρ, i.e., ρ = 0.05, ρ = 0.10, and ρ = 0.15, are plotted in Fig 6,

where c = 2.0 is considered. From Fig 6, for each given ρ, the UL-US and MFV’s BERs of the

“Proposed” are respectively smaller than those of the “Ref [10]”. This reflects that the proposed

detection network could improve the BER performance under different ρ for both UL-US and

MFV. As ρ increases from 0.05 to 0.15 for “Proposed”, the BER of UL-US increases while the

BER of MFV decreases, and vice versa. The reason is that the increased (or decreased) ρ
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Fig 6. BER versus SNR, where P = 512 and c = 2.0 are considered.

https://doi.org/10.1371/journal.pone.0265109.g006

Fig 5. BER versus SNR, where P = 512, c = 2.0, and ρ = 0.10 are considered.

https://doi.org/10.1371/journal.pone.0265109.g005
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aggregates (or alleviates) the interference of MFV to UL-US, while alleviates (or aggregates)

the interference of UL-US to MFV. On the whole, with the impacts of different ρ, the improve-

ments of UL-US and MFV’s BER performances are evidently observed. Thus, the proposed

detection network guarantees the improvement of BER performance against the impact of ρ.

The UL-US and MFV’s BER curves with different values of compression rate c (i.e., c = 2.0,

c = 2.5, and c = 3.0) are depicted in Fig 7, and this validates the improvement of BER perfor-

mance is robust against the impact of c, where ρ = 0.10. In Fig 7, for each given c, the UL-US

and MFV’s BER performances of the “Proposed” are smaller than those of the “Ref [10]”. This

implies that the proposed detection network could improve UL-US and MFV’s BER perfor-

mance of “Ref [10]” for different values of c. With the increase of c, for both “Proposed” and

“Ref [10]”, the BERs of both UL-US and MFV increase, and vice versa. The reason is that the

spreading gain (i.e., P/M) decreases with the increase of c, and thus affects the detection perfor-

mances (similar results can be found in [19, 20]). As a whole, compared with “Ref [10]”, the

BER improvements of UL-US and MFV are evidently observed for each given c. Thus, the pro-

posed detection network shows its robustness of improving UL-US and MFV’s BER perfor-

mances against the impact of c.
To sum up, according to Figs 5–7, the UL-US and MFV’s BER performances of “Ref [10]”

are effectively improved by the proposed detection network, and these improvements are

robust against the impacts of ρ and c.

NMSE performance

With the detected MFV, the downlink CSI can be reconstructed by using the proposed recon-

struction network. To validate the effectiveness of the proposed reconstruction network,

NMSE curves of the downlink CSI recovered from the proposed reconstruction network and

Fig 7. BER versus SNR, where P = 512 and ρ = 0.10 are considered.

https://doi.org/10.1371/journal.pone.0265109.g007
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SCA-BIHT [10] are first given in Fig 8. Then, to demonstrate the robustness of the reconstruc-

tion network, the NMSE performance against the impacts of ρ and c are shown in Figs 9 and

10, respectively. In addition, we present the influence of regularization coefficient α2 on the

NMSE performance in Table 6.

In Fig 8, the NMSE curves of downlink CSI’s recovery are depicted, where c = 2.0 and ρ =

0.10. The “Proposed” employs 8 times of iteration for initial feature extraction, i.e., β = 8, fol-

lowed by two dense layers. In contrast, different iteration values (i.e., β = 10, β = 20, β = 50,

and β = 100) are given for the SCA-BIHT algorithm of “Ref [10]”. From Fig 8, when

SNR� 14dB, the “Proposed” achieves the minimum NMSE, even lower than that of “Ref [10]”

with β = 100. For example, when SNR = 12dB, the NMSE of “Proposed” is about 8.94 × 10−2,

while that of “Ref [10]” with β = 100 is about 1.43 × 10−1. That is, with a smaller NMSE, the

two dense layers in the reconstruction network can replace 95 iterations of SCA-BIHT algo-

rithm in the relatively low SNR region (e.g., SNR�14dB), leading to a lower processing delay.

For the case where SNR�16dB, the NMSE of “Proposed” outperforms that of “Ref [10]” with

β = 10. Although it shows a slightly higher NMSE of “Proposed” than “Ref [10]” with β = 50

and 100, it compensates the high processing delay of “Ref [10]”. On the whole, the proposed

reconstruction network has a lower processing delay than “Ref [10]” and shows a better NMSE

performance in the relatively low SNR region. Therefore, the proposed reconstruction network

is effective to improve the NMSE performance of “Ref [10]”.

To verify the robust improvement of NMSE performance against the impact of ρ, the

NMSE curves with variant ρ (i.e., ρ = 0.05, ρ = 0.10, and ρ = 0.15) are plotted in Fig 9. From Fig

9, for each given ρ, the downlink CSI’s NMSE of the “Proposed” is smaller than that of the “Ref

[10]”. With the increase of ρ (increases from 0.05 to 0.15), the NMSE decreases for both “Ref

[10]” and “Proposed”, and vice versa. The reason is that the downlink CSI can obtain more

Fig 8. NMSE versus SNR, where P = 512, c = 2.0, and ρ = 0.10 are considered.

https://doi.org/10.1371/journal.pone.0265109.g008
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Fig 9. NMSE versus SNR, where P = 512 and c = 2.0 are considered, and the β of Ref [10] is 10.

https://doi.org/10.1371/journal.pone.0265109.g009

Fig 10. NMSE versus SNR, where P = 512 and ρ = 0.10 are considered, and the β of Ref [10] is 10.

https://doi.org/10.1371/journal.pone.0265109.g010
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transmission power with a larger value of ρ. In addition, with the increase of SNR, the curves

gradually converge for the reason that the main influence of NMSE comes from the superim-

posed interference in a relatively high SNR region. On the whole, for each given value of ρ in

Fig 9, the NMSE of “Ref [10]” is reduced by the “Proposed”, especially in the relatively low

SNR region (e.g., SNR�14dB). Thus, the proposed reconstruction network possesses its

robustness for improving the NMSE performance against the impact of ρ.

Fig 10 plots the NMSE curves of downlink CSI with different values of compression rate c
(i.e., c = 2.0, c = 2.5, and c = 3.0) to validate the robustness of NMSE performance’s improve-

ment against the impact of c. In Fig 10, for each given c, the downlink CSI’s NMSE perfor-

mance of the “Proposed” is smaller than that of the “Ref [10]”. In addition, for SNR� 10dB,

the NMSEs of “Proposed” increase as the increase of c. The possible reason is that the higher

compression rate results in lower spreading gain (i.e., P/M). In the low SNR region, the main

impact of NMSE performance comes from the noise interference and is limited by the low

spread spectrum gain. Yet, the NMSE’s convergence value of high compression rate is smaller

than that of low compression rate. For example, for the cases where c = 2.0, c = 2.5, and c = 3.0,

the convergence values of “Proposed” NMSE are about 6.0 × 10−2, 4.9 × 10−2, and 4.4 × 10−2,

respectively. The possible reason is that the higher compression rate brings more reconstruc-

tion information in the high SNR region, where the noise interference almost disappeared. On

the whole, for each given value of c in Fig 10, the NMSE of “Ref [10]” is reduced by the “Pro-

posed”. Thus, the proposed reconstruction network possesses its robustness for improving the

NMSE performance against the impact of c.
In addition, the influence of regularization coefficient α2 on NMSE performance is given in

Table 6, where c = 2.0, ρ = 0.10, and different values of α2 (i.e., α2 = 10−4, α2 = 10−5, α2 = 10−6,

α2 = 10−7, α2 = 10−8, and α2 = 10−9) are considered. From Table 6, the influence of different

values of the regularization coefficient on the NMSE is not very obvious. Despite all this,

among the given values of α2, in all SNR regions, the minimum of NMSE is still observed as α2

= 10−5. Thus, the NMSE performance in Table 6 indicates α2 = 10−5 is a preferable regulariza-

tion coefficient.

To sum up, according to Figs 8–10, the downlink CSI’s NMSE performance of “Ref [10]” is

effectively improved by the proposed reconstruction network, and these improvements are

robust against the impacts of ρ and c.

Table 6. The effect of regularization coefficient α2 on NMSE performance.

SNR (dB)

Regularization coefficient α2 = 10−4 α2 = 10−5 α2 = 10−6 α2 = 10−7 α2 = 10−8 α2 = 10−9

0 0.6121 0.6114 0.6115 0.6116 0.6117 0.6118

2 0.5675 0.5666 0.5668 0.5670 0.5671 0.5671

4 0.5024 0.5015 0.5018 0.5021 0.5022 0.5422

6 0.4151 0.4145 0.4146 0.4148 0.4149 0.4149

8 0.3063 0.3056 0.3058 0.3060 0.3060 0.3061

10 0.1682 0.1673 0.1675 0.1678 0.1678 0.1679

12 0.0903 0.0894 0.0897 0.0900 0.0900 0.0901

14 0.0683 0.0677 0.0678 0.0680 0.0681 0.0681

16 0.0626 0.0618 0.0619 0.0623 0.0623 0.0624

18 0.0608 0.0601 0.0602 0.0605 0.0606 0.0606

https://doi.org/10.1371/journal.pone.0265109.t006
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Online running time

To illustrate the low processing delay of “Proposed”, i.e., detection network and reconstruction

network, the online running time between “Proposed” and “Ref [10]” is compared in Fig 11,

where P = 512, ρ = 0.10, and different values of c (i.e., c = 2.0, c = 2.5, and c = 3.0) are consid-

ered. Especially, “Ref [10]” adopts β = 10 and 100 in the reconstruction algorithm (i.e., SCA--

BIHT algorithm). Here, β = 10 in “Ref [10]” is used to guarantee the NMSE of the “Proposed”

is smaller than that of “Ref [10]”, and β = 100 in “Ref [10]” is used to present the “Proposed”

has a similar NMSE (in a relatively high SNR region) while significantly lower processing

delay as that of “Ref [10]”. For a fair comparison, 105 online-running experiments are con-

ducted for “Proposed” and “Ref [10]” on the same PC (with CPU i5-8250U) by using

MATLAB software. For each given c in Fig 11, the online running time of “Proposed” is

shorter than that of “Ref [10]”, e.g., when c = 2.0, the online running time of “Proposed” and β
= 10 (β = 100) in “Ref [10]” are 75.1s and 201.8s (1266.9s), respectively. This reflects that the

proposed 1-bit CS-based superimposed CSI feedback can reduce the processing delay. It is also

noticed that, as c rises from 2.0 to 3.0, the online running time of both “Proposed” and “Ref

[10]” go up. However, the total increased running time of the “Proposed” is 15.9s, which is far

less than that of “Ref [10]” (e.g. 54.7s for β = 10 and 374.0s for β = 100). In addition, Fig 11

shows that the online running time of “Ref [10]” is proportional to the number of iteration.

Thus, the NMSE performance might not be applicable for “Ref [10]” with large iteration num-

ber, while the “Proposed” can avoid this annoyance.

As a whole, compared with “Ref [10]”, the proposed DL-based 1-bit superimposed CSI

feedback significantly reduces the online running time.

Fig 11. Comparison of “Proposed” and “Ref [10]” about online running time by conducting 105 times of

experiments, where P = 512 and ρ = 0.10 are considered.

https://doi.org/10.1371/journal.pone.0265109.g011
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Conclusion

The 1-bit CS-based superimposed CSI feedback is still facing many challenges, such as low

recovery accuracy of the UL-US and downlink CSI, and long processing delay, etc. To remedy

these defects, the DL-based 1-bit superimposed CSI feedback has been investigated in this

paper. The constructed detection network captures optimized network parameters by using

joint training, and thus improves the BER performance of the UL-US. Moreover, the detection

network is also helpful for reconstructing the downlink CSI. With the detected downlink CSI’s

bits from the detection network, the proposed reconstruction network utilizes the simplified

version of SCA-BIHT with a single hidden layer network, and achieves a significant improve-

ment on NMSE performance of the downlink CSI recovery. In particular, compared with the

conventional 1-bit CS-based superimposed CSI feedback, the proposed CSI feedback scheme

presents its robustness against parameter variations and possesses significantly low processing

delay.
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