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Abstract: It is a basic task in Brillouin distributed fiber sensors to extract the peak frequency of the
scattering spectrum, since the peak frequency shift gives information on the fiber temperature and
strain changes. Because of high-level noise, quadratic fitting is often used in the data processing.
Formulas of the dependence of the minimum detectable Brillouin frequency shift (BFS) on the
signal-to-noise ratio (SNR) and frequency step have been presented in publications, but in different
expressions. A detailed deduction of new formulas of BFS variance and its average is given in this
paper, showing especially their dependences on the data range used in fitting, including its length
and its center respective to the real spectral peak. The theoretical analyses are experimentally verified.
It is shown that the center of the data range has a direct impact on the accuracy of the extracted BFS.
We propose and demonstrate an iterative fitting method to mitigate such effects and improve the
accuracy of BFS measurement. The different expressions of BFS variances presented in previous
papers are explained and discussed.
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1. Introduction

The Brillouin optical fiber distributed sensor is attractive for the measurement of strain and
temperature change in fiber under test (FUT), based on the Brillouin frequency shift (BFS), which is
a function of strain and temperature. The typical sensitivities were reported as ∂νB/∂T = 1.1 MHz/K
and ∂νB/∂ε = 48 kHz/(µε), where µε = 10−6 is the microstrain [1]. Therefore, one of the key issues for
the sensor is to extract the peak frequency from the detected signal of the retuned optical wave, which
usually contains high-level noise, since the Brillouin scattering is very weak. Obviously, the noise
will deteriorate the accuracy of the peak frequency measurement. Some papers have been published
discussing the accuracy of BFS. The minimum detectable peak frequency change was given earlier in
Ref. [2], expressed as

δνB =
∆νB√

2(SNR)1/4 (1)

where SNR is the signal-to-noise ratio of the detected electrical signal; and ∆νB is the FWHM of the
Brillouin scattering spectrum, usually in a Lorentzian waveform. The Brillouin linewidth is typically

Sensors 2018, 18, 409; doi:10.3390/s18020409 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-8562-1292
http://dx.doi.org/10.3390/s18020409
http://www.mdpi.com/journal/sensors


Sensors 2018, 18, 409 2 of 12

about 40 MHz, so that the SNR for 1 MHz resolution of BFS is required to be 58 dB. This is too high for
a conventional sensor to reach. Many technical measures have to be used to suppress the noise.

Ref. [3] presented a detailed analysis about BSF variance based on a quadratic function model,
expressed as y = ax2 + bx + c, where the coefficients a, b, and c meet the requirement of least-square
fitting. The peak frequency is estimated as −b/2a, giving the value of BFS. A different formula for the
error of the estimated Brillouin peak was deduced as

σv =
1

SNRA

√
3d∆νB

8
√

2(1− η)3/2 =
1

SNRA

√
3d∆νB

4
(2)

where d is the frequency step of the spectrum, SNRA is the signal-to-noise ratio of the optical signal
amplitude, and η is the fraction of peak level, over which a quadratic least-square fitting is carried
out. The last expression is for the case of η = 1/2. The performances of Brillouin sensors were then
characterized based on the model, and consistent with the experimental results.

The difference between Equations (1) and (2) attracts attention. Ref. [4] presented simulated
comparisons of the two expressions by using Monte Carlo method with varying frequency step,
signal-to-noise ratio, and Q-factor. The last parameter is inversely proportional to the FWHM of
the Brillouin scattering spectrum, which will change in the case of stimulated Brillouin scattering.
It is pointed that the signal-to-noise ratios in Equations (1) and (2) have different definitions with
SNRA = SNR1/2. However, the origin of the difference between Equations (1) and (2) seems not very
clear. The dependence of BFS accuracy on the data length used in data processing is not analyzed in
detail, which is an important factor in quadratic fitting.

In this work, the expression of BFS uncertainty due to Gaussian noise is deduced strictly in
detail based on quadratic fitting with the least-square algorithm, giving new formulas for fitted BFS
variance and linewidth varying with data length and the data range’s center, noise levels, frequency
step, and others. The analyses are verified by experimental signals from a Brillouin optical domain
reflectometer (BOTDR), showing good agreement with each other. The deduction of the new formulas
is compared with the model presented in previous publications. The reason for the differences between
Formulas (1) and (2) and their applicability are discussed also.

It is shown that the data length and data range’s center deviation relative to the Brillouin peak
have a direct impact on the accuracy of the extracted BFS. To mitigate this impact, a method of
iterative quadratic fitting is proposed and demonstrated in this paper. It is shown, by way of
practical applications to the experimental data, that the method is effective with negligible increase of
calculation time.

2. Quadratic Fitting Characteristics

The quadratic fitting with y = ax2 + bx + c = a(x + b/2a)2 + c− b2/4a is used widely in various
applications [5,6], and in data processing of noisy Brillouin spectra in distributed fiber sensors, typically
in Lorentzian yL = yL0/[1 + 4(ν− νB)

2/∆ν2
B], where yL is now the spectrum of the detected Brillouin

signal with noise. The accuracy of the extracted BFS depends on data noise and the data range used in
fitting, including the length of data and its center, i.e., its symmetry relative to the Brillouin peak νB.
Signal noise will lead to fluctuations of xp = −b/2a, and its variance is deduced to be (see Appendix A
for detail)

σ2
ν = 〈(xp − xp)

2〉 = ∆x4dσ2

x5
N

[
3x2

N
4

+ 45(
xN
2
− xp)

2
] (3)

where d is the frequency spacing of data points, xN = Nd is the length of the spectral range used
in fitting. ∆x =

√
(b2 − 4ac)/2a2 is the FWHM of the fitted quadratic curve, and σ2 = SNR−2

A is
the noise variance. Equation (3) shows that the BFS variance is a quadratic function of xN/2− xp.
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In the case where the fitting data range is centered at the Brillouin peak, the BFS variance reaches
its minimum.

σ2
ν =

3∆x4d
4x3

NSNR2
A

. (4)

Actually, even if the noise is negligibly small, the quadratic fitted peak may deviate from the
Brillouin peak if the center of the data range used in the fitting does not coincide with the latter.
Figure 1a shows the deviation of the fitted peak xp − νB versus δ = xN/2 − νB, simulated with
d = 1 MHz, xN = 60 MHz, and noise level σ = 0.01; Figure 1b shows the standard deviations of xp

versus δ. It is indicated, therefore, that the selections of the data range length and its center in quadratic
fitting play important roles in the accuracy of the extracted BFS.
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Figure 1. (a) Fitted peak frequency deviation (b) and standard deviation of fitted peak frequencies vs 
data range’s center deviation. 

The BFS variances obtained by quadratic fitting are simulated with different noise levels. Figure 2a 
shows an example of BFS variance versus test numbers with 0.1  , 1 Hz Md  , 200 MHz Nx  , 
and Lorentzian peak set at the middle of the data range; the blue points are the peak frequencies for 
different simulation tests, and the black line is the variances obtained by averaging over the test 
numbers. Obviously, the fitted peaks are randomly distributed due to the noise. Figure 2b gives the 
variances and standard deviations versus the noise level σ. It is seen that the standard deviation is a 
straight line, showing that the BFS variance is inversely proportional to the square of SNRA, 
coincident with Equation (4). 

(a) (b)

Figure 2. (a) Brillouin frequency shift (BFS) variance and its average vs test number, blue dot is BFS 
of each simulation; (b) BFS variances (blue points) and standard deviations (black points) vs noise level. 
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Figure 1. (a) Fitted peak frequency deviation (b) and standard deviation of fitted peak frequencies vs.
data range’s center deviation.

The BFS variances obtained by quadratic fitting are simulated with different noise levels. Figure 2a
shows an example of BFS variance versus test numbers with σ = 0.1, d = 1 MHz, xN = 200 MHz,
and Lorentzian peak set at the middle of the data range; the blue points are the peak frequencies
for different simulation tests, and the black line is the variances obtained by averaging over the test
numbers. Obviously, the fitted peaks are randomly distributed due to the noise. Figure 2b gives
the variances and standard deviations versus the noise level σ. It is seen that the standard deviation
is a straight line, showing that the BFS variance is inversely proportional to the square of SNRA,
coincident with Equation (4).
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Figure 2. (a) Brillouin frequency shift (BFS) variance and its average vs test number, blue dot is BFS of
each simulation; (b) BFS variances (blue points) and standard deviations (black points) vs. noise level.
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The relation between BFS variance and frequency step is also studied by simulation with σ = 0.1
and xN = 60 MHz. Figure 3 shows that the BFS standard deviation is the square root of the frequency
step, coincident with Equation (4); therefore, a smaller step will lead to higher accuracy of the BFS
measurement. However, the frequency step d is generally inversely proportional to the probe pulse
width ∆T of OTDR system, determined by FFT for the optimal spatial resolution. A trade-off has to be
taken between BFS accuracy and spatial resolution.
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Figure 3. Standard deviation of fitted peak frequencies vs. frequency step.

The fitted linewidth ∆x is an important parameter in Equations (3) and (4). In a previous
publication [3], an approximation of ∆x ∼ ∆νB was taken. In actuality, it depends on the length of
the data used in fitting. The dependence of ∆x on xN and ∆νB for the case without noise and without
deviation of the data range’s center is deduced to be (see Appendix B for detail)

∆x = [
x2

N
6

θ(1 + 3ρ2/5)− ρ

θ(1 + ρ2/3)− ρ
]

1/2

≈
{

∆νB(1 + 9ρ2/40)/
√

2, (ρ� 1)

pxN + q∆νB, (ρ� 1)
(5)

where ρ = xN/∆νB; θ = tan−1ρ; and the coefficients of linear approximation in the range of xN � ∆νB are
calculated to be p = 0.548, q = 0.465. Figure 4 shows a simulation example, where the frequency step is
taken as d = 1 MHz, Lorentzian FWHM is 40 MHz, and the noise level is σ = 0.02. The coefficients are
estimated to be p = 0.53 and q = 0.35 for this simulation example, in good agreement with the results of
Equation (5). The point at xN = 0 is the theoretical limitation of ∆x(xN → 0) = ∆νB/

√
2 . Simulations

show that this linear relation and the coefficients do not change much for different noise levels.
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It is then seen that factor ∆x4/x3
N in Equation (4) will go up towards infinity when xN goes down

towards zero, and the rising slope depends on SNRA. It is reasonable that a decrease in the data
number used in fitting will weaken their role in noise reduction, and thus increase the BFS variance,
as shown in Figure 5. On the other hand, in the range of xN � ∆νB, the BFS variance will increase
linearly with xN ; therefore, a minimum is reached at xmin

N = 3q∆νB/p, and the standard deviation of
the peak frequency can then be expressed as

σν =
8
√

p3q∆νBd
3SNRA

. (6)

It is estimated by the analyzed result and the experimental data that
√

p3q ∼ 0.25 and 3q/p ∼ 2.
Figure 5 shows simulated curves of the BFS standard deviation versus data number for two noise
levels as examples, where d = 1 MHz and ∆νB = 40 MHz are taken in the simulation, showing the
existence of a minimum.
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Figure 5. Standard deviation of fitted peak frequencies vs. data number used in fitting.

3. Experimental Results and Data Processing

The characteristics analyzed above are found to be in good agreement with our experimental
results from a Brillouin optical time domain reflectometer (BOTDR). A narrow linewidth laser with
frequency shifted by acousto-optic modulator (AOM) was used as the probe in the experiment;
and a Brillouin fiber laser was used as the local oscillator for heterodyne detection, as described
in [7–9]. A 30 km long sensing fiber (SMF-28) was used in the experiments. The pulse width of the
probe was set up as 100 ns; digital signals were given by using a data acquisition card with a sampling
rate of 2 GS/s. Then, the Brillouin spectra were obtained by FFT with a frequency step of 1 MHz.
The spectra usually contain high-level noise, especially for the signals from longer fiber distances.
The frequency difference between Brillouin scattering from fiber and the local oscillation is typically
331 MHz in our BOTDR system.

The SNR can be enhanced directly by averaging M multiple traces, as SNR ∼ M1/2. Figure 6
gives the standard deviation of the fitted peak frequency versus the averaging number M, showing
behavior of σν ∼ 1/M1/2, consistent with Equation (6).

The frequency step is related to the pulse width of the laser probe, which is set for the optimal
spatial resolution. In this study, the spatial resolution is assumed to be not critical; the step can be
adjusted in FFT by changing the signal range in the time domain. Figure 7 gives an example of peak
frequency standard deviation versus frequency step, where the data are averaged over 10 traces of the
BOTDR signal, showing a square root relation as the analysis and simulation described.
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The FWHM obtained by the quadratic fitting is calculated for different data lengths by using the
same spectral signals from the returned wave at a position of 6 km, as shown in Figure 8. The curve is
calculated by averaging 10 traces, showing good coincidence with the simulated results of Figure 4.
A linear relation appears in the range larger than 50 MHz; the coefficients are obtained as p = 0.53,
q = 0.37; and the FWHM of Brillouin spectrum is estimated to be ∆νB = 32 MHz.
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Figure 8. Quadratic fitting linewidths ∆x vs. data length.

The data length used in the fitting is an important parameter which affects the variance of the
fitting peak frequency. Figure 9 shows the standard deviation of the fitted peak varied with the data
length, where multiple trace signals are used for data processing, and the two curves are for the
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different averaging numbers. The experimental data were obtained from the returned wave at a fiber
distance of 30 km. The data range is centered at the Brillouin peak obtained by averaging 10,000 traces,
giving the expected Brillouin peak. They resemble well the simulated curves in Figure 5.
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Figure 9. Standard deviation of fitted peak frequencies with data length used in fitting.

The effects of deviation of the data range’s center are verified experimentally. With the same
expected Brillouin peak as used in Figure 9, the frequencies and variances of the fitted peaks are
calculated for 100 averaged traces, as observed in Figure 10, and are in good agreement with the
theoretical analyses.
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Figure 10. Processing results of experimental data: (a) Deviation of fitted peak frequency from Brillouin
peak vs data range’s center deviation; (b) Standard deviation of fitted peak frequencies vs data range’s
center deviation.

4. Iterative Quadratic Fitting for BFS Measurement

Theoretical and experimental results show that the selection of the data range’s center directly
affects the accuracy of the extracted BFS. However, the measured data usually contain high noise and
the selected data range’s center in quadratic fitting often deviates from the optimization.

In this work, we propose an iterative quadratic fitting method to reduce the error of the extracted
BFS. It is composed of the following steps:

Step 1 Take the frequency at the maximum of the signal amplitude obtained by averaging of M traces
as the data range’s center xc. The averaging number M can be adjusted according to the signal
noise level.

Step 2 Carry out quadratic fitting for the averaged signal with a selected data range centered at xc.
A new peak frequency xnew is then obtained.
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Step 3 Replace xc by xnew and repeat Step 2 until the fitted peak converges to a stationary value.

Figure 11a shows the effect of the iterative quadratic fitting method where the experimental data
of BOTDR are used; results with two averaging numbers are displayed as examples. For the case of
averaging 80 traces at Step 1, the peak frequency convergence is obtained in only two iterations, while
five iterations are needed for averaging number of 10. It is noticed that the peak frequency estimated
at Step 1 may deviate largely from the converged peak frequency, even positively or negatively, due to
the randomness of noise. The two converged results have small differences between each other; this is
also due to the noise. To ensure convergence, the initial data center should be selected in the range
between two poles with positive slope in Figure 10a.
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Figure 11. (a) Fitted peak deviation vs iteration times and (b) standard deviation of fitted peaks vs
iteration times; (c) The BFS caused by temperature change is extracted by iterative quadratic fitting.

The effect of the iterative quadratic fitting method can also be examined using the standard
deviation of the fitted peak frequencies, as shown in Figure 11b, where the experimental data are
divided into multiple groups (e.g., 100–1000) with M traces in each, and the fitted peak is then
calculated for the multiple groups, giving the multiple results. It is seen that the standard deviations
decrease and converge as the iteration time increases. In practical applications, the iterations are
stopped when the fitted peak converges under a required accuracy.

Compared with the conventional fitting method, the iteration method requires fewer averaging
numbers for the same accuracy. In our system (Matlab 2016b, 4 CORE I7-4770S, 8 G RAM) the data
acquisition and FFT for each trace need 0.03 s, whereas a single quadratic fitting takes only 0.000017 s,
which can be negligible. For example, it takes 80 × 0.03 s = 2.4 s and 10 × 0.03 s = 0.3 s, respectively,
to get the two curves of Figure 11a. Obviously, the iteration method will improve system speed.
The same accuracy of the BFS by the iterative quadratic fitting is demonstrated experimentally in the
BOTDR temperature sensor, as shown in Figure 11c. A section of FUT was intentionally heated and the
detected signals are averaged over 200 traces with a 1 MHz frequency step. The extracted frequencies
converge at 333.9 MHz for a temperature of 26 ◦C and at 339.5 MHz for 32 ◦C after three iterations.
The obtained BFS of 5.6 MHz is almost the same as that obtained with Lorentzian fitting provided by
Matlab (5.5 MHz).

5. Discussions

In this work, we proposed a new formula for the minimum detectable peak frequency change. It is
in a similar form to that given by Ref. [3], but some different arguments are introduced in the deduction.

Firstly, the covariance of coefficients a and b are taken into consideration, which we think should
not be omitted, as shown in Equation (A5) of the Appendix A. The introduction of the covariance led to
Equation (A6), which gives a relation between the variance of the fitted peak frequency and the center
of the data range. Secondly, the center of the data range used in fitting relative to the Brillouin peak
is an important factor which will lead to an error in the fitted peak frequency. These characteristics
have an important influence on the accuracy of the BFS, since the selection of the data range’s center
is with some uncertainty due to high noise. To overcome such an effect, we proposed a method of
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iterative fitting. Thirdly, we noticed that the fitted linewidth of the quadratic curve depends on the data
length used in fitting. A linear equation of ∆x on ∆νB and xN was deduced theoretically and verified
experimentally. This relation is needed in deducing an exact formula for the minimum detectable peak
frequency change.

Equation (1) given by Ref. [2] is actually deduced from the quadratic approximation of the
Lorentzian curve near the peak frequency, y ≈ y0[1− 4(ν− νB)

2/∆ν2
B], where ∆νB is the FWHM of

the Lorentzian profile. The detected electrical signal V is proportional to y. The peak is determined by
its derivative ∂V/∂ν = 0, i.e., δV = 8V0(ν− νB)δνH/∆ν2

B → 0 , at the peak δV = 8V0δν2
H/∆ν2

B, where
δνH is the half width of peak uncertainty. For noisy data, the change of electrical signal depends on its
electrical signal-to-noise ratio δV/V0 = (SNR)−2. The full width of peak uncertainty is thus obtained
as δνB = 2δνH = ∆νB/(

√
2SNR1/4) = ∆νB/(

√
2SNR1/2

A ).
In the deduction of this formula, the frequency step d and the data number N used for the quadratic

fitting are not taken into consideration. The formula may be regarded as having the limitation of
d→ 0 and with Nd finite. In practice, the accuracy of the derivative calculation is surely dependent on
d and N. The simulation presented by Ref. [4] showed a relation of δνB ∝ d0.05/SNR1/4 by using 10,000
Monte Carlo simulations, which, we think, corresponds to the case of N → ∞ . Therefore, Equation (1)
seems to give a qualitative description in ideal cases, but may not be suitable for practical applications.

It is of note that the analyses in this paper are for Gaussian noise cases. Although the Gaussian
noise surely exists, other noise types need to be taken into consideration, such as noise induced by
laser sources and devices used in the system [10] and noise due to non-perfect extinction ratio [11].
For a BOTDR with heterodyne detection, the frequency noise and relative intensity noise (RIN) of both
the probe laser and the local oscillator are important noise. Besides this, the spectrum may deviate
from the strict Lorentzian, such as a convolution of Lorentzian and the pulse shape, as discussed in
Ref. [12]. Further studies are undertaken in our group.

Our study is mainly limited in applications of BOTDR; change of Brillouin linewidth, as in
the sensor based on stimulated Brillouin scattering, is not involved. It is believed that the analysis
presented in this paper is also useful for BOTDA applications, where the linewidth may be decreased
by Brillouin gain.

6. Conclusions

Formulas for Brillouin frequency shift extracted from the detected signals by quadratic fitting
were deduced strictly in detail. The variances of the fitted BFS and their relations with different
noise levels and the data range used in fitting were studied in both simulation and experiments. It is
indicated that deviation of data range’s center relative to the Brillouin peak will lead to errors in the
BFS measurement; the iterative quadratic fitting method was proposed and demonstrated to improve
the fitting accuracy. The formulas presented in previous publications and their contradiction with each
other were discussed and explained. The analyses and method are believed beneficial to understanding
issues in data processing based on quadratic fitting. Besides BOTDR, this method may be used in other
data processing which uses quadratic fitting, such as BOTDA, Raman spectroscopy, etc.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/18/2/409/s1,
Video S1: A simulation example of fitted peak and its STD vary with the data range.
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Appendix A. Variance of Fitted Peak Frequency

The least square of quadratic fitting requires f = ∑i [ax2
i + bxi + c− yi]

2 minimized for the
smallest fitting error. By ∂ f /∂a = 0, etc., coefficients a, b, and c have to obey the equations

βa + αb + Nc = u
γa + βb + αc = v
κa + γb + βc = w

(A1)

where α =
N
∑

i=1
xi, β =

N
∑

i=1
x2

i , γ =
N
∑

i=1
x3

i , κ =
N
∑

i=1
x4

i , u =
N
∑

i=1
yi, v =

N
∑

i=1
xiyi, w =

N
∑

i=1
x2

i yi; yi

are the spectral signal amplitudes; xi = x0 + id are the frequencies with an equal spacing of d;
and N is the total data number used in the fitting. The start point x0 of the fitting can be set to
zero without loss of generality. For the case of N � 1, the following approximations are valid:
α ≈ N2d/2, β ≈ N3d2/3, γ ≈ N4d3/4, κ ≈ N5d4/5.

The effect of noise on BFS retrieval can be deduced as follows. The peak frequency from

the quadratic curve is at xp = −b/2a, and the FWHM of the quadratic curve is ∆x =
√

2yp/|a|
with a peak amplitude of yp = c − b2/4a. The uncertainty of the peak frequency due to noise is
δxp = (−δb/b + δa/a)xp. The variance of δxp is then written as

σ2
ν = x2

p[
〈δa2〉

a2 − 2〈δaδb〉
ab

+
〈δb2〉

b2 ] =
x2

p

a2 [〈δa2〉+ 〈δaδb〉
xp

+
〈δb2〉
4x2

p
]. (A2)

The fitting coefficients, a, b, and c, and their fluctuations δa, δb, and δc due to noise, can be obtained
by solving Equation (A1), with noisy signals of yi = yi + δyi, and parameters in the forms u = u + δu,
v = v + δv and w = w + δw. The coefficient deviations δa, δb, and δc are linear functions of δu, δv,
and δw. For N � 1,

δa ≈ 30(N2d2δu− 6Ndδv + 6δw)/N5d4

δb ≈ −12(3N2d2δu− 16Ndδv + 15δw)/N4d3.
(A3)

The variances of δu, δv, δw and their co-variances can be written as

〈δu2〉 = 〈
N
∑

i=1
δy2

i 〉 = N〈δy2〉

〈δv2〉 = 〈d2
N
∑

i=1
i2δy2

i 〉 ≈ N3d2〈δy2〉/3

〈δw2〉 = 〈d4
N
∑

i=1
i4δy2

i 〉 ≈ N5d4〈δy2〉/5

〈δuδv〉 = 〈d
N
∑

i=1
iδy2

i 〉 ≈ N2d〈δy2〉/2

〈δuδw〉 = 〈d2
N
∑

i=1
i2δy2

i 〉 ≈ N3d2〈δy2〉/3

〈δvδw〉 = 〈d3
N
∑

i=1
i3δy2

i 〉 ≈ N4d3〈δy2〉/4

(A4)

where 〈δy2〉 = 〈
N
∑

i=1
δy2

i 〉/N is the variance of the optical signal in the frequency domain.

It is indicated by simulations that the approximations of the last expressions of Equation (A4) are
valid for large enough N. The variance of a and b can be deduced from Equations (A1) and (A3) as

〈δa2〉 = 180〈δy2〉/(N5d4)

〈δb2〉 = 192〈δy2〉/(N3d2)

〈δaδb〉 = −180〈δy2〉/(N4d3)

. (A5)
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By substituting |a| = 2yp/∆x2 the variance of the extracted BFS is then obtained as

σ2
ν =

3∆x4dσ2

x3
N

(
15
x2

N
x2

p −
15
xN

xp + 4). (A6)

Appendix B. Dependence of Fitted Linewidth on Data Length and Brillouin Linewidth

The dependence of the FWHM of fitted quadratic curve on data length and Brillouin linewidth is
deduced by using an integral approximation. The least square condition can be written as

f (a, b, c) =
∫ x2

−x1

[ax2 + bx + c− y(x)]
2
dx = min. (A7)

where y(x) = 1/(1 + 4x2/∆ν2
B) is the Lorentz-shaped curve without noise and with peak frequency

νB = 0 for convenience, ∆νB is the FWHM of the Lorentz-shaped curve; and −x1 ∼ x2 is the integral
interval. By ∂ f /∂a = 0, etc., coefficients a, b, and c are thus required to obey the equations

βa + αb + xNc = u
γa + βb + αc = v
κa + γb + βc = w

(A8)

where α, β, γ and κ =
∫ x2
−x1

xmdx, (m = 1,2,3,4); u, v, and w =
∫ x2
−x1

yxmdx, (m = 0,1,2). For simplicity,
we take the case without data range center deviation, i.e., x1 = x2; then, the integrals are deduced as
u = ∆νBθ, v = 0, w = ∆ν2

B(xN −∆νBθ)/4, α = γ = 0, β = x3
N/12, and κ = x5

N/80, where ρ = xN/∆νB,
θ = tan−1 ρ, and xN = x1 + x2. The fitted coefficient b = 0 is also obtained, meaning that the fitted
peak coincides with the Brillouin peak. The linewidth of the fitted quadratic curve is then given by

∆x2 =
2c
|a| =

2(βw− κu)
|uβ− wxN |

=
x2

N
6

θ(1 + 3ρ2/5)− ρ

θ(1 + ρ2/3)− ρ
. (A9)

By using Tailor expansions of θ ≈ ρ − ρ3/3 + ρ5/5 for ρ � 1 and θ ≈ π/2− 1/ρ for ρ � 1,
the linewidth can be expressed as

∆x ≈
{

∆νB(1 + 9x2
N/40∆ν2

B)/
√

2 (ρ� 1)
√

0.3xN + (8
√

0.3/3π)∆νB (ρ� 1)
. (A10)

The last expression can be written as ∆x ≈ 0.548xN + 0.465∆vB.
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