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ABSTRACT: Heuristic and machine learning models for rank-ordering reaction
templates comprise an important basis for computer-aided organic synthesis regarding
both product prediction and retrosynthetic pathway planning. Their viability relies
heavily on the quality and characteristics of the underlying template database. With the
advent of automated reaction and template extraction software and consequently the
creation of template databases too large for manual curation, a data-driven approach to
assess and improve the quality of template sets is needed. We therefore systematically
studied the influence of template generality, canonicalization, and exclusivity on the
performance of different template ranking models. We find that duplicate and nonexclusive templates, i.e., templates which describe
the same chemical transformation on identical or overlapping sets of molecules, decrease both the accuracy of the ranking algorithm
and the applicability of the respective top-ranked templates significantly. To remedy the negative effects of nonexclusivity, we
developed a general and computationally efficient framework to deduplicate and hierarchically correct templates. As a result,
performance improved considerably for both heuristic and machine learning template ranking models, as well as multistep
retrosynthetic planning models. The canonicalization and correction code is made freely available.

■ INTRODUCTION
Retrosynthesis, i.e., the proposal of precursors for a desired
product, and forward reaction prediction, i.e., the proposal of
possible products given a set of reactants, are central topics of
organic chemistry. With the surge of computer-aided reaction
prediction approaches, numerous models for retrosynthesis
based on heuristics1 and machine learning were developed,
such as rule- or template-based models,2−5 transformer models
adapted from natural language processing,6−10 or conditional
graph logic networks.11 Despite the limitations of template-
based approaches to generalize to new chemistries due to
missing templates, their ability to fully specify precursors and
to easily compare a proposed reaction to known reactions with
similar transformations makes them a useful and valuable tool
for synthesis planning software.1 Template-based models
usually take a molecule as input and propose a ranked list of
chemical transformations, often via flat multiclass classification.
Since the training of multiclass models becomes more difficult
with a larger number of classes,12 the performance of template-
based models is influenced by the number of templates, and
thus by their size, canonicalization, and exclusivity. Larger,
more specific reaction templates include more atoms around
the reaction center and only apply to a small number of
molecules. Smaller, more general templates are applicable to
more molecules and decrease the overall number of classes,
potentially increasing model performance. However, they may
lead to a large number of proposed precursors, some of which
may not be chemically meaningful. Finding the optimal size of
templates for an application is therefore an important and
often ambiguous, undetermined problem. In contrast, poorly

canonicalized templates (different templates describing the
exact same transformation on the same set of molecules) or
nonexclusive templates (different templates describing the
same chemical transformation on overlapping sets of
molecules) unnecessarily increase the number of templates,
thus adding noise to the data and should be avoided if possible.
However, data-driven approaches to retrosynthesis usually rely
on the automated extraction of reaction templates from
reaction databases, for example, via the open-source package
RDChiral.13 Such template sets are, by nature, not as well
curated and validated as manually crafted reaction rules. They
can contain duplicate and nonexclusive templates and may also
suffer from too large or too small template sizes. This
necessitates the development of efficient and scalable canon-
icalization and correction routines.
Despite these challenges, the effects of template size,

canonicalization, and exclusivity on model performance are
hardly investigated. A recent study on the influence of the
choice of data sets and template size found that smaller
templates lead to a lower top-1 prediction accuracy, despite
increasing model performance for multistep retrosynthesis and
increasing applicability,14 which is counterintuitive from a
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machine learning point of view (where fewer classes should
increase model accuracy). To the best of our knowledge, no
methodical studies of the effects of template exclusivity and
canonicalization have been published.
The aim of this study is therefore two-fold. First, we aim to

characterize and quantify the effects of template size,
canonicalization, and exclusivity on heuristic and machine
learning template-ranking algorithms for retrosynthesis and
forward prediction applications. Second, we aim to establish
new canonicalization and hierarchical correction algorithms to
remedy the two most important issues identified: duplicate and
nonexclusive templates. The resulting code is freely available
on Github.15,16

■ METHODS
Data Sets. This study relies on two data sets, which were

both prepared from reactions extracted from the United States
Patent and Trademark Office (USPTO) by Lowe and
coworkers.17,18 First, a subset of 50,000 pharmaceutically
relevant reactions, curated by Schneider et al.19 and employed
in a variety of previous studies,1,5 was used as provided by ref 1
and the preprocessing steps described therein. Second, a set of
480,000 USPTO reactions collected for forward reaction
prediction20 and employed in various studies21,22 was utilized.
This data set was further processed by removing molecules
from the reaction that did not contribute a heavy atom to the
product (code from ref 5), as well as removing reactions with
more than one product molecule.
For both data sets, templates in the retrosynthetic direction

were extracted via the RDChiral Python package13 with default
settings (radius 1 and inclusion of certain special groups), as
well as at radius 3, 2, 1, and 0 without any special groups after
modifying the code slightly.23 Leaving groups were included in
all extracted templates. Only reactions yielding a valid
SMARTS string as template, as well as reproducing the
reactants after application to the products, were kept, yielding
48,531 reactions in the smaller data set, termed USPTO-50k
throughout the remainder of this article, as well as 461,541
reactions for the larger data set, termed USPTO-460k.
Templates for forward reaction prediction were obtained by
simply reversing the direction of change of the retro templates.
Since RDChiral is designed to extract templates in the
retrosynthetic direction and imposes certain chirality re-
strictions which are only meaningful in that direction, reversing
the templates may make them less general than necessary. As
this study is primarily concerned with the relative effects of
canonicalization and exclusivity, the forward (reversed
retrotemplates) were not sanitized further.
Model Details. Each data set was split into training,

validation, and test reactions via a random 80%/10%/10%
split. Three different models were then trained to recommend
templates which reproduce the observed reaction at high ranks.
Either the product molecule was employed as input for the task
of predicting retrosynthetic disconnections or the reactant
molecule(s) for the task of predicting the reaction outcome in
the forward direction. First, the heuristic template ranking
procedure described in ref 1 was utilized as a baseline (referred
to as “Sim”), which ranks precedent reactions based on
Tanimoto similarities of Morgan fingerprints,24 as imple-
mented in RDKit.25 Second, a neural network, similar to the
baseline model in ref 5 was trained on Morgan fingerprint bit
vectors of the products or reactants (referred to as “ML-
fixed”). Lastly, a graph convolutional neural net, Chemprop,26

was employed to encode a molecule and predict a template
class (referred to as “ML-learned”). This model does not rely
on precomputed fingerprints, but creates its own, task-specific
learned embedding of the molecule via a directed message
passing neural net, which is then followed by a standard feed
forward neural net. Further details on each model and their
hyperparameters are given in the Supporting Information.
For each model, the number of applicable templates in the

top-N ranked templates, as well as the top-N accuracy, were
calculated. A recent study found that top-N accuracy should
not be used as a single metric to evaluate the fitness of a
template ranking model and should instead be accompanied by
a measure of template applicability, as well as the ability of the
model to produce viable synthetic routes for target products.14

Therefore, the number of applicable templates recommended
by each model was analyzed in addition to top-N accuracy, i.e.,
the number of templates that produce any valid precursor or
product. In our top-N accuracy metrics, two different
definitions of success were considered. Most machine learning
models define success as recommending the exact template
associated with a test reaction in the data set. Less commonly,
success can be defined via recovering the actual molecules in
the test reaction (precursors or products, depending on the
direction of the template) after application of the recom-
mended template. If all templates are mutually exclusive, both
metrics of success yield the exact same results, which is highly
desirable but often not achieved in practice, as shown later in
this article. Below, metrics based on the “exact template”
criterion are labeled T and those based on “exact precursors”
or “exact product” are labeled P.
We furthermore retrained the policy neural network of the

Monte Carlo tree search retrosynthesis planner AiZynth-
Finder27 with the reactions and templates from the current
study to evaluate the ability of different template sets and their
corresponding template recommendation models to create
synthetic routes. Default parameters were used as described in
ref 27, where we only retrained and utilized the policy model,
not the filter model. The processed template and model files
are available on Github.15

Canonicalization of Templates. Canonicalization of a
template is a process that generates a unique string
representation of the chemical transformation, which typically
consists of a pair of SMARTS connected by the atom mapping.
Due to the uniqueness of the canonical form, this process is
crucial in template indexing and deduplication. The problem is
a generalization of canonicalization of SMILES/SMARTS and
mathematically equivalent to computing the canonical form of
a graph.28,29 The problem is NP, but its exact time complexity
is still unknown.30−33 In this section, instead of discussing the
exact solutions, we attempt to present a practical, open-source
approach to the template canonicalization problem and discuss
its limitations and alternative solutions. We furthermore note
that we only attempt to canonicalize templates as output by
RDChiral, which significantly simplifies the task, since
RDChiral only produces simple SMARTS patterns without
negations, recursions, or wildcards. For comparisons between
more complex SMARTS patterns, we refer the interested
reader to the seminal work of Rarey and coworkers on
detecting equality and hierarchy between SMARTS pat-
terns.34,35

Compared to the SMILES canonicalization problem, the
template canonicalization problem has two major differences:
(1) A template comprises reactant and product SMARTS, in
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other words, two graphs instead of one. (2) The two graphs
are further connected through the atom mapping. Hence, it is
natural to merge the two graphs into one condensed graph36 if
two nodes have the same atom mapping number. Here, we
note that standardizing the atom mapping is also necessary to
produce a unique representation.
The key to the canonicalization problem is the node ranking

algorithm, which computes the canonical rank of each node or
atomic query in SMARTS for this particular problem. We
adopted the Weisfeiler−Lehman refinement37 as our ranking
method. It iteratively relabels each node v ∈ V on the graph
G(V, E) using the features from the node v itself and its
neighbors v( ), until the partition of all the labels becomes
stable or the cycles are repeated at least |V| times, where |V| is
the number of nodes. We chose node degree and canonical
atomic SMARTS without the atom mapping number as the
node features and bond SMARTS as the edge features, both
with chirality included. Since the condensed graph was
employed, the node features from the reactant and the product
graphs were simply concatenated if they shared the same atom
mapping number. In addition, a tie-breaking tag was also
included. A detailed explanation of the canonicalization
process is given in the Supporting Information.
A major limitation in our algorithm is the ranking method

itself, which is equivalent to the 1-dimensional Weisfeiler-
Lehman refinement, and cannot distinguish certain highly
symmetric graphs.33,38,39 As a consequence, our canon-
icalization algorithm may not produce a unique representation
for some templates. Despite this limitation, it does not affect
this study because a) the number of nonunique representations
is very small and b) the template correction algorithm applies a
subgraph isomorphism test to compute the hierarchy. The
frequency of nonunique representations can be further reduced
by including more heuristic invariants,33 e.g. as the ones used
in RDKit.28 If it is required to guarantee the uniqueness of the
template string, the Weisfeiler-Lehman refinement needs to be
replaced by a more general graph canonicalization algorithm
with the price of potentially higher time complexity, e.g. the
nauty algorithm.40

In the end, we note that our current implementation of the
canonicalization algorithm in the RDChiral C++ package16

only supports the And operator in atomic SMARTS query,
which is sufficient to canonicalize template patterns output by
RDChiral. However, it should be possible to extend our code
to support other SMARTS queries or use a more general
SMARTS comparison algorithm such as SMARTScom-
pare.34,35 We furthermore note that the C++ version16 of
RDChiral is only used for template canonicalization; in all
other parts of the workflow, we used a modified RDChiral
Python package.23

Hierarchical Correction of Templates. In a manual
examination of the extracted templates, we found that
nonexclusivity of templates can stem from multiple sources.
With the default template extraction parameters of RDChiral
(radius 1, with special groups), for example, templates are
extracted around the reactive center up to one bond away, and
further atoms are attached if they match a set of expert-crafted
special groups. Multiple reactions might thus yield templates
with the same chemical transformation within the same context
up to radius 1 but might include different, or no, special
groups. A number of examples can be found in the Supporting
Information, Figure S1. If a set of templates includes one
instance without special groups and one with a special group,

the templates are not mutually exclusive anymore; i.e., the
template without the special group is applicable to all other
reactions with the same template at radius 1. Templates at
large radii, especially at radius 2 and 3, can furthermore be
nonexclusive if some of the reactions they were extracted from
contained a branched side chain. An example is given in Figure
1, where the left abstracted structure fits the same and more

molecules than the right abstracted structure. Therefore, the
template on the right possesses a subgraph which is isomorphic
to the template on the left, and only the more general template
should be kept. Further examples of this behavior are given in
the Supporting Information, Figure S2. If templates describe
the same transformation on an overlapping set of molecules, as
in Figure 1, mutual exclusivity can be enforced by keeping only
the most general template. To identify the template
encompassing all relevant reactions, subgraph isomorphisms
need to be calculated between pairs of templates. Due to the
computational inefficiency inherent to subgraph isomophism
evaluations, an exhaustive comparison of all possible pairs of
templates in a set is unfeasible; instead, we developed a
hierarchical alternative which narrows down the number of
necessary subgraph searches. Toward this aim, we utilized
RDKit to detect subset relations between templates output by
RDChiral, which only comprise simple SMARTS patterns. For
a comparison of more complex SMARTS patterns, packages
such as SMARTScompare34,35 may be employed. We further
note that an exhaustive comparison of all templates in a set can
result in unwanted matches for templates with different
reaction centers (example shown in the Supporting Informa-
tion), which is circumvented by our hierarchical approach as
explained in the following.
Figure 2 schematically depicts how the hierarchical

correction algorithm detects and eliminates nonexclusive
templates. Templates at the desired level of specificity (with
SMARTS strings B1−B6, red shades), for example, at radius 1,
are clustered according to their respective templates at a lower
level of specificity (with SMARTS strings A1, A2, and A3, gray
shades), for example, at radius 0. The general templates (gray)
are only used to group the more specific templates and thus
lower the number of subgraph isomorphism evaluations but
are not taken into account beyond that. The grouping also

Figure 1. Example of a template (right) with a subgraph that is
isomoporphic to another template (left). Within the correction
algorithm, only the left template is kept, since it encompasses all
possible reactions of the right template.
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makes a comparison of atom map number between the
matches obsolete because it enforces that the same chemical
transformation is encoded in each template pair. Furthermore,
templates extracted by RDChiral follow a specific syntax,
where more strict SMARTS strings are assigned to atoms in
the reaction center and more general SMARTS strings to all
other atoms,13 which ensures that the correct substructures of
a pattern are matched to each other without inspecting atom
map numbers. For templates extracted with different software
packages, we recommend including a matching of the atom
map number in each subgraph isomorphism search and
clustering according to the minimal, most general template/
reaction center. Within each cluster, subgraph isomorphisms
are calculated between pairs of templates, leading to a tree
structure of subgraph isomorphism relationships as depicted in
the third column in Figure 2. For example, for templates in the
A1 group, B1 is more general than both B2 and B3 and
encompasses both of them. Thus, only B1 is kept. The second
group, A2, contains only a single template, and is kept as is.
The third group, A3, contains two templates that do not
encompass each other, i.e., are unique, so both B5 and B6 are
kept. In practice, a combination of these cases can occur,
leading to more complex trees. To further lower the
computational load, subgraph comparisons do not need to
be exhaustively calculated between all templates in a group.
Instead, the trees are built iteratively, where a new template is
only compared to the current most general template(s) but not
to templates already labeled as nonexclusive or duplicates.
Further details of the hierarchical correction algorithm, as well
as a pseudocode representation, are given in the Supporting
Information. We note that an analogous, pairwise comparison
algorithm can furthermore be easily implemented via other
SMARTS pattern comparison algorithms. The hierarchical
correction code used in this study is available on Github.15

In the following, “corrected templates” indicates that
template sets were pruned according to the hierarchical
correction algorithm. Radius 1 templates were corrected first
with clustering at radius 0; then, default and radius 2 templates
were corrected with clustering at corrected radius 1. Finally,
radius 3 templates were corrected with clustering at corrected
radius 2. Since the templates at radius 0 cannot be corrected
with the developed algorithm, proper canonicalization is
especially important at radius 0; otherwise, errors propagate

up the hierarchical scheme, where the clustering does not
correctly group together all relevant templates.
One may argue that the exclusivity issues, at least for default

templates (at radius 1 with special groups), could be resolved
by omitting some or all special groups. However, the
hierarchical correction features a useful side effect for this
class of templates. Namely, special groups which are not
important in a specific chemical transformation according to
the database, i.e., which are not specified in all reactions, are
removed automatically. On the other hand, special groups that
are important (one special group occurs in all reactions or
different special groups occur exclusively) or special groups in
rare templates (with only one reaction precedent) are kept.
Thus, the inclusion of special groups is handled automatically
based on the context around the reaction center as extracted
from a set of reactions and does not depend on an a priori
choice, such as to remove selected special groups to allow for
more general templates.
Furthermore, an alternative path to enforce exclusivity was

explored, namely, to specify the number of hydrogen atoms for
each template atom, which solves some of the issues
encountered at radius 2 and 3 due to branched versus linear
side chains. However, this decreased model performance and
template applicability considerably (data shown in the
Supporting Information) and did not resolve a number of
nonexclusivity issues, for example, due to special groups, so
this approach was not pursued further.

■ RESULTS AND DISCUSSION

In order to assess the effects of duplicate and nonexclusive
templates on the performance of template ranking algorithms,
it is necessary to first create a clean set of templates. To clear
out duplicates, the newly developed iterative canonicalization
process for SMARTS templates extracted with RDChiral was
applied. To filter out nonexclusive templates, our novel
hierarchical correction scheme was utilized to arrive at
exclusive template sets.
We now explore the effects of canonicalization and

correction on the number and popularity of unique templates,
as well as the performance of template ranking algorithms.

Popularity and Number of Unique Templates. Figure
3 depicts the number of templates as a function of data set size,
calculated on the USPTO-460k data set and subsets thereof.
More specific templates extracted at larger radii naturally yield
a larger number of extracted templates for a given data set. For
the largest templates studied (radius 3, with no correction, no
canonicalization, labeled “reg Radius 3”), about every second
new reaction leads to a new template, whereas only every
twentieth reaction actually encodes a new transformation,
visible from the number of templates at radius 0. Since the
accuracy of a machine learning template recommendation
scheme usually suffers from a large number of templates
(corresponding to a large number of classes in the multiclass
classification task), it is desirable to keep the number of
templates as low as possible, without sacrificing chemical
plausibility of the recommended reactions. Additionally, it is
desirable to keep the number of templates associated with only
one or a few reactions as low as possible, since the ability of
machine learning models to recommend such rare templates is
usually low.5 Figure 4 depicts the popularity of the extracted
templates from USPTO-50k and USPTO-460k for different
template sizes. More general, smaller templates lower the

Figure 2. Schematic depiction of the hierarchical correction
algorithm. Templates are clustered using a general template
representation (for example, templates B1−B3), and subgraph
isomorphisms are computed within each cluster to identify the
most general, exclusive patterns (for example, B1). Templates with a
more general parent within a cluster are then replaced.
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fraction of rare templates occurring only once in the whole
data set, especially for the smaller USPTO-50k data set.
Figures 3 and 4 furthermore depict the influence of

hierarchical template correction (labeled “cor”) and canon-
icalization (labeled “can”). The correction procedure lowers
the number of unique templates as well as lowers the number
of rare templates. For default RDChiral templates (radius 1 +
special groups), the correction scheme removes most of the
special groups. Without the correction schemes, the extracted

templates contain many duplicates (same transformation, but
encoded as different SMARTS string), so that canonicalization
decreases the number of unique template strings (top panel in
Figure 3). After hierarchical correction, canonicalization does
not change the number of templates considerably for radii
larger than 0; i.e., there is nearly no difference between
corrected, “cor”, and canonical corrected “can-cor” templates.
Since duplicates at radius 0 can propagate up the hierarchical
correction scheme, ideally canonicalization and correction are
combined (“can-cor”).
From the absolute number of templates, and the number of

reactions associated with each template, we can thus conclude
that the hierarchical correction scheme not only efficiently
reduces the overall number of templates but also the fraction of
templates associated with only a single reaction. If a
hierarchical correction is not possible or wanted, canonicalizing
templates is an alternative, cheaper possibility to decrease the
overall number of templates, but to a much smaller extent.

Influence of Template Characteristics on Model
Performance. In the following, we examine the model
performance of the similarity, ML-fixed, and ML-learned
model across different template sizes, correction, and canon-
icalization schemes. The ranking ability of a model was
evaluated via top-N accuracy, where the fraction of test
reactions correctly recovered in the top-N ranked suggestions
is measured. Two different success criteria were employed,
namely, recommending either (a) the exact template extracted
for a test reaction or (b) the exact molecules in the test
reaction produced by template application. For a set of
exclusive templates, these definitions lead to identical results,
but a discrepancy arises for nonexclusive templates, where
different templates lead to the same outcome, thus rated as
success when comparing outcomes but as failure when
comparing templates. We use this discrepancy as a measure
of nonexclusivity in the following.
Figure 5 depicts the top-5 accuracies across the different

models, template sizes, correction/canonicalization, and
success criteria. The bars with darker shade correspond to
success via identical templates and the bars with lighter shade
to success via reaction outcome after template application, so

Figure 3. Comparison of the number of templates (top, regular and
canonical; bottom, hierarchically corrected and canonical + corrected)
per number of reactions for subsets of the UPSTO-460k data set. The
“cor” and “can-cor” curves overlap on this scale.

Figure 4. Histogram of number of reactions associated with each template for different template sizes and canonicalization/correction schemes for
USPTO-50k (top) and USPTO-460k (bottom).
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that the visible lighter area quantifies the effects of
nonexclusive templates. For all models and correction/
canonicalization schemes, smaller template sizes lead to higher
model performance. Correction/canonicalization increases
model performance for both evaluation criteria but especially
for success defined via identical templates, where the
hierarchical correction remedies the effects of nonexclusive

templates and boosts model performance across all models for
default, radius 2, and radius 3 templates. We furthermore note
that the ML-fixed model performs equally well or better than
the ML-learned model across all systems and outperforms the
similarity model for some systems only after template
correction. The ML-learned model performs especially poorly
for large sets of templates, for example, uncorrected templates

Figure 5. Top-5 accuracies of proposed retrosynthetic disconnections (top) and forward predictions (bottom) for the USPTO-50k data set using
the “sim”, “ml-fixed”, and “ml-learned” models. The darker shade in a bar corresponds to evaluation via comparing templates and the lighter shade
to comparing precursors or products. Each set of four bars shows the effects of canonicalizing (“can”) or hierarchically correcting (“cor”) the
regular uncorrected templates (“reg”) or both (“can-cor”).

Figure 6. Dependence of top-N accuracies of proposed retrosynthetic disconnections (top) and forward predictions (bottom) on the template
scheme for the USPTO-50k data set, ML-fixed model. Here, “reg” corresponds to uncorrected and “can-cor” to canonical and corrected templates.
P means evaluated by precursors or products (continuous line); T means evaluated by template match (dashed line).
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at radius 3 or 2 or at radius 1 with special groups and thus
classification tasks with a large number of classes. The ML-
learned model is faced with a more difficult learning objective
than the ML-fixed model since it learns both the molecular
embedding from the molecular graph and the template class
from the embedding, as opposed to the ML-fixed model, which
only learns the latter. Both the larger number of parameters
and the additional task make the ML-learned model more
prone to overfitting, which requires more data to find a
meaningful relation between a template and a molecular graph.
For template sets with a large number of classes, most
templates are only associated with a single reaction, so that the
data are insufficient to learn a meaningful molecular
embedding (see SI for further details). The ML-learned
model therefore profits greatly from template correction. The
positive effects of template correction are larger for both
machine learning models than for the heuristic model, which is
to be expected from the reduction of classes and thus a more
effective training of classification models. Top-N accuracies for
N = 1 and N = 50 are shown in the Supporting Information, as
well as similar figures for the USPTO-460k data set. Figure 6
depicts top-N accuracies for different values of N for the
uncorrected templates (“reg”) and canonical + corrected
templates (“can-cor”) across different template sizes for the
ML-fixed model. For regular templates, the discrepancy
between success via templates (dashed) and success via
outcomes (continuous) is very large for default, radius 2, and

radius 3 templates and hampers model performance. Canon-
icalizing and correcting the templates hierarchically resolves
the discrepancies, which boosts model performance consid-
erably. Similar trends were identified for the USPTO-460k data
set (Supporting Information), although the performance
increase is not as large.
Canonicalizing and correcting templates thus offers a simple

and accessible route toward smaller, more efficient template
sets. But which template size is ideal? From Figure 5, one may
conclude that the smaller the template is, the higher the model
performance is. However, this evaluation does not take into
account the number of produced precursors. For large radii,
the application of a template usually produces a single (or no)
reaction outcome. In contrast, small templates tend to produce
a large number of reaction outcomes. For example, if the top-
ranked template produces three precursors, and one of them
coincides with the true reaction outcome, the three suggestions
are not inherently ranked and should count toward top-1
accuracy only in 33.3% percent of cases. Figure 7 compares the
observed top-N accuracies after accounting for this effect,
namely, averaging the ranks over the produced outcomes
(right) instead of simply checking whether the correct
outcome was produced at a specified rank (left). In that
case, templates at radius 0 become undesirable for both
forward and retro models, as their top-1 accuracy drops
considerably below default and radius 1 templates. A similar
behavior was found for USPTO-460k (Supporting Informa-

Figure 7. Top-N accuracies of proposed retrosynthetic disconnections (top) and forward predictions (bottom) for the USPTO-50k data set,
canonical-corrected templates, ranking via the ML-fixed model. Left: ranking via the number of templates. Right: ranking via the number of
precursors.
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tion). We therefore recommend the use of default templates
together with the canonicalization and correction schemes
developed in this study. Templates at radius 1 lead to an
acceptable performance, too, but we do not recommend them
as unequivocally due to the following reasons. The hierarchical
correction of default templates enables an automated pruning
of special groups without an a priori, expert-guided selection.
Since some special groups in RDChiral are necessary for a
correct processing of stereochemistry,13 simply removing all
special groups to arrive at radius 1 templates may have
undesired side effects. The correction scheme only removes
special groups which are not necessary or unique, i.e.,
correspond to a transformation that can be described fully
and without information loss by another, more general
template. It thus constitutes a more general, data-driven
approach to select important special groups, while keeping the
set of templates as small as possible.
Interestingly, canonicalization and correction do not

exclusively boost the performance of machine learning ranking
models, which was expected since their training loss relies on
the assumption that classes are mutually exclusive. Rather, the
performance of the heuristic ranking model increases too,
despite the fact that the heuristic ranking algorithm is not
affected by template characteristics at all. This is a direct effect
of the increased applicability of canonical and corrected
templates. Figure 8 depicts the fraction of the five highest
ranked templates that are applicable to the input molecule, i.e.,
produces one or more reaction outcomes. Applicabilities for
the top-1 and top-50 templates, as well as for the USPTO-460k
data set, are shown in the Supporting Information. For both
forward and retro models, the hierarchical correction scheme
significantly increases the applicability of default, radius 2, and
radius 3 templates. We note that the ML-fixed algorithm

performs best in ranking applicable templates highest, across all
template sizes.

Comparison to Other Template Ranking Models. As
shown in Table 1, without any optimization of the model, the
performance boost due to correction (retrosynthesis direction,
default templates) leads our simple machine learning model to
outperform the template-based models NeuralSym2 and
Retrosim1 in top-N accuracy for all N, as well as GLN11 for

Figure 8. Fraction of applicable templates of the five highest ranked templates of proposed retrosynthetic disconnections (top) and forward
predictions (bottom) for the USPTO-50k data set using the “sim”, “ml-fixed”, and “ml-learned” models. Each set of four bars shows the effects of
canonicalizing (“can”) or hierarchically corecting (“cor”) the regular uncorrected templates (“reg”) or both (“can-cor”).

Table 1. Comparison of Performance of ML-Fixed Model
(Evaluation via Template Identity) Trained on Default
Templates with and without Correction and
Canonicalization to Performance of Selected Retrosynthesis
Models in Literaturea

Top-N accuracy (%)

Model N = 1 N = 3 N = 5 N = 10

This work, reg 34.4 51.4 57.8 63.7
This work, can-cor 46.4 68.2 76.0 82.9
NeuralSym2 44.4 65.3 72.4 78.9
G2Gs43 48.9 67.6 72.5 75.5
RetroXPert44 50.4 61.1 62.3 63.4
SCROP45 43.7 60.0 65.2 68.7
LV-Transformer46 40.5 65.1 72.8 79.4
DualTF47 53.6 70.7 74.6 77.0
Retrosim1 37.3 54.7 63.3 74.1
GLN11 52.5 69.0 75.6 83.7
DualTB47 55.2 74.6 80.5 86.9
GraphRetro41 53.7 68.3 72.2 75.5
MEGAN42 48.1 70.7 78.4 86.1
RetroPrime48 51.4 70.8 74.0 76.1
AT (100x)10 53.2 80.5 85.2

aData from refs 41 and 42, USPTO-50k.
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N ≥ 5. Compared to semitemplate based models, this work
outperforms the models G2Gs43 and RetroXPert44 for N ≥ 3,
as well as GraphRetro41 for N ≥ 5. The template-free models
SCROP45 and LV-Transformer46 are outperformed for all N,
as well as DualTF47 and RetroPrime48 for N ≥ 5 (data from
refs 41 and 42, USPTO-50k). Only the current state-of-the-art
models DualTB,47 MEGAN,42 and AT (100x)10 yield better
performances. Without correction, the employed model
outperforms none of the mentioned models, highlighting the
power and influence of the developed template correction
algorithm. A full table for top-N accuracies and applicabilities
for all investigated systems is given in the Supporting
Information.
Influence of Template Characteristics on Retrosyn-

thesis Performance. To showcase the influence of
deduplication and exclusivity of template sets on computer-
aided retrosynthesis platforms, we retrained the policy network
of AiZynthFinder14,27 using the regular and canonical-
corrected template sets of USPTO-50k and USPTO-460k.
The canonical-corrected template sets lead to higher top-N
accuracies, as well as faster training of the policy network, as
shown in Table 2. We then used the retrained policy network
to perform a Monte Carlo tree search-based retrosynthesis
pathway search for the 100 ChEMBL compounds used as the
benchmark in ref 27, for which AiZynthfinder trained on 1.2 M
reactions from USPTO produced valid pathways for 55
compounds.27 For USPTO-50k, we found pathways for 34
and 41 molecules for the regular and canonical-corrected
template sets, respectively. For USPTO-460k, we found
pathways for 42 and 52 molecules for the regular and
canonical-corrected template sets, respectively, as shown in
Table 2. Correcting template sets for duplicates and
nonexclusive templates therefore not only considerably
increases the performance of single-step retrosynthesis models
as highlighted in previous sections but also for multistep
retrosynthesis approaches. With only 460,000 reactions, we
obtain nearly the same amount of resolved pathways as the
models trained on 1.2 M reactions in ref 27. We note that the
canonical-corrected template sets describe the exact same
chemical transformations as the regular template sets. The
performance boost therefore comes solely from a better
template ranking, and thus a better policy in the Monte Carlo
tree search, highlighting the importance of the presented
template correction algorithm. The processed template and
model files are available online.15

■ LIMITATIONS
We note that although the presented template correction and
deduplication approach increases model performance for
reaction prediction, as well as single-step and multistep

retrosynthesis considerably, it suffers from the same problems
as all template-based approaches.
Namely, templates small enough to efficiently train

recommendation models may miss important functional
groups further away from the reactive center, which are
necessary for the reaction to proceed. Some of these relations
might be learned by the template recommendation model but
often only to a very general extent. We note that the template
canonicalization and correction approach developed in this
study does not introduce new, more general templates to a set
but instead removes more specific or duplicate templates that
are already covered by the set. This might remove information
about functional groups further away from the reaction center
for some templates but only if the reaction is also known to
proceed without these functional groups.
A further general limitation of template-based models is

their inability to learn or explore transformations unknown to
the template set. Also, correct atom mappings of reactions are
an important prerequisite for template extraction, which can be
cumbersome to create.
Template-free retrosynthesis approaches45−47 alleviate some

of these limitations but introduce others, such as limited
interpretability as to why a specific transformation was
suggested or which known reactions correspond to a suggested
transformation. We therefore believe that even given the
limitations of template-based approaches, it is still worthwhile
to extend, optimize, and explore template-based retrosynthesis
and forward prediction, alongside template-free approaches.

■ CONCLUSION
We developed new canonicalization and hierarchical template
correction algorithms as well as systematically studied the
influence of template size, canonicalization, and exclusivity on
the performance of various template-ranking algorithms. We
find that duplicate and nonexclusive templates significantly
impact the performance of all models across different template
sizes for reaction prediction, single-step retrosynthesis, and
multistep retrosynthesis. The number of nonexclusive
templates is especially high in templates including special
groups or large radii. Large performance boosts in both
applicability and top-N accuracy for machine learning and
heuristic models, as well as multistep retrosynthesis ap-
proaches, can be achieved by hierarchically correcting template
sets for exclusivity. Smaller increases in performance can also
be achieved by canonicalizing templates. The correction
algorithm can furthermore be used to prune unnecessary
special groups from templates automatically, which reduces the
need of human interaction, and is thus an important step
toward the automated curation of high-quality, exclusive,
template sets.

Table 2. Performance of Policy Neural Network and Retrosynthesis Search of a Retrained AiZynthfinder Model Using
Template Sets Reported in This Studya

USPTO-50k reg USPTO-50k can-cor USPTO-460k reg USPTO-460k can-cor

Policy model
Top-10-accuracy (%) 83.9 88.5 87.5 89.2
Training time per epoch (s) 2 1 63 40

Retrosynthesis search
Resolved pathways 34 41 42 52
Search time per pathway (s) 69 62 65 58

aRegular or canonical-corrected templates in the retrodirection from USPTO-50k or USPTO-460k.
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■ DATA AND SOFTWARE AVAILABILITY
The hierarchical correction code is available as a Python
package on Github,15 along with the processed USPTO-50k
and USPTO-460k data sets as CSV files and the complete set
of Python scripts to reproduce all results in this study. The
repository furthermore contains the AiZynthFinder template
sets and policy models for USPTO-50k and USPTO-460k.
The canonicalization code is available on Gitlab16 as part of the
RDChiral C++ package. The modified RDChiral version to
produce radius 0−3 templates without special groups is
available on Github.23
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