Boron Chemistry

Approaching a "Naked" Boryl Anion: Amide Metathesis as a Route to Calcium, Strontium, and Potassium Boryl Complexes

Andrey V. Protchenko, Petra Vasko, M. Ángeles Fuentes, Jamie Hicks, Dragoslav Vidovic, and Simon Aldridge*

Abstract

Amide metathesis has been used to generate the first structurally characterized boryl complexes of calcium and strontium, $\left\{\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{2} \mathrm{~N}\right\} \mathrm{M}_{\{ }\left\{\mathrm{B}(\mathrm{NDippCH})_{2}\right\}(\text { thf })_{n}(M=\mathrm{Ca}, n=$ 2; $M=S r, n=3$), through the reactions of the corresponding bis(amides), $\quad M_{\{ }\left\{N\left(S i M e_{3}\right)_{2}\right\}_{2}(\text { thf })_{2}, \quad$ with $\quad(\text { thf })_{2}$ Li$\left\{B(\mathrm{NDipp} \mathrm{CH})_{2}\right\}$. Most notably, this approach can also be $\left\{B(\mathrm{NDippCH})_{2}\right\}$. Most notably, this approach can also be applied to the analogous potassium amide $K_{\{ }\left\{\left(\mathrm{SiMe} e_{3}\right)_{2}\right\}$, leading to the formation of the solvent-free borylpotassium leading to the formation of the solvent-free borylpotassium dimer $\left[K_{\{ }\left(B(\mathrm{NDippCH})_{2}\right\}\right]_{2}$, which is stable in the solid state at room temperature for extended periods (48 h). A dimeric structure has been determined crystallographically in which the K^{+}cations interact weakly with both the ipso-carbons of the flanking Dipp groups and the boron centres of the diazaborolyl heterocycles, with $K \cdots B$ distances of >3.1 Å. These structural features, together with atoms in molecules (QTAIM) calculations imply that the boron-containing frag(QTAIM) calculations imply that the boron-containing frag- ment closely approaches a limiting description as a "free" boryl anion in the condensed phase.

B$\boldsymbol{B}_{\text {oryl }}$ (or "boranyl") anions, $\left[\mathrm{BX}_{2}\right]^{-}$, featuring an electronic sextet at boron, ${ }^{[1,2]}$ were long targeted as synthetic reagents offering the possibility for "umpolung" nucleophilic reactivity at boron. Such systems are isoelectronic with charge neutral carbenes, $\mathrm{CX}_{2}{ }_{2}^{[3]}$ and the molecular design features which led to the isolation of the first anionic boryl nucleophiles resemble closely those employed for the stabilization of N heterocyclic carbenes (i.e. containment within a five-membered heterocycle, use of electronegative but π-donating $\alpha-\mathrm{N}$ substituents and high steric loading in the vicinity of the boron/carbon centre). ${ }^{[4,5]}$
[*] Dr. A. V. Protchenko, Dr. P. Vasko, Dr. M. Á. Fuentes, Dr. J. Hicks, Dr. D. Vidovic, Prof. S. Aldridge
Inorganic Chemistry Laboratory, Department of Chemistry
University of Oxford
South Parks Road, Oxford, OX1 3QR (UK)
E-mail: simon.aldridge@chem.ox.ac.uk
Dr. P. Vasko
Department of Chemistry, Nanoscience Center University of Jyväskylä P. O. Box 35, 40014 Jyväskylä (Finland)

- Supporting information and the ORCID identification number(s) for the author(s) of this article can be found under: https://doi.org/10.1002/anie.202011839.
© 2020 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
 On On Line Library
systems analogous to recently reported potassium aluminyl compounds (e.g. X) are, to our knowledge, unknown. ${ }^{[10]}$

Metathesis reactions of group 2 metal amides have been widely employed in the formation of $\mathrm{M}-\mathrm{E}$ bonds (e.g. in the synthesis of solvent-free dimethylcalcium by Anwander et al.), ${ }^{[11]}$ and have been elegantly exploited in catalytic processes leading to a range of hydro-elementation reactions. ${ }^{[12]}$ Hill and co-workers have also exploited a similar exchange process in the formation of $\mathrm{Mg}-\mathrm{B}$ bonds from a $\mathrm{Mg}-\mathrm{C}$ bonded precursor and $\mathrm{B}_{2} \mathrm{pin}_{2} \quad$ (pin $=$ $\left.\mathrm{OCMe}_{2} \mathrm{CMe}_{2} \mathrm{O}\right),{ }^{[9 b]}$ With this in mind, we perceived that the reactions of amide derivatives of the heavier group 2 elements such as $\mathrm{Ca}\left\{\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right\}_{2}(\mathrm{thf})_{2}$ and $\mathrm{Sr}\left\{\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right\}_{2}(\text { thf })_{2}$ with Yamashita's boryllithium reagent (thf) $)_{2} \mathrm{Li}\left\{\mathrm{B}(\mathrm{NDippCH})_{2}\right\}(\mathbf{I}$, where $\operatorname{Dipp}=2,6$-diisopropylphenyl ${ }^{[7 \mathrm{aa}, \mathrm{b}]}$ might provide access to hitherto unreported examples of group 2 metalboron bonds. Moreover, given the ready availability of the thf-free potassium amide $\mathrm{K}\left\{\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right\}$, we also hypothesized that analogous chemistry might permit access to a donor-free borylpotassium species. We envisaged that such a compound would be of interest not only from a structural perspective (given the dimeric, predominantly ionic structures determined recently for related potassium aluminyl systems of the type $\left.\left[\mathrm{K}\left(\mathrm{AlX}_{2}\right)\right]_{2}\right){ }^{[10]}$ but also as an alternative lithium-free source of the boryl anion of use, for example, in the formation of f-element or early d-block complexes. ${ }^{[13,14]}$

The reactions of $\mathrm{M}\left\{\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right\}_{2}(\mathrm{thf})_{2}(\mathrm{M}=\mathrm{Ca}, \mathrm{Sr})$ with one equivalent of $(\text { thf })_{2} \mathrm{Li}\left\{\mathrm{B}(\mathrm{NDippCH})_{2}\right\}$ in diethyl ether generate the corresponding heteroleptic amido boryl complexes $\left\{\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{2} \mathrm{~N}\right\} \mathrm{M}\left\{\mathrm{B}(\mathrm{NDippCH})_{2}\right\}(\text { thf })_{n}(\mathbf{1}: \mathrm{M}=\mathrm{Ca}, n=2$; 2: $\mathrm{M}=\mathrm{Sr}, n=3$), which can be isolated as crystalline solids in $40-50 \%$ yield (Scheme 1). These compounds are labile in benzene solution at room temperature (particularly for $\mathrm{M}=$ Sr), but the structures of both systems in the solid state can be determined by X-ray crystallography.

While boryl complexes of beryllium ${ }^{[7]}$ and magnesium ${ }^{[8]}$ have been reported previously, ${ }^{[15]} \mathbf{1}$ and 2 represent to our knowledge the first examples of related systems featuring the heavier group 2 elements. Attempts to synthesize the corresponding barium compound, however, were unsuccessful, with the boranes $\mathrm{HB}(\mathrm{NDippCH})_{2}$ and $\mathrm{PhB}(\mathrm{NDippCH})_{2}$ being found to be the main components of a reaction mixture derived from $\mathrm{Ba}\left\{\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right\}_{2}(\text { thf })_{3}$ and (thf $)_{2} \mathrm{Li}-$ $\left\{\mathrm{B}(\mathrm{NDippCH})_{2}\right\}$ in benzene. ${ }^{[16]}$

In the solid state, the structures of $\mathbf{1}$ and $\mathbf{2}$ are superficially similar, differing primarily in the number of thf molecules retained within the coordination sphere of the respective metal centres. This increases from two (Ca) to three (Sr), and is presumably a contributory factor in the finding that the M-B distances increase more markedly going down group 2 than would be expected purely on the basis of simple covalent radius arguments $[d(\mathrm{M}-\mathrm{B})=2.704(4)(\mathrm{Ca})$, $2.984(3) \AA(\mathrm{Sr}), c f . r_{\mathrm{cov}}=1.76(\mathrm{Ca}), 1.95 \AA(\mathrm{Sr})$, respectively]. The M-B distances for both $\mathbf{1}$ and $\mathbf{2}$ actually fall outside of the sum of the respective covalent radii $\left[r_{\text {cov }}(B)=0.84 \AA\right],{ }^{[17]}$ consistent with the idea of a predominantly electrostatic interaction between the boryl ligand and the metal centre. By contrast, the $\mathrm{Ca}-\mathrm{N}$ and $\mathrm{Sr}-\mathrm{N}$ distances for the same two

$\mathrm{M}=\mathrm{Ca}, \mathrm{Sr}$
1: $M=C a n=2$
2: $\mathrm{M}=\mathrm{Sr}, n=3$

Scheme 1. (top) Syntheses of $\left\{\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{2} \mathrm{~N}\right\} \mathrm{Ca}\left\{\mathrm{B}(\mathrm{NDippCH})_{2}\right\}(\text { thf })_{2}$ (1) and $\left\{\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{2} \mathrm{~N}\right\} \mathrm{Sr}\left\{\mathrm{B}(\mathrm{NDippCH})_{2}\right\}(\text { thf })_{3}(2)$, from the corresponding metal bis(amide) via metathesis with boryllithium (Dipp $=2,6$ ${ }^{i} \mathrm{Pr}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$). (bottom) Molecular structures of $\mathbf{1}$ (left) and $\mathbf{2}$ (right) in the solid state as determined by X-ray crystallography. Second component of the asymmetric unit (for 1) and hydrogen atoms omitted, and isopropyl groups shown in wireframe format for clarity. Thermal ellipsoids set at the 35% probability level. Key distances [Å]: (for 1) Ca-B 2.704(4), Ca-N 2.323(3), Ca-O 2.374(2), 2.395(2); (for 2) Sr-B 2.984(3), Sr-N $2.505(3), \mathrm{Sr}-\mathrm{O} 2.505(3), 2.587(3), 2.565(13)$.
complexes $[2.323(3)$ and $2.505(3) \AA$] fall well within the sum of the respective covalent radii $\left[r_{\text {cov }}(N)=0.71 \AA\right] .{ }^{[17]}$

Given the charge-separated nature of the Ca and Sr boryl systems implied by these structural results, we wondered whether the boryl/amide metathesis approach could be extended to potassium amides $\mathrm{K}\left[\mathrm{NR}_{2}\right]$. In this case the absence of an additional co-ligand might allow access to an effectively "ionic salt" of the type $\mathrm{M}^{+}[\text {boryl }]^{-}$. Accordingly, combination of $(\text { thf })_{2} \mathrm{Li}\left\{\mathrm{B}(\mathrm{NDippCH})_{2}\right\}, \mathrm{K}\left\{\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right\}$ and hexane at 77 K , followed by warming to room temperature, and crystallization from the same solvent at 243 K leads to the formation of deep yellow single crystals in ca. 50% yield. This product can be shown by X-ray crystallography to be the solvent-free centrosymmetric borylpotassium dimer, 3 (Scheme 2), which is stable in the solid state at room temperature for 2 days under an inert atmosphere.

The overarching structural features of $\mathbf{3}$ in the solid state resemble those reported previously for related potassium aluminyl systems (e.g. X), ${ }^{[10]}$ featuring a dimeric structure in which two formally anionic diazaboryl units are held together by a pair of K^{+}counter-ions. These cations engage in contacts with the arene rings of the flanking Dipp groups in a manner similar to that observed for the K^{+}ion in $\mathbf{V} ;{ }^{[7 e]}$ the closest K…C separation [3.096(2) Å] involves the ipso-carbon of each Dipp substituent. A similar distance defines the closest K $\cdots \mathrm{B}$ separation $[3.105(2) \AA]$, which is therefore well outside the sum of the respective covalent radii $(2.03+0.84=2.87 \AA) .{ }^{[17]}$ The other $\mathrm{K} \cdot \mathrm{B}$ contact associated with each of the boron centres in the solid state is even longer [3.244(2) \AA], with the positioning of the potassium centres either side of the $B \cdots B$ axis also suggesting relatively poor orbital overlap with the

Scheme 2. (top) Synthesis of borylpotassium dimer $\left[\mathrm{K}\left\{\mathrm{B}(\mathrm{NDippCH})_{2}\right\}\right]_{2}$ (3) using an amide metathesis approach. (bottom) Molecular structure of $\mathbf{3}$ in the solid state as determined by X-ray crystallography. Hydrogen atoms omitted, and isopropyl groups shown in wireframe format for clarity. Thermal ellipsoids set at the 35% probability level. Key distances $[\AA ̊]$ and angles [${ }^{\circ}$]: N-B $1.472(2), 1.473(2), \mathrm{K}-\mathrm{B} 3.105(2)$, $3.244(2), \mathrm{K}-\mathrm{C}_{\text {ipso }} 3.096(2), 3.201$ (2); N-B-N 98.2(1).
boron-based lone pairs (Figure 2). Atoms in Molecules (QTAIM) calculations were carried out on the model system $\mathbf{3}^{\prime}$, in which the ${ }^{i} \operatorname{Pr}$ substituents in the 2 -/6-positions of the aryl groups of dimeric $\mathbf{3}$ were replaced by Me groups for computational efficiency. This analysis reveals the presence of a bond path between each of the K and B centres in $\mathbf{3}^{\prime}$ (Figure 2), and also between the K centres and the ipso carbons of the flanking rings. However, the electron density at the bond critical points, $\rho(r)$, corresponding to the $\mathrm{K}-\mathrm{B}$ bond paths is very low ($0.0121 \mathrm{e}^{-3}$). By means of comparison, the corresponding electron density calculated at the $\mathrm{Li}-\mathrm{B}$ bond critical point in \mathbf{I} (using an identical method) is $0.0297 \mathrm{e}^{\AA^{-3}}$,

Figure 2. (left) $\mathrm{HOMO}\left(-3.80 \mathrm{eV},-367 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ for $\mathbf{3}^{\prime}$ as calculated by DFT (PBE1PBE, Def-TZVP, GD3BJ); the LUMO (at $-0.38 \mathrm{eV} /$ $-37 \mathrm{~kJ} \mathrm{~mol}^{-1}$) is centred on the flanking Dipp rings. (right) QTAIM analysis of $\mathbf{3}^{\prime}$ showing bond critical points (BCPs) in green. The values of $\rho(r)$ and $\nabla^{2} \rho(r)$ at the BCPs between K and B are $0.0121 \mathrm{e} \AA^{-3}$ and $0.0327 \mathrm{e}^{-5}$, respectively.
consistent with the idea that the metal-boron interaction in $\mathbf{3}$ is significantly more ionic in nature.
$\mathbf{3}$ is the first example of lithium-free group 1 boryl complex, and based on its solid-state structure appears to offer the closest approach yet to the idea of a "free" boryl anion in the condensed phases. The $\mathrm{M} \cdots \mathrm{B}$ distances in $\mathbf{3}$ are $>0.23 \AA$ longer than the sum of the respective covalent radii (cf. $0.1-0.15 \AA$ for boryllithium derivatives), ${ }^{[17]}$ and the geometric features of the diazaborolyl heterocycle itself are in closest agreement with those calculated for the "free" anion. Notably the $\mathrm{N}-\mathrm{B}-\mathrm{N}$ angle (which is known to be sensitive to the nature of a covalent B -bound substituent $)^{[6]}$ is very close to the value calculated for the gas-phase anion [98.2(1) vs. $\left.97.8^{\circ}\right] .{ }^{[7 a]}$ The energy gap between (fully optimized) singlet and triplet states for the model system $\mathbf{3}^{\prime}$ is calculated to be $166 \mathrm{~kJ} \mathrm{~mol}^{-1}$.

Consistent with the predominantly ionic nature of $\mathbf{3}$, it proves to be extremely reactive in solution: in benzene it reacts completely over a period of ca. 60 min at room temperature. Interestingly, the reaction pathway is distinct from that observed for calcium/strontium boryl complexes $\mathbf{1}$ and 2, and for the potassium diboryllithiate system \mathbf{V} reported by Yamashita (each of which generates a mixture of $\mathrm{HB}(\mathrm{NDippCH})_{2}$ and $\mathrm{PhB}(\mathrm{NDippCH})_{2}$ by activation of the benzene solvent). ${ }^{[7 e, 18]} \mathbf{3}$, by contrast, predominantly undergoes an intramolecular $\mathrm{C}-\mathrm{H}$ activation process via formal oxidative addition at boron of a methine $\mathrm{C}-\mathrm{H}$ bond of one of the flanking Dipp groups (to give 4, Scheme 3). ${ }^{[19]}$ A similar mode of reactivity has been postulated for the transient boryllithium complex generated from $\mathrm{BrB}\left(\mathrm{NMesCH}_{2}\right)_{2}$ and lithium metal, with both deprotonation and H -atom transfer (radical) mechanisms having been proposed for the formation of the $\mathrm{B}-\mathrm{H}$ and $\mathrm{B}-\mathrm{C}$ bonds. ${ }^{[7 \mathrm{a}]}$ In the case of $\mathbf{3}$, the dimeric nature of the precursor is retained in the $\mathrm{C}-\mathrm{H}$ activation

3

4

Scheme 3. (top) Intramolecular C-H activation of a Dipp methine group in $\mathbf{3}$ to give $\mathbf{4}$ at room temperature in arene solvents. (bottom) Molecular structure of 4 in the solid state as determined by X-ray crystallography. Hydrogen atoms omitted, and isopropyl groups shown in wireframe format for clarity. Thermal ellipsoids set at the 35% probability level. Key distances [Å] and angles [$\left.{ }^{\circ}\right]$: N-B 1.576(3), 1.584(2), C-B $1.663(3), \mathrm{B}-\mathrm{H} 1.14(2)$; N-B-N 100.1(1).
product 4, with additional $\mathrm{K} \cdots \mathrm{C}$ contacts in the solid state linking these units further into a loosely-bound one-dimensional coordination polymer.

In summary, we report on a conceptually simple metathesis approach for the generation of highly polar boryl derivatives of potassium, calcium and strontium from a boryllithium precursor and bis(trimethylsilyl)amide derivatives of the respective metals. In the case of the potassium boryl product, a dimeric solvent-free structure is observed in the solid state in which the K^{+}cations interact weakly with both the ipso-carbons of the flanking Dipp groups and the boron centres of the diazaborolyl heterocycles. These structural features, together with QTAIM calculations imply that the boron-containing fragment closely approaches a limiting description as a "free" boryl anion in the condensed phase. ${ }^{[20]}$

Acknowledgements

We thank the Leverhulme Trust (F/08699/E and RP-2018246) and EPSRC (EP/F019181/1, EP/K014714/1) for funding aspects of this work. P.V. thanks the Academy of Finland (Grant No. 314794) and Prof Heikki Tuononen for providing computational resources.

Conflict of interest

The authors declare no conflict of interest.

Keywords: atoms in molecules • boron • boryl •
s-block chemistry • structural studies
[1] For a recent review, see: L. Weber, Eur. J. Inorg. Chem. 2017, 3461-3488.
[2] The term "boryl" is used here to refer to systems containing the formally anionic $\mathrm{BX}_{2}{ }^{-}$fragment, based on well-established literature precedent. ${ }^{[1]}$ The term "boranyl" is recommended by the IUPAC red book (R. M. Hartshorn, A. T. Hutton in Nomenclature of Inorganic Chemistry, IUPAC Recommendations 2005, IUPAC Red Book (Eds.: N. G. Connelly, T. Damhus), RSC Publishing, London, 2005) for the parent BH_{2} system, but this convention has not been widely followed in the naming of previous systems of this type.
[3] See, for example: a) A. J. Arduengo, Acc. Chem. Res. 1999, 32, 913-921; b) D. Bourissou, O. Guerret, F. P. Gabbaï, G. Bertrand, Chem. Rev. 2000, 100, 39-92; c) F. E. Hahn, M. C. Jahnke, Angew. Chem. Int. Ed. 2008, 47, 3122-3172; Angew. Chem. 2008, 120, 3166-3216; d) T. Dröge, F. Glorius, Angew. Chem. Int. Ed. 2010, 49, 6940-6952; Angew. Chem. 2010, 122, 7094-7107; e) D. Martin, M. Melaimi, M. Soleilhavoup, G. Bertrand, Organometallics 2011, 30, 5304-5313; f) M. N. Hopkinson, C. Richter, M. Schedler, F. Glorius, Nature 2014, 510, 485-496.
[4] Y. Segawa, M. Yamashita, K. Nozaki, Science 2006, 314, 113 115.
[5] A. J. Arduengo III, R. L. Harlow, M. Kline, J. Am. Chem. Soc. 1991, 113, 361-363.
[6] a) M. Wagner, N. J. R. van E. Hommes, H. Nöth, P. v. R. Schleyer, Inorg. Chem. 1995, 34, 607-614. See also: b) A. Sundermann, M. Reiher, W. W. Schoeller, Eur. J. Inorg. Chem. 1998, 305-310; c) N. Metzler-Nolte, New J. Chem. 1998, 22, 793 795.
[7] Li: see ref. [4] and a) Y. Segawa, Y. Suzuki, M. Yamashita, K. Nozaki, J. Am. Chem. Soc. 2008, 130, 16069-16079; b) M. Yamashita, Y. Suzuki, Y. Segawa, K. Nozaki, Chem. Lett. 2008, 37, 802-803; c) S. Robinson, J. McMaster, W. Lewis, A. J. Blake, S. T. Liddle, Chem. Commun. 2012, 48, 5769-5771; d) W. Lu, H. Hu, Y. Li, R. Ganguly, R. Kinjo, J. Am. Chem. Soc. 2016, 138, $6650-6661$; e) T. Ohsato, Y. Okuno, S. Ishida, T. Iwamoto, K.-H. Lee, Z. Lin, M. Yamashita, K. Nozaki, Angew. Chem. Int. Ed. 2016, 55, 11426-11430; Angew. Chem. 2016, 128, 11598-11602.
[8] Be: a) T. Arnold, H. Braunschweig, W. C. Ewing, T. Kramer, J. Mies, J. K. Schuster, Chem. Commun. 2015, 51, 737 - 740; b) J. K. Schuster, D. K. Roy, C. Lenczyk, J. Mies, H. Braunschweig, Inorg. Chem. 2019, 58, 2652-2658.
[9] Mg: see ref. 7d and a) M. Yamashita, Y. Suzuki, Y. Segawa, K. Nozaki, J. Am. Chem. Soc. 2007, 129, 9570-9571; b) A. F. Pécharman, A. L. Colebatch, M. S. Hill, C. L. McMullin, M. F. Mahon, C. Weetman, Nat. Commun. 2017, 8, 15022-15028; c) A. F. Pécharman, M. S. Hill, M. F. Mahon, Dalton Trans. 2018, 47, 7300-7305; d) A. F. Pécharman, N. A. Rajabi, M. S. Hill, C. L. McMullin, M. F. Mahon, Chem. Commun. 2019, 55, $9035-$ 9038; e) D. Dange, A. Paparo, C. Jones, Chem. Asian J. 2020, 15, 2447-2450.
[10] For recently reported aluminyl systems see: a) J. Hicks, P. Vasko, J. M. Goicoechea, S. Aldridge, Nature 2018, 557, 92-95; b) R. J. Schwamm, M. D. Anker, M. Lein, M. P. Coles, Angew. Chem. Int. Ed. 2019, 58, 1489-1493; Angew. Chem. 2019, 131, 1503 1507; c) S. Kurumada, S. Takamori, M. Yamashita, Nat. Chem. 2020, 12, 36-39; d) R. J. Schwamm, M. P. Coles, M. S. Hill, M. F. Mahon, C. L. McMullin, N. A. Rajabi, A. S. S. Wilson, Angew. Chem. Int. Ed. 2020, 59, 3928-3932; Angew. Chem. 2020, 132, 3956-3960; e) K. Koshino, R. J. Kinjo, J. Am. Chem. Soc. 2020, 142, $9057-9062$; f) S. Grams, J. Eyselein, J. Langer, J. Färber, S. Harder, Angew. Chem. Int. Ed. 2020, 59, 15982-15986; For recent reviews, see: g) K. Hobson, C. J. Carmalt, C. Bakewell, Chem. Sci. 2020, 11, 6942-6956; h) J. Hicks, P. Vasko, J. M. Goicoechea, S. Aldridge, Angew. Chem. Int. Ed. 2020, https:// doi.org/10.1002/anie.202007530; Angew. Chem. 2020, https://doi. org/10.1002/ange. 202007530.
[11] B. M. Wolf, C. Stuhl, C. Maichle-Mössmer, R. Anwander, J. Am. Chem. Soc. 2018, 140, 2373-2383.
[12] See, for example: a) S. Harder, Chem. Rev. 2010, 110, 3852 3876; b) M. S. Hill, D. F. Liptrot, C. Weetman, Chem. Soc. Rev. 2016, 45, 972-988; c) Y. Sarazin, J.-F. Carpentier, Chem. Rec. 2016, 16, 2482-2505.
[13] T. Terabayashi, T. Kajiwara, M. Yamashita, K. J. Nozaki, J. Am. Chem. Soc. 2009, 131, 14162-14163.
[14] a) L. M. A. Saleh, K. H. Birjkumar, A. V. Protchenko, A. D. Schwarz, S. Aldridge, C. Jones, N. Kaltsoyannis, P. Mountford, J. Am. Chem. Soc. 2011, 133, 3836-3839; See also: b) S. Li, J. Cheng, Y. Chen, M. Nishiura, Z. Hou, Angew. Chem. Int. Ed. 2011, 50, 6360-6363; Angew. Chem. 2011, 123, 6484-6487.
[15] This synthetic method can also be applied to the corresponding magnesium system, although the boryl complex so formed, $\left\{\left(\mathrm{Me}_{3} \mathrm{Si}_{2} \mathrm{~N}\right\} \mathrm{Mg}\left\{\mathrm{B}(\mathrm{NDippCH})_{2}\right\}\right.$ (thf), crystallizes along with the co-product $\left[\mathrm{Li}\left\{\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right\}(\text { thf })\right]_{2}$, making the isolation of the pure material very difficult.
[16] Attempts to generate the corresponding bis(boryl) complex of Ca via the reaction of $\mathrm{Ca}\left\{\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right\}_{2}(\text { thf })_{2}$ with two equivalents of $(\text { thf })_{2} \mathrm{Li}\left\{\mathrm{B}(\mathrm{NDippCH})_{2}\right\}$ or via the reaction of $\mathbf{1}$ with a further equivalent of the boryllithium reagent do not lead to the isolation of tractable $\mathrm{Ca}-\mathrm{B}$ containing products. It is of note, however, that related bis (gallyl) complexes of calcium, strontium and barium are isolable: O. Bonello, C. Jones, A. Stasch, W. Woodul, Organometallics 2010, 29, 4914-4922.
[17] B. Cordero, V. Gómez, A. E. Platero-Prats, M. Revés, J. Echeverría, E. Cremades, F. Barragán, S. Alvarez, Dalton Trans. 2008, 2832-2838.
[18] See also: N. Dettenrieder, Y. Aramaki, B. M. Wolf, C. MaichleMössmer, X. Zhao, M. Yamashita, K. Nozaki, R. Anwander, Angew. Chem. Int. Ed. 2014, 53, 6259-6262; Angew. Chem. 2014, 126, 6373-6377.
[19] Traces of $\mathrm{HB}(\mathrm{NDippCH})_{2}$ and $\mathrm{PhB}(\mathrm{NDippCH})_{2}$ are detected in this reaction.
[20] CCDC (Deposition Numbers 2021075, 2021076, 2021077, and 2021078 contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint

Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service www.ccdc. cam.ac.uk/structures.).

Manuscript received: August 30, 2020
Accepted manuscript online: October 7, 2020
Version of record online: December 9, 2020

