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ABSTRACT

Motivation: The mutation of amino acids often impacts protein
function and structure. Mutations without negative effect sustain
evolutionary pressure. We study a particular aspect of structural
robustness with respect to mutations: regular protein secondary
structure and natively unstructured (intrinsically disordered) regions.
Is the formation of regular secondary structure an intrinsic feature of
amino acid sequences, or is it a feature that is lost upon mutation and
is maintained by evolution against the odds? Similarly, is disorder an
intrinsic sequence feature or is it difficult to maintain? To tackle these
questions, we in silico mutated native protein sequences into random
sequence-like ensembles and monitored the change in predicted
secondary structure and disorder.

Results: We established that by our coarse-grained measures
for change, predictions and observations were similar, suggesting
that our results were not biased by prediction mistakes. Changes
in secondary structure and disorder predictions were linearly
proportional to the change in sequence. Surprisingly, neither the
content nor the length distribution for the predicted secondary
structure changed substantially. Regions with long disorder behaved
differently in that significantly fewer such regions were predicted after
a few mutation steps. Our findings suggest that the formation of
regular secondary structure is an intrinsic feature of random amino
acid sequences, while the formation of long-disordered regions is not
an intrinsic feature of proteins with disordered regions. Put differently,
helices and strands appear to be maintained easily by evolution,
whereas maintaining disordered regions appears difficult. Neutral
mutations with respect to disorder are therefore very unlikely.
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1 INTRODUCTION

Random, undirected mutation is a major driving force for change
in nature. In the protein universe, selection is realized through
function: mutations leading to loss of function are rarely observed.
As protein structure determines protein function, it is also subjected
to evolutionary selection. Most problematic single nucleotide
polymorphisms (SNP) that alter the amino acid sequence (non-
synonymous SNPs) appear to impact the stability of protein structure
(Yue et al., 2005; Yue et al., 2006).

Helices and strands constitute the major macromolecular building
blocks of all ‘well-ordered’ proteins (Benner et al., 1997; Kabsch
and Sander, 1983; Levitt and Chothia, 1976; Morea et al., 1998;
Pauling and Corey, 1951a; Pauling and Corey, 1951b). The particular
3D structure of a protein is assumed to correspond to the global
minimum free energy and hence defines the unique fold of an amino
acid polymer (Anfinsen and Scheraga, 1975; Dill, 1993; Karplus
and Petsko, 1990; Levitt and Warshel, 1975; Liwo et al., 1999;
Reva et al., 1995; Sippl, 1993). Another essential feature of protein
structure is the unique interplay between well-ordered and flexible
regions (Alexov and Gunner, 1997; Cavasotto and Abagyan, 2004;
Claussen et al., 2001; Daniel et al., 2003; Gu et al., 2006; Morea
et al., 2000; Radivojac et al., 2004; Schlessinger et al., 2006). One
particular aspect of this interplay is that between what we may
loosely refer to as ‘order’ and ‘disorder’ (Dunker and Obradovic,
2001; Dunker et al., 2008; Radivojac et al., 2004; Uversky, 2003).

Many proteins have regions that remain ‘unstructured’ unless
bound to a substrate: they do not adopt a unique stable conformation
in isolation. Such regions are also referred to as intrinsically
disordered or simply as disordered. Our operational definition for
this vague term is: we consider as disorder whatever is predicted as
such. Proteins with long-disorder regions have unique biophysical
traits that enable the binding to different substrates, often at different
cellular conditions (Wright and Dyson, 2009). Very long regions
without regular secondary structure (loosely referred to as ‘loops’)
may resemble disorder (Liu et al., 2002); nevertheless, we can
clearly distinguish between disorder-like and well-structured loops
(Schlessinger et al., 2007a; Schlessinger et al., 2009). Disorder is
an important ‘building block’ for the increase in complexity in the
evolution from unicellular prokaryotes to multi-cellular eukaryotes.
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Our two hypotheses were: (i) we assumed that regular secondary
structure is difficult to maintain evolutionarily, i.e. single residue
mutations are likely to impact helices and strands and that we would
lose regular secondary structure and transit into ‘loopy’ polypeptide
chains with increasing random mutations away from the native state.
(i) We assumed, furthermore, that disordered regions provide a
means to become robust against mutations because most mutations
would rather increase than decrease disorder by increasing the non-
regular secondary structure. Here, we present results that falsify both
hypotheses as clearly as possible without investing tens of millions
of dollars.

2 METHODS
2.1 Datasets

We used protein sequences from two databases for the in silico mutation.
First, we assessed the robustness of secondary structure through globular
proteins from the Protein Data Bank (PDB) (Berman et al., 2000). Secondly,
we assessed the robustness of disordered regions through proteins from
DisProt (Vucetic et al., 2005) (version 4.9). We applied UniqueProt (Mika
and Rost, 2003) to reduce the redundancy in both sets filtering at a sequence
similarity threshold of HVAL >10 (Rost, 1999; Sander and Schneider,
1991) (this corresponds to ~30% pairwise sequence identity—PIDE—for
alignments over 250 residues). The redundancy-reduced sets comprised 1369
(PDB) and 374 (DisProt) proteins.

For each of the two datasets (PDB and DisProt), we also created
random sequences that had the same amino acid composition, same length
distribution and same number of sequences as the natives. The random sets
served as convergence control: if we mutate enough to ‘lose all memory’
(convergence), the random sets will not differ from the mutated sets.

To shed light on potential biases from the chosen databases,
we additionally predicted the secondary structure in 33812 proteins,
representing the entire human proteome as taken from RefSeq 2006.

Finally, we sub-sampled a set of sequences from the PDB set with the
same size, amino acid and length distribution as that of the DisProt set to
examine the ability of ordered proteins to retain or lose their ordered state.

2.2 Mutation protocol

We gradually mutated native protein sequences into quasi-random strings of
amino acids by the following iterative procedure.

2.2.1 One mutation step It consisted of two moves: (i) select a particular
residue position, i.e. site in the sequence to mutate, and (ii) mutate the amino
acid X at that position with amino acid Y with the probability pxy (X=Y).
For technical reasons (lack of CPU because after each step we have to apply
several prediction methods), we repeat these two moves N/10 times (N
number of residues in the protein). Effectively, we thereby touch 10% of
all residues in one mutation step.

2.2.2 Sixty-nine mutation steps We carried out 69 mutation steps (with
69 x N/10 mutations) for each protein. Any other, sufficiently large, number
would have worked. We chose 69 because we had reached convergence in
all the cases that we looked at in detail after 65 steps.

Effectively, we applied a Markovian-like model for evolution, i.e.
assuming that each residue mutates independently of all others and that the
mutation depends only on the amino acid type. We applied three alternative
substitution schemes: (i) we mutated according to the PAM120 probability
(Dayhoff, 1978). (ii) PAM120 is valid for great evolutionary distance. In
order to also cover closer relations, we also implemented BLOSUMG62
(Henikoff and Henikoff, 1992). (iii) Finally, we took the underlying amino
acid distribution in the database (PDB, DisProt—ordered/disordered regions
in DisProt not distinguished) as substitution probabilities. Note that for the

most PAM120 and BLOSUM62 mutations, the most likely ‘mutation step’
was the maintenance of the current amino acid as the diagonals are typically
highest in these matrices. We did not consider mutations that led to insertions
or deletions. BLOSUM62 and PAM120 behaved identically with respect
to our results. For readability, we confined the BLOSUMS62 results to the
Supplementary Material.

2.2.3 Single trajectory versus ensemble The ‘mutation path’ for each
native sequence constitutes a single unique trajectory in the space of all
possible mutations. We created five different such single paths (five different
mutants) in order to investigate the divergence from the native of an
ensemble of evolutionary paths. From these five, we compiled a consensus
by per-residue averaging over each of the five predictions (secondary
structure/disorder). Note that by default, we reported the results for single
trajectories and added the ensemble comparison only where explicitly stated.

2.3 Secondary structure

We predicted secondary structure through PROFsec (Rost, 2005). Secondary
structure prediction methods improve when using evolutionary information
(Liu and Rost, 2001; Rost, 1996; Rost and Sander, 1993). Without this
information, PROFsec reaches a sustained single-sequence level of ~68%
three-state per-residue accuracy (Qs is the percentage of residues predicted
correctly in one of the three states helix, strand and other). We had to use this
single-sequence mode to monitor the effect of point mutations. Prediction
mistakes might invalidate the generality of our findings. One way in which we
addressed this concern was by monitoring the parameters that we plotted for
our mutants also for the experimental observations from the native proteins
as taken from DSSP (Kabsch and Sander, 1983) with the usual conversion
of eight into three ‘states’ (Andersen et al., 2002; Rost, 1996; Rost and
Sander, 1993). For each mutation step (i.e. after each step of 10% change),
we monitored the sequence similarity compared with the native sequence,
the relative content of residues predicted in helix and strand and the average
length of predicted helices and strands.

2.4 Disordered regions

We predicted disordered regions by three methods: IUPred (Dosztinyi
et al., 2005), MD (Schlessinger et al., 2009) and VSL2 (Obradovic et al.,
2005; Peng et al., 2006) and compared the predictions to the experimental
annotations in DisProt. IUPred has three options (long, short and glob);
we chose short for short and long for long disorder. MD (Meta Disorder
predictor) combines independent methods through machine learning. We
used it without alignments. VSL2 is a collection of eight methods. We used
the VSL2B variant that uses only single sequences as input.

The three methods focus on different aspects of disorder and have different
strengths and weaknesses. We did not combine methods and, for simplicity,
focused only on IUPred. The results from the other methods that were crucial
to rule out method-specific findings are given in the Supplementary Material.
We chose IUPred because it is accurate, fast and set up to work only with
single sequences.

For each mutation step (i.e. after each step of 10% change), we monitored
sequence similarity to native, the relative content of residues predicted in
short/long-disordered regions and the length of the regions (SOM).

2.5 Box plots to present results

Box plots (McGill et al., 1978; Tukey, 1977) present our results concisely.
The lower and upper box edges depict the first and third quartile, respectively.
The length of a box is the interquartile range of the distribution. The bold
bar inside the box represents the median, while dashed lines reach to the
most extreme data point that is no more than 1.5 times the interquartile
range away from the upper or lower box edge. Average (mean) values are
connected through solid lines and intersect with box plots.

Median and mean are related to the protein level, i.e. summarize the
specific feature of all sequences that fall within the same interval of PIDE.
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3 RESULTS AND DISCUSSION

3.1 Secondary structure surprisingly robust

Comparisons of pairs of evolutionarily related protein structures
reveal two major results (Abagyan and Batalov, 1997; Chothia
and Lesk, 1986; Chung and Subbiah, 1996; Sander and Schneider,
1991): first, the less similar their sequences, the less similar their 3D
structures [as well as their secondary structures (Rost et al., 1994;
Rost et al., 1997)]; and second, the transition from the regime of
‘similar structure’ to ‘non-similar structure’ is highly non-linear and
characterized by sigmoids indicative of phase transitions in physics.
Our mutation protocol yielded a very different outcome.

Secondary structure diverged to almost random levels over the
course of our mutation protocol. We compared this divergence to
what is observed between naturally occurring homologues. Towards
this end, we used the HSSP database (Sander and Schneider,
1991) and compared homologues at the corresponding levels of
PIDE (Supplementary Fig. SOM_5). The change of secondary
structure on random mutation was much more dramatic than that
for homologous proteins (Fig. 1A), e.g. at 30%, PIDE natural
homologues still had levels of Q3 ~63%, while the random mutants
reached Q3 ~45% (Supplementary Fig. SOM_S5). This result is not
surprising: evolution feels the pressure to enrich neutral mutations,
i.e. those that do not alter structure, while no such incentive was
built into our in silico mutation protocol. Nevertheless, secondary
structure was surprisingly robust under mutation. The consensus
over ensembles of five different mutation trajectories (Fig. 1C and D)
diverged much more dramatically from wild type than any single
mutant (Fig. 1A and B).

Another important difference between our in silico mutation and
natural evolution pertained to the shape of the transition: instead of
a sigmoidal phase transition, we observed an almost linear transition
from native wild-type to almost random mutant. This was true for
both the single trajectory (Fig. 1A) and the ensemble (Fig. 1C),
although the signal was clearer for the ensemble.

We observed that some regions did not alter secondary structure
even at the end of our protocol at which the mutant was as similar
to the wild type as to any other sequence in our dataset (Fig. 1B).
For the ensemble, in contrast, the consensus secondary structure had
changed almost completely from the native (Fig. 1D). Nevertheless,
the Q3 levels converged to the same level in both cases.

3.2 Helix and strand intrinsic to random sequences

Our most surprising finding was that neither the overall content
(Fig. 2A and B) nor the length (Fig. 2C and D) of predicted
helices and strands was altered during the course of our mutation
protocol. The average helix content remained ~30%, whereas
the average strand content around 20%; the average helix was
about 10 residues long (2-3 helix turns), and the average strand
extended over about five residues. In other words, regular secondary
structure was predicted to be robust under extreme mutation. In this
respect, we observed no significant difference between choosing
mutations according to the background distribution and PAM120,
although the latter tends to follow the evolutionarily more accepted
mutations (mutations according to BLOSUMG62 gave similar results
Supplementary Fig. SOM_6).

After the 69 mutation steps (Section 2), we reached a
point at which the mutant was as similar to the native as to
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Fig. 1. Secondary structure changes proportional to sequence. (A and C)
For decreasing pairwise percentage sequence identity (x-axis, PIDE), we
monitored the similarity between secondary structure predictions (Qj3, i.e.
percentage of residues identical in one of the three states helix, strand and
other) for native and for mutant (yellow: mutations according to PAM120,
green: according to background distribution, Section 2). (A and B) show
results for a single trajectory, (C and D) the consensus over an ensemble of
five trajectories (Section 2). Box plots reflect the range of the distribution
(Section 2); median values are marked by horizontal bars and mean values
are connected by dotted lines. For instance, at ~90% pairwise sequence
identity, ~88% of the residues are predicted in the same secondary structure
as the native; for the ensemble, this value is slightly higher (leftmost bars
in A and C). The curves converge nearly linearly towards values ~35%
corresponding to random. (B and D) For one particular example (PDB
identifier 1a2s chain A), we display the actual secondary structure predictions
for each mutant: native on top; each row marks one of the 69 mutation
steps (Section 2); mutation by PAM120. The top (B) is for one single
mutation trajectory, the bottom (D) for an ensemble of five trajectories. One
observation stands out and is representative for all such plots that we looked
at: blocks of regular secondary appear to be more robust under mutation
than the actual type of secondary structure, i.e. helices flip to strands and
vice versa and this happens more often than the transitions helix— other and
strand— other. Borders are much more ‘fluid’ for the ensemble (D) than for
a single mutation trajectory (B).

any other sequence. This was reflected by the similarity in the
prediction of helix/strand content/length between the final mutant
and randomly created sequences (Fig. 2: two rightmost bars almost
identical).

Our results were based on predictions rather than on observations.
Prediction methods make mistakes. One might hypothesize that
rather than shedding light on protein features, our results are
caused by those prediction mistakes. As no large-scale experiments
establish structure for random sequences, we cannot refute this view.
However, we could provide evidence that prediction mistakes might
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Fig. 2. Content and length of regular secondary structure unchanged. Box
plots and coloring as in Figure 1. Change of regular secondary structure on
mutation given by the composition of predicted helix (A) and strand (B),
as well as the average lengths of predicted helices (C) and strands (D).
The second and third bar on the left in (A) and (B) compare predictions
(light gray) with observations (taken from DSSP, dark gray) for the PDB
dataset; the first bar on the left in (A) and (B) indicates the degree to which
the predictions differ for the PDB dataset (dark gray) and for a set of all
human proteins (light blue). The right-most green bars mark the predictions
for randomly assembled sequences (Section 2, labeled as ‘Comp’). Overall,
neither the length nor the content of regular secondary structure appears to
differ between native and random.

not matter for the aspects of structure that we monitored. In fact, by
the measures that we used to report our results, predictions and
observations were almost identical (Fig. 2: left gray bars in each
panel). The precise levels of helix/strand content and length differed
indeed more between different datasets (PDB subset versus entire
set of human proteins) than between observation and prediction for
any set for which we have experimental information. In other words,
prediction mistakes appeared not to matter for all the proteins for
which we could verify this statement.

Our findings that random and wild-type sequences were predicted
to have similar content of regular secondary structure along with
the observation that mistakes in predicting this were negligible
suggest that the formation of helices and strands is an intrinsic
feature of amino acid sequences. Neither helices nor strands
were predicted to be significantly shortened during our drastic
in silico mutation protocol. Note that this is not a consequence
of the fact that PROFsec is trained to predict a particular
length distribution, because predicted length distributions deviate
substantially between all-helical and coiled-coil proteins. The
maintenance of such regular secondary structure elements would
then appear to come at seemingly low costs, i.e. mutations that
are neutral with respect to structure might be more likely than
might have been anticipated. Finally, we verified that the reliability

of the predictions did not change during mutation (Supplementary
Fig. SOM_10).

3.3 Long regions of disorder sensitive, short not

Arguably, there are two different regimes of disorder (Dosztdnyi
et al., 2005; Liu et al., 2002; Obradovic et al., 2005; Peng et al.,
2006; Schlessinger et al., 2007b; Schlessinger et al., 2009): very
short and very long regions. No threshold distinguishes between
these two regimes in a biophysically meaningful way.

In particular, there likely exists an intermediate range that might
belong to both regimes. Here, we followed the typical ‘convention’
in the field and defined as short disorder regions with eight or less
consecutive residues and as long disorder regions with 30 or more
consecutive residues. Thereby, we ignored the uncertain regime in
between these two extremes. In order to establish that our results
did not crucially depend on the particular threshold, we also tested
other thresholds for long disorder, namely 20, 40 and 50. We found
that the trend of loss during in silico mutation is independent of the
chosen cut-off and is even clearer for larger thresholds (40 and 50)
(Supplementary Fig. SOM_09).

First, we observed that regions of short disorder behaved like
regular secondary structure in that their content (Fig. 3B, D and F;
Supplementary Fig. SOM_2D and E) and length (Supplementary
Fig. SOM_2A-C) did not alter on mutation. In stark contrast
was the result for long regions with predicted disorder gradually
diminished over the course of our mutation protocol (Fig. 3A,
C and E; by definition a prediction of 29 disordered residues
for some mutant implies that for that mutant the long disordered
region seemingly ‘disappeared’, e.g. Fig. 3E middle; Supplementary
Fig. SOM_1). The loss on mutation was much more dramatic
for mutations according to PAM120 (yellow in Fig. 3C) than for
those according to the background distribution (green in Fig. 3C).
This is understandable because disordered regions are abundant in
polar residues, and these are more likely to be chosen if mutation
probability is ‘skewed’ toward this abundance. Put differently,
PAM120-driven mutations drifted toward sequences that resembled
regular well-structured proteins and as such had no disorder,
while background-driven mutations yielded sequences that were as
abundant in disorder as the native wild types and therefore had many
long regions with predicted disorder.

The actual numbers in terms of content of predicted long disorder
decreased from ~18% for the native to ~9% for the final mutant
by using the background mutation protocol (Fig. 3C, green). This
reflected the fact that a considerable fraction of the residues in
our DisProt dataset was polar: for mutations according to PAM120
(Fig. 3C, yellow) or BLOSUMG62 (Supplementary Fig. SOM_7), the
content dropped to 0. However, at this level of mutations, almost no
single residue predicted as long disorder in the native was predicted
as disorder in the mutant (Fig. 3A). For some, this might appear to
PAM120.

Studies of particular mutation paths revealed that long disorder
might just appear to vanish suddenly (Fig. 3E). This was partially
a threshold issue: assume a region with 35 consecutive ‘disordered’
residues and assume the mutant loses three on each side (six in
total); we will no longer consider this as long disorder (35-6 <30).
This also explains how additional mutations may recover the long
disorder (Fig. 3E: after solid block of red bars, suddenly one mutant
has disorder again as seen by a single bar below this block).
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Fig. 3. Predicted long disorder changes rapidly. Panels on the left show
results for long regions of disorder (30 or more consecutive residues), those
on the right for short regions (less than eight). The top panels (A and B)
demonstrate how much the predictions of disorder changed over the course of
mutations (y-axis: residues predicted identical as disorder between native and
mutant as percentage of disorder predicted in native). Disorder predictions
differ much more rapidly from native than do secondary structure predictions,
and much more for long (A) than for short (B) disorder. The relative content
of residues in predicted long (C) and short (D) disordered regions diverge
differentially. The first two box plots for (C) depict the observed (dark gray)
and predicted (light gray) disordered content in native sequences. Right box
plots in both (C) and (D) show the disordered situation in the artificially
created dataset sequences (Section 2, labeled as ‘Comp’). For a representative
example (DisProt identifier: DP 00006), the TUPred predictions for long
(E) and short (F) disorder are shown for each mutant: native on top; each
row marks 1 of the 69 PAMI120 mutation steps (Section 2). Red lines
mark predictions that fall into the threshold category ((30 or more/less than
eight). Long disordered regions disappear (E) while especially short disorder
remains at both termini, while re- and disappearing in the middle region
during mutation (F).

Another observation reflects one of the important aspects when
studying short disorder: a considerable fraction of the short disorder
is predicted (and observed) near the protein termini (Fig. 3F).
Short disorder ‘comes and goes’ during mutation (middle region in
Fig. 3F). Although this effect is biologically relevant and dominates
the study of disorder in otherwise well-ordered proteins (Bordoli
etal.,2007; Jin and Dunbrack, 2005), it again underlines the problem
of not differentiating between long and short disorder.

Our analyses of regular secondary structure and disorder are based
on very different datasets. PDB is biased in many ways (Liu and
Rost, 2001), one of those pertains to disorder (Liu and Deber, 1999;
Peng et al., 2004). One reason simply is that proteins with disordered
regions pose extreme challenges to structure determination (Burley
et al., 2008; Dunker et al., 2008; Graslund et al., 2008; Liu et al.,
2004; Nair et al., 2009; Romier et al., 2006). To address this
difference, we predicted disorder also for the dataset of well-ordered
proteins from the PDB. As expected, the level of both long and
short disorder for both of those was very low (Supplementary
Figs SOM_3 and 4); given the lack of disorder in these proteins,
we could therefore not observe any significant difference between
close-to-zero in the wild type and close-to-zero in the mutants.

IUPred is arguably one of the best disorder prediction methods
(Bordoli et al.,2007; Le Gall et al., 2007; Schlessinger et al., 2007b;
Schlessinger et al., 2009; Shimizu et al., 2007); however, it is still
only one of many and it has specific strengths and weaknesses.
Therefore, we also predicted disorder with two other state-of-the-art
prediction methods, namely VSL2 (Obradovic et al., 2005; Peng
et al., 2006) and MD (Schlessinger et al., 2009). Although the
predictions for those two differed slightly from those for IUPred,
by the measures we reported here, they revealed exactly the same
trend: while predicted long disorder disappeared on mutation, the
content and length distribution of predicted short disorder remained
largely unaffected by the mutation.

We addressed the impact of incorrect predictions by randomly
introducing errors. At any significant error rate, long disorder
disappeared in the native. This highlights the high prediction
accuracy of today’s methods. For short disorder, the added error
did not alter the content over the course of our mutation protocol
(Supplementary Fig. SOM_8).

As short and long disorders have different physical traits, we need
length thresholds. However, we can drop these thresholds while
monitoring the disappearance of disorder. Toward this end, we began
with all native regions longer than N (chosen in steps of between
20 and 50), and monitored the percentage of disorder predicted
after mutation irrespective of the length of the predicted regions.
We found that long disordered regions indeed get decomposed into
shorter ones and that disorder disappears throughout (Supplementary
Figs SOM_11 and 12).

4 CONCLUSIONS

We addressed the general question whether or not well-ordered
regular secondary structure and disordered regions sustain random
mutations. Is it likely or unlikely that any mutation affects this
particular coarse-grained feature of protein structure (and through
it’s function)? Do random sequences have different content in
secondary structure and disorder than native proteins that have
evolved to satisfy many constraints? Our analysis clearly suggests
two different answers for regular secondary structure and long
disorder. On the one hand, the maintenance of regular secondary
structure might not be too challenging because its formation appears
to be an intrinsic feature of random sequences. It, therefore, appears
surprisingly likely to transit from helix to strand and back. In fact,
this is exactly what we dynamically observed during the course
of our mutations (Fig. 4). On the other hand, regions of long
disorder do not appear to be robust under mutation. Random changes
likely disrupt this feature that thereby appears volatile and unique.
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‘1) to the most C-terminal ones. Note that although we show only single trajectories, rather than ensemble averages here, almost no helix or strand withstands

the mutation protocol to the end.

This has important impact on how we picture the role of long
disorder in proteins: it is not ‘easy’ to acquire. Prokaryotes have
only ~10-25% of the disorder observed in multi-cellular eukaryotes
(Dunker et al., 2008; Ekman et al., 2005; Liu et al., 2002; Oldfield
et al., 2005; Romero et al., 2004; Schlessinger er al., 2009; Ward
et al., 2004). Our observation of how volatile long disorder is
provides another evidence for the importance of this feature for the
transition from prokaryotes to eukaryotes.

Many SNPs that alter the protein sequence (nsSNPs) appear to be
deleterious. Is this a bias in the experimental technique (more likely
to be observed/reported if deleterious), or is it a genuine feature of
proteins imposed by the sensitivity of protein structure to mutations?
Although our work neither addresses nor answers this question, the
surprising robustness of regular secondary structure might support
the view that protein structure is more flexible and adaptable than
the intricate details of the concert of interacting residues in protein
3D structures might suggest.
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