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Abstract: With recent advances in cancer vaccination therapy targeting tumor-associated antigens
(TAAs), dendritic cells (DCs) are considered to play a central role as a cell-based drug delivery
system in the bioactive immune environment. Ex vivo generation of monocyte-derived DCs has been
conventionally applied in adherent manufacturing systems with separate loading of TAAs before
clinical use. We developed DCs pre-pulsed with Wilms’ tumor (WT1) peptides in low-adhesion
culture maturation (WT1-DCs). Quality tests (viability, phenotype, and functions) of WT1-DCs were
performed for process validation, and findings were compared with those for conventional DCs
(cDCs). In comparative analyses, WT1-DCs showed an increase in viability and recovery of the
DC/monocyte ratio, displaying lower levels of IL-10 (an immune suppressive cytokine) and a similar
antigen-presenting ability in an in vitro cytotoxic T lymphocytes (CTLs) assay with cytomegalovirus,
despite lower levels of CD80 and PD-L2. A clinical study revealed that WT1-specific CTLs (WT1-CTLs)
were detected upon using the WT1-DCs vaccine in patients with cancer. A DC vaccine containing
TAAs produced under an optimized manufacturing protocol is a potentially promising cell-based
drug delivery system to induce acquired immunity.
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1. Introduction

Despite significant advances in cancer therapy such as surgical techniques, radiotherapy, and systemic
therapy including immune checkpoint inhibitors [1–6], it remains extremely challenging to treat advanced
cancers involving organ systems and distant metastasis. Therapeutic peptide vaccines targeting
tumor-associated antigens (TAAs) for cancer immunotherapy have been in development for decades [7].
The efficacy of peptide vaccines is dependent on the peptide selected for TAAs, peptide formulation,
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and combined adjuvant [8,9]. Wilms’ tumor 1 (WT1) molecules are expressed in various types of solid
tumors; therefore, a peptide vaccination targeting this molecule has priority as an immunotherapy for
cancer patients [10]. Hailemichael et al. reported that incomplete Freund’s adjuvant, Montanide ISA51,
in cancer peptide vaccines induced persisting vaccine depots [11]. Montanide ISA51 was used in peptide
formulation [9], triggers specific T-cell sequestration, dysfunction, and deletion at the vaccination site. In
other words, peptide vaccination may be insufficient to recruit TAAs specific cytotoxic T lymphocytes (CTLs)
to tumor sites, appropriate adjuvants and/or delivery systems may be useful to exert antitumor immunity.

On the basis of cancer vaccination as an immunotherapy, dendritic cells (DCs) play central roles in
antigen uptake, processing, and delivery to primed naïve T cells in lymphoid organs [12]. DCs are native
adjuvants to immunogenicity and act as cell-based drug delivery systems in cancer immunotherapy.
Antigen-presenting-cell-based immunotherapy with active DCs has been reported for the induction
of efficient immunity against cancer antigens [13]. DC vaccines using tumor lysates are expected to
uptake TAAs [14–16], and it has been reported that autologous DCs pulsed with oxidized autologous
whole-tumor cell lysate amplify T cells against the individual neoantigens of patients [17]. DC vaccines
pulsed with WT1 peptides, synthesized artificially, were previously shown to be safe and feasible
with few adverse reactions in patients with advanced cancer [18–25]. Furthermore, WT1-pulsed DC
vaccines primed with low-dose rhG-CSF are expected to achieve higher acquired immunogenicity [25].
The establishment of a standardized protocol for the production of DC vaccines targeting TAAs is
considered useful for the development of DC vaccines equipped with antitumor immunity.

The large-scale preparation of a DC vaccine for clinical use with homogeneous, mature,
and functional profiles is a prerequisite for achieving efficacious cancer immunotherapy [26].
Autologous monocyte-derived DCs are conventionally manufactured using granulocyte-macrophage
colony-stimulating factor (GM-CSF) and interleukin (IL)-4 and matured via exposure to OK-432
(streptococcus preparation; pharmaceutical agent) and prostaglandin E2 (PGE2) using an adherent
culture standardized protocol for clinical trials [18–24]. Mechanistically, OK-432 promotes the
functional maturation of immature IL-4-DCs through ligation of Toll-like receptor (TLR) 2, TLR4 [27],
and TLR9 [28], and this maturation is correlated with the upregulated expression of CD80, CD83, and
CD86 [29–31], thereby promoting the effective induction of antigen-specific T cells [29]. The combined
treatment of mature IL-4 DCs with OK-432 and PGE2 results in the upregulation of CD197 (CCR7),
which is associated with migration to lymph nodes [31]. OK-432 also induces the production of IL-12
by matured DCs without increasing the production of immunosuppressive cytokines such as IL-10.

Floating non-adherent cells and adherent cells on a culture dish are observed during DC
preparation, differing in each patient. The harvesting of adherent cells from a culture dish by scraping
inevitably causes a decrease in viability and recovery of the DC/monocyte ratio. It is reported that
bone-marrow-derived DCs, which consist of non-adherent and adherent cells, may potentiate either
tolerogenicity or pro-tumorigenic responses [32]. Heterogeneity of DCs leads to uncertainty of efficacy in
cancer immunotherapy. Whereas the technology for the generation of non-adherent monocyte-derived
DCs using non-adherent conditions have been previously established [33], the functional analysis of
these DCs has not been sufficiently evaluated.

TAA peptides are loaded to activated DCs just before administration for clinical use [18–24].
Feuerstein et al. reported a method for producing DCs with preloaded tetanus toxoid or influenza
matrix or melan-A antigen peptides before cryopreservation so they are ready to use after thawing [34].
Several groups performed a functional analysis of DC vaccines preloaded with antigen. The ability to
stimulate T-cell proliferation by antigen-preloaded DCs has been well evaluated [35,36]; however, their
induction of antigen-specific CTLs has not been fully determined.

Here, we developed DCs pre-pulsed with WT1 peptides in low-adhesion culture maturation
(WT1-DCs). Quality tests (viability, phenotype, and function) of WT1-DCs were performed, and the
findings were compared with those of conventional DCs (cDCs) prepared from adherent manufacturing
systems. Furthermore, we evaluated the induction of WT1-specific CTLs in cancer patients who
received WT1-DC administration.
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2. Materials and Methods

2.1. Ethics and DC Preparation

2.1.1. New Approach to Manufacture a DC Vaccine

DCs were generated in compliance with Good Gene, Cellular, and Tissue-based Products
Manufacturing Practice. To generate a DC vaccine, processing was validated under the clinical
study approved by the Ethical Committee of Kanazawa Medical University (approval number G131).
A preclinical study was taken as an accompanying study of the DC vaccination therapy performed
in patients with cancer. The DC vaccination study (approval number PC4160014, 10 June 2016) was
approved by the Kanazawa Medical University Certificated Committee for Regenerative Medicine
(Class III technologies) (approval number of the Committee NB4150006) according to the Act on the
Safety of Regenerative Medicine introduced in Japan on 25 November 2014 [37], and all investigations
were performed according to the Declaration of Helsinki.

Peripheral blood mononuclear cell (PBMC)-rich fraction was collected using leukapheresis with a
Spectra Optia® cell separator (Terumo BCT, Inc., Tokyo, Japan). PBMCs were subsequently isolated
using a Ficoll-Plaque Premium (GE Healthcare, Piscataway, NJ, USA) density gradient. The collection
and use of blood complied with relevant guidelines and institutional practices from Ethics Committees
of Kanazawa Medical University. Written informed consent was obtained from all patients.

The antigenic profiles of the mature DCs (mDCs) were determined to be CD11c+, CD14−, human
leukocyte antigen (HLA)-DR+, HLA-ABC+, CD80+, CD83+, CD86+, CD40+, and CCR7+ using flow
cytometry [25]. The criteria for DC vaccine administration were as follows: purity (defined as >90% of
CD86+HLA-DR+ cells), >70% viability, mDC phenotype, negative for bacterial and fungal infection
after 14 days, presence of endotoxin ≤0.05 EU/mL, and negative for mycoplasma.

2.1.2. DC Generation

Conventional DCs (cDCs) were generated using previously reported adhesion protocols [18–24].
Autologous PBMCs (2 × 107) from patients were suspended in 6 mL of AIM-V medium
(Thermo Fisher Scientific, Waltham, MA, USA) and placed into 100-mm adherent culture dishes
(Primaria; BD Biosciences, San Jose, CA, USA). After removing non-adherent cells, 50 ng/mL of
GM-CSF (Gentaur, Brussels, Belgium) and 50 ng/mL of IL-4 (R&D Systems, Inc., Minneapolis, MN,
USA) were added the following day, and the cells were cultured for 5 days to generate immature
DCs. Immature DCs were subsequently stimulated with a maturation cocktail containing 10 µg/mL of
OK-432 (streptococcal preparation; Chugai Pharmaceutical Co., Ltd., Tokyo, Japan) and 50 ng/mL of
prostaglandin E2, PGE2 (Daiichi Fine Chemical Co., Ltd., Toyama, Japan) for 24 h to generate mature
DCs. Alternatively, WT1-DCs were prepared; PBMCs were again placed into adherent culture dishes
(Primaria) in AIM-V medium. After removing non-adherent cells, 100 ng/mL of GM-CSF and 50 ng/mL
of IL-4 (Miltenyi Biotec, Bergish Gladbach, Germany) were added the following day, and the cells
were cultured for five days to generate immature DCs. These were subsequently stimulated with a
maturation cocktail containing 10 µg/mL of OK-432, 10 ng/mL of PGE2 (Kyowa Pharma Chemical Co.,
Ltd., Toyama, Japan) and 20 µg/mL of the WT1 peptides reconstituted with DMSO (for WT1-235 killer
peptide: CYTWNQMNL, residues 235–243; for WT1-34 helper peptide: WAPVLDFAPPGASAYGSL,
residues 34–51; PEPTIDE INSTITUTE, INC., Osaka, Japan) for 24 h in low-attachment culture dishes
(Prime Surface; Sumitomo Bakelite, Tokyo, Japan) to generate WT1-DCs.

2.2. Functional Analyses on the Obtained mDCs

2.2.1. Phenotyping of DCs

Fluorescein isothiocyanate (FITC)- or phycoerythrin (PE)-conjugated monoclonal antibodies
(mAbs) against the following DC markers were used: CD11c, CD80, CD86, PD-L1, PD-L2 or HLA-ABC



Pharmaceutics 2020, 12, 305 4 of 17

(BD Pharmingen, San Diego, CA, USA); CD14, CD40, CD83, and HLA-DR (eBioscience, San Diego,
CA, USA); and CD197 (R&D Systems). All analyses were performed on a FACSCalibur flow cytometer
(BD Biosciences). After staining cells with each antibody, dead cells were removed by propidium
iodide staining (Sigma-Aldrich, Steinheim, Germany), and live cells gated on forward scatter (FSC)
and side scatter (SSC) without the lymphocyte population were examined for immunophenotyping.

2.2.2. Pinocytotic and Phagocytic Assay

To evaluate pinocytotic or phagocytic activity, 100 µg/mL FITC-dextran (Molecular Probes, Eugene,
OR, USA) for pinocytotic activity or 10 µg/mL DQ-ovalbumin (Molecular Probes) for phagocytic
activity was added to the maturation cocktail. After the maturation process on DCs at 37 ◦C for 24 h,
DCs were washed twice with FACS buffer and analyzed using flow cytometry.

2.2.3. Measurement of Cytokine Production

Immature DCs were seeded at a density of 2 × 106 cells/mL with maturation cocktail onto adherent
or low-attachment 24-well plates. After maturation of DCs at 37 ◦C for 24 h, the collected supernatants
were subsequently subjected to ELISA for IL-12p70, interferon (IFN)-γ, IL-10, and transforming growth
factor (TGF)-β protein expression (R&D Systems) according to the manufacturers’ protocols.

2.2.4. CTL Induction in Vitro

PBMCs from patients compatible with HLA-A*24:02 were used to generate mDCs. For post-pulsing
with peptide, cryopreserved cDCs were thawed by heat block at 37 ◦C for 5 min and washed with
saline. Then, cDCs were pulsed with 100 µg/mL of cytomegalovirus (CMV) peptide (QYDPVAALF,
GenScript, Piscataway, NJ, USA) at 4 ◦C for 30 min. After washing cells twice with saline, cDCs
were used as a stimulator. Alternatively, DCs pre-pulsed with CMV peptide in low-adhesion culture
maturation (CMV-DCs) were thawed by heat block at 37 ◦C for 5 min, washed twice with saline, and
subsequently used as the stimulator. CD8+T cells separated from HLA-A*24:02-autologous PBMCs
using CD8 Microbeads (Miltenyi Biotec) were applied as responder cells. Stimulator (1 × 105) and
responder cells were co-cultured at a ratio of 1:10 in CTL medium supplemented with IL-2 (5 ng/mL;
PeproTech, Rocky Hill, NJ, USA), IL-7 (5 ng/mL; R&D Systems), IL-15 (10 ng/mL; PeproTech), and
2-mercapto-ethanol (50 µg/mL; Bio-Rad Labs, Richmond, CA, USA). AIM-V media supplemented
with 10% fetal bovine serum (Biosera, Dominican Republic) was added depending on cell expansion.
After five days of cultivation, a half-medium change was performed by adding cDCs post-pulsed
with CMV peptide or CMV-DCs in CTL medium. After three to five days of further incubation, the
cells were harvested and 1 × 106 cells were stained with FITC-conjugated anti-CD8 (Beckman Coulter,
Inc., Brea, CA, USA) and APC-conjugated anti-CD3 (eBioscience) mAbs and T-select HLA-A*24:02
CMV pp65 Tetramer-QYDPVAALF (Medical and Biological Laboratories Co., Ltd., Nagoya, Japan) for
analysis via flow cytometer. Dead cells were excluded by 7-AAD (BD Pharmingen) staining in flow
cytometry analysis.

2.3. WT1-DC Administration

2.3.1. Patients

Small numbers of patients with cancer were enrolled in the DC vaccination study to evaluate
feasibility using a new WT1-DC vaccine after giving their informed consent. Vaccination was performed
in combination with conventional chemotherapy for each patient. A DC vaccine was manufactured at
the Regenerative Medicine Center, Kanazawa Medical University Hospital (FC4150228) and shipped to
the outpatient clinic, Urata Clinic/SQOL Kanazawa for vaccination therapy. The DC vaccination study
(approval number PC4180002, 23 April 2018) was approved by the Kanazawa Medical University
Certificated Committee for Regenerative Medicine (Class III technologies) (approval number of the
Committee NB4150006). The application requirements and conditions for the DC vaccination study
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were the same as a previous study [19]. The patients enrolled for DC vaccination had undergone
rhG-CSF treatment 24–96 h prior to apheresis as described previously [25]. A total of seven patients with
advanced cancers pathologically diagnosed as WT1 positive adenocarcinoma including stomach (three),
colon/rectum (two), pancreatic (one), and salivary gland (one) cancers were enrolled; of those four
patients compatible with HLA-A*24:02 were evaluated for immunological responses against WT1-CTLs.

2.3.2. WT1-DC Administration

WT1-DCs were suspended in a total volume of 1 mL of saline containing 5% albumin (Japan Blood
Products Organization, Tokyo, Japan), and 1–4 × 107 WT1-DCs were injected at each time according to
the number of DCs in each case for seven sessions (one course). The vaccine was intradermally and
bilaterally administered near the axillary region and groin. DC vaccination was administered in seven
sessions every two weeks following the protocol of DC vaccination [19].

2.3.3. Immune Monitoring for WT1-CTLs

PBMCs were obtained before initiating the first vaccination and at the completion of the seventh
vaccination. WT1 tetramer assay to detect WT1-CTLs was performed for patients who carried
HLA-A*24:02. In total, 1 × 106 PBMCs from patients who carried HLA-A*24:02 were stained
with FITC-conjugated anti-CD8 (Beckman Coulter) and APC-conjugated anti-CD3 (eBioscience)
mAbs, and T-Select HLA-A*24:02 modified WT1 Tetramer-CYTWNQMNL-PE or PE-conjugated HIV
envelope/HLA-A*24:02 tetramer (Medical and Biological Laboratories Co., Ltd. MBL, Nagoya, Japan)
served as a negative control. Dead cells were excluded via 7-AAD (BD Pharmingen) staining for flow
cytometry. WT1 tetramer-positive CTLs were defined according to the following criteria: (1) comprising
at least 0.02% of the CD3+CD8+ subset of 50,000–100,000 lymphocytes and (2) forming a clustered but
not diffuse population [38].

Enzyme-linked immunospot (ELISpot) assays were performed using pre-coated human IFN-γ
ELISpot PLUS kits (Mabtech, Nacka Strand, Sweden) to examine WT1-specific IFN-γ production by T
cells referred to as CTLs. In total, 1 × 106 PBMCs were seeded in 96-well plates in the presence of 10 µM
WT1-235 killer peptides and WT1-34 helper peptides in AIM-V medium supplemented with 10% FBS.
As a negative control, 10 µM HLA-A*24:02 HIV env (RYLRDQQLL, residues 584–592) (MBL, Nagoya,
Japan), HLA-DRB1*01:01 HIV gag (DYVDRFYKTLRAE, residues 295–307; MBL, Nagoya, Japan), or
DMSO was used. After 18–20 h of incubation, the emerged spots were calculated using an ELISpot
reader (Autoimmun Diagnostika, Strassberg, Germany). Peptide-specific spots were enumerated by
subtracting the spots of the control peptide from those of the WT1 peptides and expressed as the mean
number of peptide-specific spots per 1 × 106 PBMCs from duplicated wells. The presence of WT1-CTLs
was defined according to the following criteria: (1) at least 15 WT1-specific spots per 1 × 106 PBMCs
and (2) at least 1.5-fold more WT1-specific spots than negative-control peptide spots [38].

2.3.4. Shipping of WT1-DCs

Cryopreserved WT1-DCs were thawed by heat block at 37 ◦C for 5 min, washed twice with saline,
and suspended in saline containing 5% albumin (Japan Blood Products Organization, Tokyo, Japan)
before being enclosed in a tube. After packaging the tube with BARRIA POUCH (SUGIYAMA-GEN,
Tokyo, Japan), the tube was shipped by BioBoxPLUS (SUGIYAMA-GEN) to the outpatient clinic, Urata
Clinic/SQOL Kanazawa. A temperature range of 2 ◦C to 8 ◦C inside the BioBoxPLUS during shipping
was monitored by a temperature data logger, TEMPRETRIEVER (MadgeTech, Warner, NH, USA).

2.4. Statistical Analysis

The Wilcoxon signed-rank test was used to compare differences among groups. All statistical
analyses were performed using IBM SPSS Advanced Statistics software, version 23.0 (IBM Japan,
Tokyo, Japan). Differences were considered statistically significant at a p-value < 0.05.
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3. Results

3.1. WT1-DCs Show Remarkable Cluster and Increase in Viability and Recovery of DC/Monocyte Ratio
Compared to Conventional DCs (cDCs)

In preparations of conventional DCs (cDCs) by using the adherent protocol, strong adherence
to the culture dish decreases cell viability and recovery of the DC/monocyte ratio depending on the
patient. For administration of cDC vaccines, cryopreserved cDC vaccines required post-pulsing with
TAAs just prior to clinical use (Figure 1a, upper panel). Here, we developed a preparation of mature
DCs pre-pulsed with WT1 peptides (WT1-DCs) in low-adherent conditions (Figure 1a, lower panel).
After maturation stimulus with OK-432 (streptococcal preparation), PGE2, and WT1 peptides, floating
cells were harvested by washing with medium, and cell morphology was observed by microscopy
(Figure 1b, upper panel). Interestingly, remarkable floating non-adherent clusters were observed in
WT1-DCs. Although cDCs resided in culture dishes after harvesting, almost no WT1-DCs adhered to
the low-adherent culture dish (Figure 1b, lower panel). Compared with cDCs, WT1-DCs showed higher
viability and recovery of the DC/monocyte ratio (Figure 1c; viability median: cDCs, 86%; WT1-DCs,
93%; yield median: cDCs, 27%; WT1-DCs, 30%), and analysis using a flow cytometer showed purity
>70% in each DC vaccine (Purity median: cDCs, 81%; WT1-DCs, 81%).
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Figure 1. DCs pre-pulsed with Wilms’ tumor (WT1) peptides in low-adhesion culture maturation
(WT1-DCs) form remarkable floating clusters and show higher viability and recovery of the
DC/monocyte ratio. (a) In the preparation of conventional DCs (cDCs) by using the conventional
adherent protocol, immature DCs were suspended with mature medium containing OK-432 and
PGE2 and seeded on an adherent culture dish. After 24 h cultivation, floating and loosely attached
cells were collected by washing with medium and strongly attached cells were collected by scraping.
Alternatively, for the preparation of WT1-DCs, immature DCs were suspended with mature medium
containing OK-432, PGE2, and WT1 peptides, seeded on a low-adherent culture dish, and harvested by
washing with medium after 24 h. (b) Observation of cells using phase-contrast microscopy before and
after harvesting by washing with medium. White bar indicates 400 µm. (c) Live and dead cells were
measured by trypan blue staining for comparison of viability and recovery of the DC/monocyte ratio.
Purity of DCs was measured by flow cytometer. PI-negative and gated cell population from FSC and
SSC, excluding lymphocytes, were defined as DCs (n = 6). * p < 0.05.
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3.2. Comparison of Phenotypes of WT1-DCs and cDCs

We found significant differences between WT1-DCs and cDCs adherent and low-adherent culture
environments, as well as between either the presence or absence of antigen peptides in the DC
maturation process (Figure 1). To determine the release criteria of WT1-DCs for vaccination, the
phenotypes were analyzed by flow cytometry. The expression of CD11c, CD14, CD40, CD80, CD83,
CD86, CD197 (CCR7), HLA-ABC, HLA-DR, PD-L1, and PD-L2 were analyzed (Figure 2). Compared
with cDCs, WT1-DCs showed slightly higher expression of monocyte marker CD14 (median: cDCs,
0.94%; WT1-DCs, 2.2%), whereas expression of costimulatory molecule CD80, and immune checkpoint
factor PD-L2 were lower compared with those of cDCs (CD80 median: cDCs, 86%; WT1-DCs, 76%;
PD-L2 median: cDCs, 52%; WT1-DCs, 18%). Other cell surface antigens showed equivalent expression,
and there was no significant difference between cDC and WT1-DCs in expression of CD86 or HLA-DR,
which are the minimum criteria for DC vaccines (CD86 median: cDCs, 99%; WT1-DCs, 99%; HLA-DR
median: cDCs, 99%; WT1-DCs, 99%). From these results, the release criteria of WT-DCs was defined as
>90% of CD86+ and HLA-DR+ cells.
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Figure 2. Comparison of dendritic cell (DC) phenotypes. After harvesting cDCs and WT1-DCs prepared
from the same donors, DCs were stained with antibodies for DC markers and analyzed using a flow
cytometer (n = 6). The population of positive cells was determined in propidium iodide (PI)-negative
and DC-gated populations excluding lymphocytes from forward and side scatter. * p < 0.05.
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3.3. WT1-DCs Have Abilities of Lower Pinocytosis and IL-10 Production Compared with cDCs

To validate the potency of pre-pulsing of antigen and processing during maturation, pinocytosis
and phagocytosis activities were examined during the maturation of DCs. Pinocytosis was observed by
using FITC-dextran. Compared with cDCs, WT1-DCs showed slightly lower FITC ∆ mean fluorescence
intensity (∆MFI) (median of ∆MFI: cDCs, 58; WT1-DCs, 54) (Figure 3, left panel). A lower pinocytosis
activity was observed in WT1-DCs. In addition, analysis using DQ-ovalbumin, a self-quenched albumin
that fluoresces upon proteolytic degradation, revealed that the fluorescence intensity generated from
each DC was equivalent. These results indicated that the ability of cDCs and WT1-DCs to phagocytose
was equivalent (Figure 3, right panel). Furthermore, the production of cytokines involved in the
induction of CTLs was measured (Figure 4). Production of IL-12p70 and IFN-γ, which promote CTL
induction, were equivalent. Despite a varying level based on each patient, WT1-DCs generated from
three of seven showed higher IL-12p70 production than cDCs. The WT1-DCs also produced higher
IFN-γ than cDCs. No change was observed in TGF-β secretion; however, a lower production of
IL-10 was observed in WT1-DCs compared with cDCs (cDCs, 293 pg/mL; WT1-DCs, 39 pg/mL). Thus,
compared with cDCs, WT1-DCs exhibited lower phagocytosis and IL-10 production.
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3.4. Antigen-Presentation Ability of DCs Pre-Pulsed with CMV Peptide in Low-Adhesion Culture Maturation
(CMV-DCs) are Similar to cDCs Post-Pulsed with CMV Peptide

To evaluate the antigen-presenting ability to activate CTLs, we prepared DCs pre-pulsed with
CMV peptide in low-adhesion culture maturation (CMV-DCs). Compared with a culture of CD8+ T
cells alone, co-culture of CD8+ T cells with cDCs post-pulsed with CMV peptide or CMV-DCs resulted
in a marked increase in CMV-specific CTLs (Figure 5, upper panel; CD8+ T cells, 0.1%; CD8+ T cells
+ cDCs post-pulsed with CMV, 9.9%; CD8+ T cells + CMV-DCs, 9.1%). There was no significant
difference in the ratio of CMV-specific CTLs induced by cDCs post-pulsed with CMV and CMV-DCs
(median: cDCs post-pulsed with CMV, 5.9%; CMV-DCs, 6.3%) (Figure 5, lower panel).
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Figure 5. cDCs post-pulsed with cytomegalovirus (CMV) peptide and DCs pre-pulsed with CMV
peptide in low-adhesion culture maturation (CMV-DCs) show equivalent antigen-presenting abilities.
Representative data of CMV-specific cytotoxic T lymphocytes (CTLs) induced by cDCs post-pulsed
with CMV peptide or CMV-DCs (upper panel). The cultivation of CD8+ T cells only was the negative
control. The percentage in each panel indicates the ratio of CMV-tetramer+ CTLs in CD8+ T cells. The
lower panel shows a summary of CMV-specific CTLs induction in CD8+ T cells (n = 6). †, post-pulsed
with CMV peptide. NS, not significant.

3.5. Administration of WT1-DCs Induces WT1-Specific CTLs in Patients with Cancer

As an interim analysis, four patients having HLA-A*24:02 received the WT1-DCs vaccine
were evaluated, which had been shipped to the neighboring clinic within 1 h after release.
Immunohistochemistry was also performed for WT1 antigens on paraffin embedded tissues before
enrolling the study (data not shown). The condition of all vaccines met the administration criteria.
Immune monitoring using tetramer analysis and ELISpot assays were performed after one course of the
DC vaccination. Of the four patients completing one course of WT1-DCs vaccination three had gastric
cancer and one had salivary gland cancer. Pre-DC vaccination status, post-DC vaccination status, and
immunological responses are shown in Table 1; Table 2. WT1-CTLs from three male patients with
gastric cancer were detected using WT1-tetramer analysis (Figure 6). The detection of IFN-γ-producing
cells showed elevation after WT1-DCs vaccination in three patients using ELISpot assays (Figure 6).
Conversely, in patient No.4 with salivary gland cancer, the immunological responses failed as negative
following to the criteria of immune monitoring for WT1-CTLs [38].
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Table 1. Clinical characteristics of patients treated with the WT1-pulsed DC vaccine.

Patient
No.

Age
(Years) Sex Disease

Pre-DC Vaccination Status

Therapy Stage (Operation) Chemotherapy

3 60 M Gastric
cancer

post operation; post
chemotherapy II S1

4 57 M Salivary
gland cancer

post operation; post
radiation; post
chemotherapy

IV CDDP,
Trastuzumab

5 58 M Gastric
cancer

post operation;
during

chemotherapy
IV XELOX

6 68 M Gastric
cancer

post chemotherapy;
post operation; DC

vaccination
IA non

Abbreviations: DC(s), dendrititic cell(s); S1, Tegafur/gimeracil/oteracil; CDDP, cisplatin; XELOX, Capecitabine +
oxaliplatin; WT1, Wilms’ tumor 1.

Table 2. Immune monitoring of WT1-CTLs in patients treated with the WT1-pulsed DC vaccine.

Patient HLA Typing DC Vaccination Immunological
Responses

No. A DR DQ Status
(Stage)

Total No. of
DCs (×107)

Combination
chemotherapy ELISPOT * Tetramer

3 2402 - 0405 0901 0201 - CR 12 non negative positive

4 0301 2402 0403 1301 0201 - IV 8 non negative negative

5 2402 2601 0901 1101 0201 - IV 9 XELOX negative positive

6 1101 2402 0405 - 0501 - IV 7 non positive positive

Abbreviations: DC(s), dendritic cell(s); S1, Tegafur/gimeracil/oteracil; XELOX, Capecitabine + oxaliplatin; ELISPOT,
enzyme-linked immunospot assay; WT1, Wilms’ tumor 1; * the IFN-γ production from WT1-CTLs was defined
according to the criteria [38].

In patient No. 3 (upper panel in Figure 6), the induction of WT1-CTLs was observed via tetramer
analysis (Before Vac., 0.01%; After Vac., 0.10%). Despite the increased level of WT1 peptides according to
ELISpot assays, the non-specific elevation of IFN-γ-producing cells was found in the control stimulation
after one course of WT1-DC vaccination. Therefore, the specificity for detecting WT1-CTLs could not
be confirmed according to the previously reported criteria [39]. In patient No. 5 (middle panel in
Figure 6), an increased number of WT1-CTLs was detected after WT1-DC vaccination (Before Vac.,
0.00%; After Vac., 0.05%). Conversely, a slight increase in the number of spots containing WT1 peptides
was observed after one course of vaccination, the number of spots containing control peptides also
increased similarly. Patient No. 6 (lower panel in Figure 6) received the WT1-DCs vaccine under this
protocol but had also undergone cDCs vaccination study using the previous protocol with post-pulsed
WT1 peptides [approval number PC4160014, June 10, 2016]. In this case, the number of WT1-CTLs
increased after the second course of DC vaccination (before second Vac., 0.16%; after second Vac.,
0.19%) on the positive baseline of both tetramer analysis and ELISpot assays. The number of IFN-γ
spots further increased after the second course of DC vaccination pulsed with WT1-235 killer and
WT1-34 helper peptides compared with that after the first session without additional chemotherapy.
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Figure 6. Immune monitoring of WT1-specific CTLs (WT1-CTLs) in patients after WT1-DC
administration. Patients No. 3 and No. 5 received one course of WT1-DC vaccination. Thereafter, the
induction of WT1-CTLs was detected via WT1 tetramer analysis, and IFN-γ release from WT1-CTLs
was assessed using Enzyme-linked immunospot (ELISpot) assays. Patient No. 6 received a DC vaccine
post-pulsed with WT1 peptides using the previous protocol. After the second course of administration
of the WT1-DC vaccine, the maintenance of WT1-CTL function was evaluated. The percentages in
the dot plot panels show the ratio of WT1-CTLs in CD8+ T cells. The opened or closed bars indicate
the numbers of spots from PBMCs stimulated with control or WT1 peptides, respectively. The mean
number of spots from duplicate wells is shown.
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4. Discussion

In this study, we performed phenotypic and functional analyses on WT1-DCs pre-pulsed with
WT1 peptides in low-adhesion culture maturation, and we evaluated active WT1-CTLs after WT1-DC
administration in patients with cancer. Compared with cDCs, WT1-DCs formed floating clusters and
increased in viability and recovery of the DC/monocyte ratio. By contrast, co-stimulatory molecule
CD80 and the immune checkpoint factor PD-L2 on WT1-DCs expressed lower levels than those on cDCs.
In addition, the production of immune suppressive cytokine IL-10 from WT1-DCs was extremely low.
Nevertheless, different DC maturation protocols (cDC vs. WT1-DC) did not affect antigen-presentation
ability. Furthermore, immune monitoring of WT1-CTLs as practical application of the total process
including shipping of the WT1-DC vaccine after WT1-DC-administration demonstrated that WT1-DCs
induced WT1-CTLs in patients with cancer.

In the conventional adherent protocol for monocyte-derived DC generation, adherence of cells to
the culture plate was dependent on the patient from whom the cells originated (Figure 1b). Recovery
of adherent cells by scraping causes a decrease in cell viability and recovery of the DC/monocyte ratio
yield. WT1-DCs generated from a low-adhesion dish were easy to recover by washing with medium
and showed a high viability and recovery. Low expression of DC-specific intercellular adhesion
molecule-3-grabbing non-integrin (DC-SIGN, also called CD209) and PD-L2 has been reported for
these populations [33]. DC-SIGN is involved in antigen uptake [39]; thus, it is speculated that the
reduction of pinocytosis might have been caused by low DC-SIGN expression on WT1-DCs. However,
WT1-DCs have an equivalent capacity for antigen presentation as cDCs (Figure 5). The difference of
pinocytosis between cDCs and WT1-DCs did not affect CTL induction in vitro.

Our phenotypic analysis of WT1-DCs also showed that CD80 and PD-L2 expression were
significantly reduced compared to cDCs. The streptococcal preparation OK-432 engages TLR2 or
TLR4 [29] and promotes maturation of human monocyte-derived DCs correlated with increased
expression of CD80, CD83, and CD86 [29–31]. The downregulation of CD80 and PD-L2 together with
the remarkable cluster formation that occurs with WT-DCs might therefore reduce the signaling of
OK-432 via TLRs and affect the maturation. We expected to produce non-adherent DCs equipped with
homogeneous in phenotype and function by using the optimized manufacturing protocol of WT-DCs.
WT1-DCs exhibited heterogeneous phenotype and function, the control of cluster formation may be an
important issue for the progress of homogeneous WT1-DCs. Size-dependent hepatic differentiation of
human induced pluripotent stem (iPS) cells has been reported [40]. The control of cell mass size is
important for the efficiency and reproducibility of differentiation of functional cells from iPS cells. The
regulation of cluster size of DCs could contribute to generating homogenous DC vaccines equipped
with the ability to induce high acquired immunity.

Compared with cDCs, WT1-DCs showed an equivalent production of IL-12p70, IFN-γ, and
TGF-β but a low production of the immunosuppressive cytokine IL-10. IL-10 production from
antigen-presenting cells is specific for TLR2 agonists [41–44]. We speculate that insufficient OK-432
signaling through TLR2 might led to a decrease in the IL-10 production of WT1-DCs. Mycobacterium
avium induces PD-L2 expression on mouse bone marrow-derived dendritic cells in an IL-10-dependent
manner via the TLR2-p38-MAPK signaling pathway [45]. Therefore, the low PD-L2 expression observed
in WT1-DCs may be due to a reduction in IL-10 production, but further study is needed to test this.

Knockdown of PD-L1 and PD-L2 in monocyte-derived DCs enhances CTL induction [46], and
IL-10 has known immunosuppressive effects [47]. Therefore, reduced PD-L2 and IL-10 in WT1-DCs
were expected to enhance their induction of CTLs. However, in vitro CTL induction revealed that
antigen-presentation abilities were equivalent in cDCs and WT1-DCs (Figure 5). Nevertheless, some
suppression of PD-L1 and PD-L2 expression is needed to enhance CTL induction. DC vaccines with
siRNA silencing of PD-L1 and PD-L2 augment the expansion and function of CD8+ T cells specific for
minor histocompatibility antigens [48]. Indeed, clinical trials for hematological malignancies using
DCs with siRNAs against PD-L1 and PD-L2 (NCT02528682) are expected to lead to the development of
promising DC vaccines.
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The acquisition of WT1-CTLs as a proof-of-concept drug delivery in vivo was observed in patients
with cancer who received WT1-DCs vaccination. The effectiveness of WT1-DCs to induce acquired
immunity was confirmed. Specifically, IFN-γ production was negative in two of three cases treated with
WT1-DCs (Table 1, Table 2 and Figure 6). It is important to deliberate the possible reason why WT1-CTLs
showed IFN-γ negativity to understand its antitumor activity. WT1-DCs vaccination was conducted
without any adjuvants in this study, which may have led to a failure in the induction function in vivo.
Administration of WT1-DCs with OK-432 might be essential for achieving sufficient induction of
functional WT1-CTLs in patients with cancer. In fact, the induction of IFN-γ producing WT1-CTLs was
observed after the vaccination with WT1-post-pulsed DCs in combination with OK-432 in vivo [19,49].
It has been reported that OK-432 induces IL-12 production from human PBMCs and promotes a Th1
dominant state that is suitable for inducing antitumor immunity [50,51]. Moreover, OK-432 significantly
enhanced in vitro proliferation of CD4+ effector T cells by regulatory T (Treg)-cell suppression, and
this blocking effect depended on IL-12 derived from antigen-presenting cells [52]. The induction of
IFN-γ producing WT1-CTLs without an increase in Treg cells was observed after the administration
of WT1-post-pulsed DCs with OK-432 [53]. Several preclinical and clinical studies suggest that Treg
cells prevent the development of effective antitumor immunity in tumor-bearing patients and promote
tumor progression [54]. The activity of OK-432 to Treg-cell suppression could be beneficial for the
induction of functional WT1-CTLs in vivo. Further clinical studies using WT1-pre-pulsed DCs with
OK-432 for patients with cancer would be needed to monitor the induction of IFN-γ producing
WT1-CTLs as wells as to improve the immune environment in vivo.

5. Conclusions

In conclusion, we established a protocol for the preparation of WT1-DCs pre-pulsed with WT1
peptides in optimized culture maturation. WT1-DCs exhibit high viability, recovery, and equivalence
in in vitro CTL induction compared with cDCs. After the administration of WT1-DCs, immune
monitoring demonstrated that WT1-DCs induce acquired immunity in patients with cancer. DCs
function as adjuvants in vivo and are expected to be applied to cancer treatments that promote
long-lasting effects with few side effects. WT1-DC vaccination for patients with cancer demonstrated
the safety and immunogenicity in vivo. Prospective clinical trials are required to evaluate the efficacy
of acquired immunity in response to WT1-DC vaccination in large number of cancer patients.

6. Patents

S.S. and T.K. are inventors of the patent for the manufacturing of a DC vaccine using
G-CSF (PCT/JP/2014/053676). H.S. is the inventor of the WT1 patent (PCT/JP2010/057149 and
PCT/JP2006/323827).
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