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ABSTRACT: We present a method to evaluate the free
energies of ligand binding utilizing a Monte Carlo estimation
of the configuration integrals concomitant with uncertainty
quantification. Ensembles for integration are built through
systematically perturbing an initial ligand conformation in a
rigid binding pocket, which is optimized separately prior to
incorporation of the ligand. We call the procedure producing
the ensembles “blurring”, and it is carried out using an in-
house developed code. The Boltzmann factor contribution of
each pose to the configuration integral is computed and from
there the free energy is obtained. Potential function uncertainties are estimated using a fragment-based error propagation
method. This method has been applied to a set of small aromatic ligands complexed with T4 Lysozyme L99A mutant. Microstate
energies have been determined with the force fields ff99SB and ff94, and the semiempirical method PM6DH2 in conjunction
with continuum solvation models including Generalized Born (GB), the Conductor-like Screening Model (COSMO), and SMD.
Of the methods studied, PM6DH2-based scoring gave binding free energy estimates, which yielded a good correlation to the
experimental binding affinities (R2 = 0.7). All methods overestimated the calculated binding affinities. We trace this to insufficient
sampling, the single static protein structure, and inaccuracies in the solvent models we have used in this study.

■ INTRODUCTION

Determination of binding affinities for protein−ligand com-
plexes presents one of the most complicated and attractive
problems of computational chemistry.1,2 The simplest methods
attempting to suggest a solution to this problem (e.g., docking)
mostly rely on end-point methods that estimate energies of
single static complex structures.3 They usually neglect factors
such as receptor flexibility, ligand strain upon binding, as well as
various entropy effects.4−7 Some sampling is added on top of
this strategy in methods such as Molecular Mechanics-
Poisson−Boltzmann/Surface Area (MM-PBSA) and Molecular
Mechanics-Generalized Born/Surface Area (MM-GBSA),
which evaluate the absolute free energies of the protein and
the ligand before and after binding.8−11 Both docking and the
latter methods decompose the free energy into enthalpy and
entropy contributions. In MM-PBSA and MM-GBSA, the
enthalpies are obtained from the average energies from the
molecular mechanics trajectories, which when combined with
an entropy and a solvation free energy estimate using a
continuum solvent model results in the final free energy
estimate.8,12 In order to predict the free energy of binding
accurately with this protocol, the first requirement is to
correctly predict the absolute free energies of the bound and
unbound species. However, these are typically large quantities,
and we are interested in the small differences between them, so
even a small error (percentage-wise) in their prediction might
have a significant impact on the free energy difference ΔG.
Hence, force field accuracy is very important in this exercise.

Another tool to calculate relative free energies of binding is
alchemical free energy calculations, which modify a molecular
entity into another via nonphysical (“alchemical”) pathways.
Via thermodynamic cycles, incorporating these alchemical
transformations, free energy changes of physical processes can
be evaluated.13−17 It avoids decomposition of free energy
change into individual thermodynamic terms by utilizing the
ratio of the partition functions of the involved species, which
eliminates the need to evaluate enthalpy and entropy
contributions explicitly. One issue associated with alchemical
calculations is obtaining enough sampling to generate a
sufficient number of uncorrelated configurations and this is
done using force fields coupled with molecular dynamics (MD)
or Monte Carlo (MC) sampling.16 Thus, the sampling would
always be based on the biases inherent in the force field
employed. Moreover, to collect enough uncorrelated config-
urations to feed into the partition functions would be costly,
especially for larger biological systems.16 Ending up with biased
results is also possible with insufficient sampling when
computed free energies depend on the choice of the initial
receptor or ligand structure.18−20 The Mining Minima
algorithm is worth noting here because it ties many aspects
of the aforementioned free energy methods together. The
attempt to systematically search for multiple local potential
energy wells makes it unique among other end-point methods.
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Moreover, it computes the free energies of binding directly
from the configuration integral contributions of the sampled
local minima. However, just as the MM-PBSA and MM-GBSA
protocols do, it estimates the absolute free energies of the
protein, ligand, and their complex, which runs the risk of
introducing errors when the difference between large numbers
is taken.21,22

Recently, various types of restrained or unrestrained
MD23−28 and potential of mean force simulations29−31 have
appeared where observed ligand binding or ligand removal
events23,25 provide another avenue to study protein−ligand
binding. These simulations are very expensive and are subject
to model uncertainties but do provide unique insight into
binding events.
Regardless of their sophistication and practicability levels, all

of these methods come with their intrinsic errors, which can be
classified as systematic and random. Systematic errors in any
measured or calculated quantity are rather easy to handle: They
shift the result to a certain direction and, thus, are correctable.
The random errors, on the other hand, may impact the
determined energies in both fashions, up or down, and there is
no way to correct for them in a post hoc manner.32 We have
shown that one way to reduce the amount of this type of error
is to include multiple microstates in the calculations. In other
words, local sampling of the potential energy surface of interest
decreases the random errors statistically.33

In this work, we propose a way to calculate the binding free
energy of protein−ligand complexes directly from microstate
energies utilizing a ratio of configuration integrals, and we then
assess the uncertainty of our estimates with previously derived
error propagation formulas.32,33 We predict the binding
affinities directly from statistical mechanical definitions without
splitting the free energy into enthalpic and entropic terms. This
presents a huge advantage in terms of accuracy and uncertainty
evaluation because introducing more terms into these
calculations tends to propagate the errors originating from
each component and understanding how these component
errors do indeed propagate becomes a much more complicated
task. Additionally, methods to directly calculate entropy are
very challenging for a number of reasons.34−36 Moreover,
commonly used entropy calculation methods such as normal-
mode analysis utilized in methods such MM-PBSA and MM-
GBSA rely on minimized snapshots from trajectories, which
also introduce further uncertainties.35 Estimating the free
energy of binding directly from microstate energies provides a
straightforward way to estimate uncertainties in free energies
directly from the computed energies. We understand how to
propagate the errors contained in microstate energies, which
allows us to directly determine the systematic and random
errors associated with the calculated free energy of bind-
ing.32,33,36 With these aspects of uncertainty determination in
mind, we aimed to create an unbiased ensemble of structures
involved in modeling protein−ligand binding events and
explored the effects of introducing such an ensemble on
binding affinity prediction.
Similar to many other studies aiming to calculate ligand

binding free energies to protein receptors,20,37−41 we apply our
protocol to predict the binding affinities and the associated
uncertainties to the experimentally well-characterized, engi-
neered T4 Lysozyme L99A system.42,43 We are not the first
ones to use this series of T4Lysozyme L99A inhibitors to
explore the power of binding free energy determination
methods. It was subject to several earlier docking and free

energy perturbation (FEP) molecular dynamics (MD)
studies.13,20,37,39,44,45 Moreover, an exhaustive docking study
by Purisima et al. was recently conducted on this system using a
very similar systematic ligand perturbation method to construct
the protein−ligand complex and free ligand ensembles.41 The
authors employed continuum solvent models that they
developed, and this sets a limitation on the applicability and
reproducibility of their protocol by others. Our work is novel in
that it is the first study to offer error bars for binding free
energy predictions, which are also corrected for their systematic
errors. It uses the conventional force fields ff99SB46 and ff9447

in the AMBER1248 package, and the semiempirical
PM6DH249−51 method in MOPAC201252 in conjunction
with the readily available continuum solvent models General-
ized Born (GB),53 Conductor-like Screening Model
(COSMO),54 and SMD55 for scoring purposes, which enhances
the extensibility of the present approach.

■ METHODS
We calculated the binding free energies and their associated
uncertainties on a series of T4 Lysozyme L99A inhibitors.42,43

T4 Lysozyme L99A is a very convenient system for this type of
study due to the hydrophobic, entirely closed binding pocket
facilitated by the L99A mutation. This isolated cavity
accommodates a number of small hydrophobic molecules
with experimentally measured binding affinities. Known
experimental binding free energies allow us to judge the
accuracy of our estimation, which in turn makes it possible for
us to improve our methodology and workflow. Additionally,
dealing with a completely closed, hydrophobic pocket mitigates
some computational artifacts, which could emerge from
computing solvation effects. The protein−ligand complexes
employed have the Protein Data Bank (PDB) IDs 181L, 182L,
183L, 184L, 185L, 186L, 187L, and 188L and these contain
benzene, 2,3-benzofuran, indene, i-butyl benzene, indole, n-
butyl benzene, p-xylene, and o-xylene as ligands, respectively.43

After downloading the protein−ligand complex structures
from the PDB, we separated each complex into their ligand and
protein parts. The protonation states for each protein chain
were obtained with the web server H++ at neutral pH.56 To
prepare the binding pocket for each of these complexes, the
amino acid residues within 5 Å of the ligand in its native PDB
complex pose were relaxed using the ff99SB force field in the
AMBER12 package while weak positional restraints of 10 kcal/
mol·Å2 were applied on the rest of the structure. The relaxation
protocol consisted of 25 000 steps of steepest descent
minimization57 in the gas-phase and was performed in the
absence of the ligand to prevent any structural bias which
would favor certain poses over others. These minimized protein
structures were kept rigid in the remainder of the analysis. The
ligand structures, on the other hand, were optimized at the
density functional theory (DFT) level using the M06L
functional58 in conjunction with the Dunning type aug-cc-
pVDZ basis set.59 The optimized geometries were utilized to
obtain AM1-BCC partial charges and were used in the creation
of the Generalized Amber Force Field (GAFF) parame-
ters,60−63 which were employed in conjugation with both the
ff99SB and ff94 force fields during scoring.
The optimized ligand structures were docked into their

corresponding minimized binding pocket and their positions in
the pocket were optimized using the ff99SB force field with the
generalized Born (GB) solvent model. The ligands were then
systematically translated and rotated using an in-house code.
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This process of systematically moving the ligand consisted of
rotations of the whole ligand about its center of mass, rotating
rotatable bonds within the ligand by 15° increments, and
translating the ligand’s center of mass on an imaginary grid
placed in the binding pocket with a spacing of 0.5 Å. We
termed this process “blurring”. If the perturbation yielded a
new, chemically meaningful pose that does not place the ligand
atoms on top of the receptor atoms or induce other significant
clashes, it was then appended to the ensemble of protein−
ligand geometries. The free ligand structures (i.e., the unbound
ligands) were also “blurred” by having their functional groups
rotated incrementally, just as in complex structures and this
lead to an unbiased ensemble for the ligands as well. For strictly
aromatic ligands with no rotatable bonds only one single ligand
pose made up the free ligand ensemble. Also, bond to methyl
groups were not treated as rotatable bonds. In this way, we
ended up with the following: an ensemble of protein−ligand
complexes, an unbiased “ensemble” of free ligands, and a rigid
protein.
The energies of each protein complex pose, each free ligand

pose, and each rigid protein geometry were calculated utilizing
several protocols: (1) with the ff99SB force field coupled with
the GB implicit solvent model, (2) with the ff94 force field and
GB implicit solvent model, (3) with the ff99SB force field in the
gas-phase, (4) with the PM6DH2 semiempirical method in
conjunction with the COSMO solvent model, (5) with the
PM6DH2 semiempirical method in the gas-phase. Molecular
mechanics scoring was carried out with the AMBER12 suite of
programs while the PM6DH2 calculations were done with the
MOPAC2012 package. When calculating the free energy of
binding via eq 17, the temperature was set to 300 K and the
concentration was taken to be 1 M.
The uncertainty and accuracy assessment for a particular free

energy of binding relied on determining the uncertainty and
accuracy of individual interaction energies associated with each
protein−ligand complex pose making up that particular
protein−ligand complex ensemble. The polar and nonpolar
interactions between the ligand and the binding pocket in every
pose were counted and the systematic and random errors per
interaction were collected from the Biomolecular Fragment
Database (BFDb).64 We used the “hsg” data set and acquired
the systematic and random errors with respect to the “gold
standard” CCSD(T)/CBS level of theory.32,65,66 Then, these
individual errors were propagated to yield the cumulative error
in the binding free energy as described in ref 22.33

■ THEORY

The free energy of binding can be obtained directly with
statistical mechanics without decomposing it into separate
enthalpic and entropic terms. This is an advantage because it
eliminates the need to estimate the errors introduced by
individual enthalpic and entropic contributions, some of which
are challenging to determine. Hence, we used the ratio of the
partition functions of the protein−ligand complex (PL), ligand
(L), and protein (P) to define the free energy of the protein−
ligand binding, ΔGbind:

∫
∫ ∫

Δ = −
β

β β

−

− −

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥G RT

r

r r
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e d

( e d )( e d )

E r

E r E rbind

( )

( ) ( )
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L P
(1)

For the configuration integral affiliated with the PL complex,
we assumed that the entire set of degrees of freedom (DOF)

could be classified into six groups representing various physical
contributions: (a) rigid translations (RT) of the PL complex,
the entire complex could translate while keeping constant
internal and rotational DOFs, (b) rigid rotations (RR) of the
PL complex, the entire complex could rotate while keeping a
constant position of center of mass and internal DOFs, (c) rigid
docking translations (RDT), the ligand could translate while
the ligand’s rotational and internal DOFs were constant and
protein’s DOFs were fixed, (d) rigid docking rotations (RDR),
the ligand could rotate while its center of mass, internal DOFs,
and protein DOFs were constant, (e) internal protein DOFs
(IP), and (f) internal ligand DOFs (IL).
In this expansion of DOFs, RT and RR deal with DOFs

specific to the entire complex. RDT and RDR handle DOFs
regarding the positioning of the ligand relative to the protein.
IP and IL span the remaining DOFs and are specific to the
protein and ligand DOFs, respectively. Hence, the total
configuration space of the PL complex should be spanned by
these six classes of DOFs, which when combined form the
following integral:

∫ ∫ ∫ ∫ ∫ ∫ ∫=β β−

− −

−r re d e dE r E( )

RT RR RDT RDR IP bound IL bound
PL PL

(2)

Similarly, the configurational integral associated with the ligand
was assumed to span (a) RT of the free ligand, it could translate
while keeping constant internal and rotational DOFs, (b) RR of
the free ligand, it could rotate while keeping a constant position
of center of mass and internal DOFs, and (c) IL, internal DOFs
of the free ligand. This yields

∫ ∫ ∫ ∫=β β− −r re d e dE r E( )

RT,L RR,L IL
L L

(3)

Likewise, three classes were identified to collect the protein’s
DOFs: (a) RT of the unbound protein, it could translate while
keeping constant internal and rotational DOFs, (b) RR of the
unbound protein, it could rotate while keeping a constant
position of center of mass and internal DOFs, and (c) IP,
internal DOFs of the unbound protein, which results in

∫ ∫ ∫ ∫=β β− −r re d e dE r E( )

RT,P RR,P IP
P P

(4)

In all of these integrals RT and RR do not affect the energy,
so the energy is constant with respect to them. We can evaluate
the integrals as the volume of phase space associated with these
DOFs times the value of the remainder of the integral. The PL
complex, protein, and ligand can translate in a cubic box with
the length equal to the average distance to another entity of
their kind in a homogeneous solution, which allows us to
assume the inverse concentration as the value of the RT phase-
space volume. These integrals are thus reduced to

∫ ∫ ∫ ∫ ∫ ∫=β β−

− −

−r
C

re d
1

e dE r E( )

RR RDT RDR IP bound IL bound
PL PL

(5)

for the PL complex,

∫ ∫ ∫=β β− −r
C

re d
1

e dE r E( )

RR,L IL
L L

(6)

for the free ligand, and

∫ ∫ ∫=β β− −r
C

re d
1

e dE r E( )

RR,P IP
P P

(7)
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for the unbound protein, respectively. If we placed an arbitrary
unit vector on the center of mass of each of these species, this
unit vector could rotate to point anywhere on a unit sphere
with a surface area of 4π. Each of these possible vectors could
serve as a rotational axis about which the molecule could rotate
2π. So the volume of phase space for RR terms is 8π2, which
transforms the above integrals into

∫ ∫ ∫ ∫ ∫ ∫π=β β−

− −

−r
C

re d
8

e dE r E( )
2

RDT RDR RDR IP bound IL bound
PL PL

(8)

for the PL complex,

∫ ∫π=β β− −r
C

re d
8

e dE r E( )
2

L L

(9)

for the free ligand, and

∫ ∫π=β β− −r
C

re d
8

e dE r E( )
2

P P

(10)

for the unbound protein, respectively.
We also assumed the protein’s internal DOFs would be

constant as dictated by the rigid receptor approximation. The
IP-bound piece would give the volume of phase space VP
enclosing the internal DOFs affiliated with the protein within
the PL complex times the remainder of the integral:

∫ ∫ ∫ ∫π=β β−

−

−r
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V re d
8
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Monte Carlo (MC) integration was applied to the remaining
DOFs for RDT, RDR and IL in the bound form. The volume of
phase space comprising the RDT DOFs was the binding pocket
volume in which the ligand’s center of mass could translate:
Vpocket. The RDR DOFs span a volume of 8π2 with the same
reasoning described above for the RR term. Finally, the volume
of phase space containing the internal DOFs of the ligand in
bound form was VL. Here, we emphasize that VL is not an
actual volumetric entity but an abstract quantity, which
expresses the phase space occupied by the internal ligand
DOFs. Thus,
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The pocket volume Vpocket was obtained by evaluating the
smallest volume, which would fit the superimposition of the
centers of mass of all the ligand conformations generated by the
blur code within the binding pocket.
Applying MC integration to eq 9 leads to the following final

expression for the configuration integral of the free ligand:
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The same operation on eq 10 results in
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for the unbound protein. Since we employed a single, static
protein structure in our calculations, there was no need for an
average:
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By inserting eqs 13, 14, and 15 into eq 1, we obtain
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which reduces to our final expression for the free energy of
binding in eq 17. Note that we have omitted symmetry
corrections for the ligand because the symmetry number σ
would be present in the ligand’s rotational degrees of freedom
in both the free and bound states, and cancel in the derivation
of eq 17.67 Furthermore, we assume the protein receptor is
asymmetric.
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In this expression, we sample over RDT, RDR, and IL DOF’s of
the PL complex and the IL DOF’s of the free ligand. Then,
using the conventional standard deviation formula,68 the
sampling error associated with this free energy of binding
expression would be
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The single point energies calculated for each pose making up
the PL complex and free ligand ensembles contained both
systematic and random errors as proposed earlier by Faver et
al.32,69 These individual errors would accumulate in the final
free energy of binding estimation and reduce the reliability of
our results. Faver et al. attacked this problem by first classifying
and quantifying the molecular interactions present between the
protein binding pocket and the ligand, then assessing the
individual fragment-based errors with a probability density
function built with a reference database of molecular fragment
interactions, and finally propagating these errors as

∑

∑

μ

σ

=

=

N

N

Error

Error

k
k k

k
k k

Systematic

Random 2

(19)

where k stands for different interaction types in the reference
database (e.g., polar and nonpolar), Nk is the associated
interaction count, μk and σk

2 represent the mean error per
interaction and variance about the mean error for interaction
type k in the database.
A generic function f(xi) has a systematic error which could

be, in its simplest model, evaluated as

∑δ δ=
∂
∂

f
f
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x
i i

i
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and a random error which could be estimated as

∑δ δ=
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where δxi expresses the uncertainty in the input variables. Faver
et al. applied these operations in eqs 20 and 21 to the
configuration integral Z and determined the total error of the
free energies to be given as
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where Z is the configuration integral, Ei stands for the
microstate energies (here: energies of distinct PL poses), Ei

Sys

represents the systematic error within each microstate energy,
and Ei

Rand designates the random error contained in each
microstate energy. This can also be written as

∑ ∑δ δ δ= ±G P E P E( )
i

i i
i

i ibind
Sys Rand 2

(23)

where Pi is the normalized weight of the microstate i. That is,
the first part of this expression provides the systematic error in
free energy of binding as the Boltzmann-weighted average of
the systematic error of each microstate, while the second part
gives the accompanying random error in form of a Pythagorean
sum of the weighted random errors of each microstate.
Since systematic errors shift the results only in one, known

direction, they can be corrected in a post hoc manner once their
magnitudes are determined. Random errors, on the other hand,
cause alterations in both directions, which are not predictable.
This eliminates the possibility of a post hoc correction. The
formula 23, however, suggests that if multiple microstates were
considered in the binding free energy estimate, the second part
related to the random errors would decay significantly because
of the probability Pi within the Pythagorean sum. The impact of
inclusion of numerous microstates on the cumulative systematic
error is not as big as on the cumulative random error since the
Pi values would add up to one eventually in the summation of
the first part whereas the random error part would always get a
coefficient, which is less than 1, due to the Pythagorean sum.
This was demonstrated with several thought experiments:33

The higher the number of states included, the less the random
error encountered.33

Our “blur” code accomplishes an exhaustive local sampling of
the ligand within the protein binding pocket, in other words it
creates the largest plausible PL complex ensemble given the
input criteria, so that the uncertainty in the estimated free
energy of binding is minimized as much as possible. As stated
earlier, systematic errors can be accounted for completely
assuming our reference “gold standards” are perfectly accurate.
Hence, each pose making up the PL complex ensemble was
analyzed for their protein−ligand interactions. Due to the
strictly nonpolar nature of the binding pocket of interest, all the
interactions detected were of van der Waals type. Then,
utilizing the Biomolecular Fragment Database, the systematic
and random errors present in the energy of each PL complex
pose were estimated. Systematic errors were removed from
these microstate energies and then the corrected PL complex
energies were used to estimate the free energy of binding in the
absence of systematic errors. The uncertainty of a particular
binding free energy was computed as follows: once an error bar
was obtained for each pose making up the PL complex
ensemble, a random value of error was selected from the
associated error distribution and added to the pose’s energy,
which was already corrected for the systematic errors. These
microstate energies were inserted into the final binding free
energy formula shown in eq 17 to yield an estimate of the
binding free energy. A distribution of binding free energies was
acquired by calculating the free energy in this manner 10 000
times. Its standard deviation was used to measure the
imprecision in the computed free energy due to microstate
energy uncertainties.

■ RESULTS AND DISCUSSION
Binding Free Energies. The protocol of exhaustively

sampling the ligand configurations within and without the PL
complex, that is, “blurring”, calculating the free energy of
binding for the system of interest directly from eq 17, and
estimating the uncertainty contained in the calculated binding
free energy was tested on a congeneric series of eight
T4Lysozyme L99A inhibitors: benzene, 2,3-benzofuran, indene,
i-butyl benzene, indole, n-butyl benzene, p-xylene, and o-xylene
with the PDB ID’s of 181L, 182L, 183L, 184L, 185L, 186L,
187L, and 188L, respectively. A sample blurring process
involving n-butyl benzene (186L) is represented in Figure 1
using the Visual Molecular Dynamics (VMD) program.70 The
“blurred” ensembles were checked for duplicate poses in order
to prevent double counting, which alters the final binding

Figure 1. Process of “blurring”, that is, systematically perturbing the ligand within the protein binding pocket, shown for n-butyl benzene (186L). (a)
Before blurring, single conformation in the binding pocket. (b) After blurring, numerous conformations superimposed in the binding pocket: front
view, (c) side view. Carbon atoms are displayed in gray and hydrogen atoms in white while red symbolizes oxygen and blue represents nitrogen.
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affinity estimates. Assuming unique poses would have distinct
energies, recurring energy scores were filtered out from the PL
ensemble scores along with their error estimations. Thus, only
structurally unique poses were retained in the ensemble.
One disadvantage of this set is that the measured

experimental binding affinities span a very narrow range of
2.1 kcal/mol and this is beyond the accuracy levels of most
computational methods.42 Table 1 reports free energy of
binding estimates obtained from force field scoring in implicit
GB solvent and the semiempirical PM6DH2 method with the
COSMO solvation model. Interestingly, we ended up with
much more negative free energies of binding estimates
regardless of the method employed. As seen in Figure 2, the
binding free energy estimates acquired from PM6DH2
calculations correlated better with the experimental values
indicated by the higher R2 values of 0.56 and 0.68 in
conjunction with SMD and COSMO, respectively, compared
to the calculated free energies of binding from the ff99SB
microstate energies, which gave R2 values of 0.45 and 0.53
utilizing the GB and SMD solvent models, respectively.
Considering how well PM6DH2 is parametrized for interaction
energies, this is not surprising.32 The force fields ff94 and

ff99SB showed very similar performances where the results
changed by at most 0.8% from one to the other. That is why
only one plot is given for the to force field approaches. Only the
results from the more recent ff99SB force field are given.
A correlation of 0.68 with the PM6DH2/COSMO method is

quite reasonable in the face of the approximations made. We
employed a static binding pocket conformation, in other words,
we did not account for induced-fit interactions between the
protein and its ligand. Mobley et al. found that considering a
single, static protein conformation yields poorer binding free
energy estimates rather than when several protein conforma-
tions are included.40 They remedied this problem to some
extent by performing independent local geometry optimizations
of the complex for each ligand and then simulating a rigid
protein in its optimized geometry. For them, this was a more
severe problem because they were sampling with MD methods
and ligands were prone to be energetically trapped in certain
conformations if conformational changes in the protein were
required to overcome the local trapping. In our procedure,
ligands are less likely to get trapped in particular orientations
because the phase space is searched systematically. Another
source of inaccuracy might have been the physical variables of

Table 1. Experimental and Calculated Binding Free Energies Using Microstate Energies Obtained with ff94 Scoring in
Conjunction with the Implicit GB Solvent Model, ff99SB Scoring with the GB Solvent Model, and Semiempirical PM6DH2
Scoring with COSMO Solvent Modela

ff94/GB ff99SB/GB PM6DH2/COSMO

PDB ligand exptl. ΔGbind ΔGbind cor. unc. ΔGbind cor. unc. ΔGbind cor. unc.

181L benzene −5.2 −8.63 0.43 3.61 −8.64 0.43 3.46 −10.45 −0.39 0.77
182L 2,3-benzofuran −5.5 −10.43 1.12 4.64 −10.48 1.12 4.75 −15.51 −0.96 0.89
183L indene −5.1 −12.17 0.99 4.51 −12.10 0.99 4.58 −15.86 −0.47 0.77
184L i-butyl benzene −6.5 −19.18 1.10 5.06 −19.24 1.10 5.28 −19.90 −0.95 0.95
185L indole −4.9 −9.70 1.19 5.00 −9.68 1.19 5.04 −14.04 −0.94 0.99
186L n-butyl benzene −6.7 −20.60 1.19 5.22 −20.55 1.19 5.09 −19.84 −0.97 1.03
187L p-xylene −4.7 −15.78 0.84 4.03 −15.66 0.84 4.07 −13.93 −0.68 0.71
188L o-xylene −4.6 −14.09 1.37 5.51 −14.06 1.37 5.57 −13.68 −0.81 0.87

aThe systematic and random errors for each level of theory are also shown. “cor.” stands for the overall systematic correction to binding free
energies, and “unc.” represents the uncertainty in those. All the numbers are in kcal/mol.

Figure 2. Experimental free energies of binding plotted against calculated free energies of binding employing: (black) PM6DH2 with SMD solvation
model, (red) PM6DH2 with COSMO solvation model, (green) ff99SB force field with GB implicit solvent model, (blue) ff99SB force field with
SMD solvation model.
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“blurring”. If we made use of an infinitely small grid size for the
translations within the binding pocket, we would end up with a
larger ensemble covering a larger phase space. Likewise, if the
rotation increments were decreased to infinitesimally small
values, a higher number of conformations would be produced
ensuring a better sampling. Both of these fine-tuning steps may
yield improvements.
The origin of the consistent negative shift in the results from

ff99SB/GB, ff94/GB, and PM6DH2/COSMO microstate
energies might also have stemmed from the inaccuracies of
the continuum solvation models we used (GB and COSMO).36

According to the thermodynamic cycle shown for protein−

ligand binding in the gas-phase and solvent (Figure 3), a way to
analyze this problem can be developed as follows:

Δ + Δ + Δ = Δ + ΔG G G G Gsolv,P solv,L bind,solv bind,gas solv,PL

(24)

Assuming the free energies of solvation for the protein P and
the protein−ligand complex PL would have nearly identical
solvation free energies due to the closed binding pocket, we can
write

Δ = Δ − ΔG G Gbind,solv bind,gas solv,L (25)

We tested this hypothesis of almost identical solvation free
energies of the protein P and the PL complex on the protein
structure used for the benzene system and a sample benzene−
protein complex structure out of the benzene PL ensemble.
Because we are concerned with single poses for both, free
energy and energy would be interchangeable in this case. We
calculated the solvation energies by extracting the polar
contribution to their ff99SB/GB energies and summing that
up with the nonpolar contribution obtained from the solvent
accessible surface area using the LCPO algorithm.71 The
solvation energy for the benzene−protein complex was −3075
kcal/mol, whereas the solvation energy for the unbound
protein was −3073 kcal/mol. Hence, their difference is, indeed,
negligible, which supports our hypothesis.
Hence, the microstate energies could be computed in the

gas-phase and then the free energy of solvation for the ligand
could be subtracted from the free energy of binding in the gas-
phase. We utilized the experimental solvation free energies for
the ligands, if they were available. The results collected using
this protocol employed the same equations as before and are
shown in Table 2.
Using these approximations, we obtained estimates for the

binding free energies from in vacuo microstate energies, and
these calculated binding affinities were more negative than

those we gathered from microstate energies incorporating a
solvation model. Experimental solvation free energies were
available only for benzene and benzene derivatives out of the
set of eight ligands, which decreased our test set size. The
solvation free energies were obtained from the Minnesota
Solvation Database, version 2012.72 We are unable to report
free energy of binding estimates for benzofuran, indene, and
indole because of the missing ligand solvation free energies.
The experimental solvation free energy values were smaller
than the magnitude of the GB and COSMO solvation values
(Table 2) yielding more negative free energies of binding
(Table 3).
In addition to these, we evaluated the free energy of solvation

for all eight ligands with another continuum solvation model:
the quantum mechanical SMD method by Truhlar et al.55

These values have been subtracted from the free energy of
binding estimates in accordance to eq 25 to produce the final
estimates for the free energy of binding for the whole set as
shown in Table 4. Akin to the previous set of results using the
experimental free energies of solvation for ligands, the free
energies of binding turned out to again be too negative. The
correlation to the experimental binding affinities improved
considerably from 0.45 to 0.53 when the SMD values were
incorporated along with the gas phase free energy of binding
estimates from the ff99SB microstate energies compared to the
results obtained with the GB solvent model (Table 1). The
PM6DH2/COSMO combination, however, reproduced the
trend in the measured binding affinities significantly better than
the PM6DH2/SMD pair as the R2 values show: 0.68 vs 0.56.
Figure 2 summarizes the information contained in Tables 1, 3,
and 4 in the form of a plot.
For comparison purposes, we also performed a standard

docking protocol on these systems and examined the
correlation of the scores for the top hits to the experimental
free energies. The Glide Standard Precision (SP) and Extra
Precision (XP) algorithms73−75 were applied, which lead to R2

values of 0.28 and 0.37, respectively. The scores can be found in
the Supporting Information, Table SI.1.

Binding Free Energy Error Analysis. Systematic error
correction and uncertainty determination was conducted on the
results obtained with ff99SB/GB, PM6DH2/COSMO, ff99SB/
SMD, PM6DH2/SMD scoring methods. Using the Biomo-
lecular Fragment Database and the iterative error bar
assignment protocol, the systematic errors and uncertainties
plotted in Figures 4 and 5 were collected. For the binding

Figure 3. Thermodynamic cycle for protein−ligand binding in the gas
and aqueous phases.

Table 2. Comparison of the Solvation Energies with GBSA,
COSMO, and SMD solvation Models against the
Experimental Solvation Energies (exptl.) for the Congeneric
Set of Ligands

ligand
GBSA solvation

energy
COSMO Solvation

energy SMD exptl.

benzene −2.18 −2.01 −0.4 −0.9
2,3-
benzofuran

−5.69 −3.41 −0.8

indene −3.48 −3.06 −1.3
i-butyl
benzene

−0.84 −2.35 0.7 −0.4

indole −7.54 −6.49 −4.4
n-butyl
benzene

−0.74 −2.47 0.4 0.2

p-xylene −1.44 −2.89 0.2 −0.8
o-xylene −1.59 −2.92 −0.1 −0.9
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affinity estimates obtained from force field energy scoring,
accounting for the systematic errors moved the binding free
energy estimates in the wrong direction although these
corrected errors were tiny. Depending on the Vpocket value,
the completely entropic term − RT ln(VpocketC) contributes 0.5
to 1.5 kcal/mol to the free energy of binding at 300 K and a
concentration of C = 1 M, which were used throughout in our
calculations. Thus, its possible miscalculation cannot fully
rationalize this systematic negative shift. There must be another
source of inaccuracy arising from our binding free energy
evaluation scheme which would shift the results to much more
negative values. The calculated binding free energies with
PM6DH2/COSMO suffer even from a bigger shift to more
negative values (Figure 5) while they have considerably higher

precision, which is not surprising given our earlier observa-
tions.32

In addition to insufficient sampling, we suggest inaccuracies
partially originate from the static protein binding pocket
approximation and inaccuracies of the solvation free energy of
the ligand since the inaccuracies in the solvation free energies of
the PL complex and the free protein would mostly cancel out in
this particular system. To test the effects of these two possible
sources of error, we designed Gedanken experiments. First, we
assumed omitting the local relaxation of the binding pocket
upon its interaction with the ligand would result in an energetic
penalty of 2.00 kcal/mol. This destabilization of 2 kcal/mol was
reflected in the systematic errors of the PL microstate energies
as −2 kcal/mol so that its application would yield a more stable
microstate energy. We employed the same Monte Carlo error
propagation protocol and observed a positive shift in all the
energy values both with ff99SB/GB and PM6DH2/COSMO.
We increased the hypothetical strain energy from 2 to 3 kcal/
mol, which lead to a further improvement, that is, closer
estimates to the experimental results. The estimates obtained
are displayed in Figures 6 and 7.
A second Gedanken experiment aimed to reduce the errors

arising from the solvation models employed in this study. As we
pointed out earlier, due to the completely closed nature of the
receptor pocket, the solvation free energy of the PL complex
and of the free protein P largely cancel out. Thus, the only
source of solvation model errors could be the solvation energy
of the free ligand L. To quantify its inaccuracy, we compared
the ligand’s experimental free energy of solvation to the
solvation contribution to the absolute ligand energy. The
difference was assumed to be the systematic error and this was

Table 3. Experimental and calculated Binding Free Energies Using Microstate Energies from Gas-Phase ff99SB and PM6DH2
Scoring with Experimental (exptl) Free Energies of Solvation for the Particular Ligand (If Any)

ligand
exptl.
ΔGbind

calcd. in vacuo ΔGbind
ff99SB

calcd. in vacuo ΔGbind
PM6DH2

ΔGsolv/exp. for
ligand

ΔGbind [ΔGsolv/exp.
+ff99SB]

ΔGbind [ΔGsolv/exp. +
PM6DH2]

benzene −5.2 −13.27 −14.76 −0.9 −12.4 −13.9
2,3-benzofuran −5.5 −19.20 −21.84
indene −5.1 −18.22 −22.58
i-butyl benzene −6.5 −23.23 −26.35 −0.4 −22.8 −26.0
indole −4.9 −19.39 −23.26
n-butyl benzene −6.7 −25.46 −27.25 0.2 −25.7 −27.5
p-xylene −4.7 −20.29 −20.82 −0.8 −19.5 −20.0
o-xylene −4.6 −18.48 −20.88 −0.9 −17.6 −20.0

Table 4. Experimental and Calculated Binding Free Energies
Using Microstate Energies from Gas-Phase ff99SB and
PM6DH2 Scoring with SMD Estimates for Free Energy of
Solvation

ligand
exptl.
ΔGbind

ΔGsolv/SMD
for ligand

ΔGbind
ff99SB/
SMD

ΔGbind
PM6DH2/

SMD

benzene −5.2 −0.4 −12.9 −14.4
2,3-benzofuran −5.5 −0.8 −18.4 −21.0
indene −5.1 −1.3 −16.9 −21.3
i-butyl benzene −6.5 0.7 −23.9 −27.1
indole −4.9 −4.4 −15.0 −18.9
n-butyl benzene −6.7 0.4 −25.9 −27.7
p-xylene −4.7 0.2 −20.5 −21.0
o-xylene −4.6 −0.1 −18.4 −20.8

Figure 4. Systematic and random errors contained in the binding affinity estimates obtained from the ff99SB/GB (left) and ff99SB/SMD (right)
microstate energies.
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combined with a hypothetical error bar of 1.00 kcal/mol. If the
experimental solvation free energies did not exist, we assumed
the average of the systematic errors obtained for the ligands
with experimental solvation free energies would give an
acceptable estimate of the systematic error. Monte Carlo

error estimation was extended such that it also iteratively
assigns errors to the ligand piece in eq 17. The results were
surprising in the amount of improvement they yielded. Figures
8 and 9 demonstrate the trends. This solvation correction to

Figure 5. Systematic and random errors contained in the binding affinity estimates obtained from the PM6DH2/COSMO (left) and PM6DH2/
SMD (right) microstate energies.

Figure 6. Free energy of binding estimates obtained with a Gedanken
experiment, which assumes the static protein binding pocket
approximation introduces a strain energy of 2 kcal/mol (blue) and 3
kcal/mol (orange) per PL complex pose. The original results with the
static receptor are shown in black. Microstate scoring was done with
ff99SB/GB.

Figure 7. Free energy of binding estimates obtained with a Gedanken
experiment, which assumes the static protein binding pocket
approximation introduces a strain energy of 2 kcal/mol (blue) and 3
kcal/mol (orange) per PL complex pose. The original results with the
static receptor are shown in black. Microstate scoring was done with
PM6DH2/COSMO.

Figure 8. Gedanken experiments 1 and 2 combined. Blue represents
the results with corrected solvation energy for the ligand and orange
displays the results with both corrected solvation energy of the ligand
and the receptor strain accounted for. Scoring was done with ff99SB/
GB.

Figure 9. Gedanken experiments 1 and 2 combined. Blue represents
the results with corrected solvation energy for the ligand and orange
displays the results with both corrected solvation energy of the ligand
and the receptor strain accounted for. Scoring was done with
PM6DH2/COSMO.
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the ligand was as effective as accounting for strain in the
binding pocket. Both experiments were coupled where a
hypothetical receptor strain of 3 kcal/mol and solvation free
energy corrections for the ligand L were considered.
Consequently, the binding free energy estimates were
significantly enhanced to the point where half of the ff99SB/
GB estimates contained the experimental results in their final
error bars. With these two small thought exercises we identified
qualitatively two significant sources of error in our procedure.
As stated earlier, the precision of calculated binding free

energies benefits from sampling. Since uncertainties cannot be
eliminated in a posthoc manner, sampling actually presents the
only way to improve uncertainties of calculated quantities, in
this case, protein−ligand binding affinities. This was already
demonstrated by Faver et al. via a thought experiment where
they showed even increasing the sample size from N = 1 to N =
2 enhances the precision considerably.33 We applied this to our
ff99SB/GB test set where we varied the sample size N from 1
to 5, 10, 25, 50, 75, 100 and increased it by 25 from there on.
The free energies of binding were calculated every time along
with the associated uncertainty, which demonstrated the
convergence of our binding affinity estimates and also displayed
the rapid decay of the error bars with growing sample size.
For our convergence analysis, the energies for each pose of

the “blurred” ensembles were ranked and the poses associated
with lowest energies were assigned to the smallest samples. In
other words, the sample of N = 1 consisted of the minimum-
energy pose, the N = 5 sample contained the lowest 5 energies,
the N = 10 comprised the lowest 10 energies, and so on.
Therefore, the free energy of binding estimates rose as we
included more and more microstates in our calculation. The
maximum sample size was dictated by how compact the
particular ligand was. For this system, N = 50 seems to be an
acceptable sample size for a good binding affinity assessment.
Unfortunately, the sample size of n-butyl benzene reaches only
N = 42, which suggests that we might have under-sampled it or
that it was packed very tightly into the binding pocket. With its
large side chain, most of the produced poses lead to serious
collisions with the binding pocket residues and hence had to be
filtered out. Both the binding free energies and the error bars

do not appear to change after N = 50 as seen in Figure 10. A
better presentation of the effect of sample size on the error bars
is given in Figure 11. The biggest impact on the random errors

occurs when the ensemble size changes from N = 1 to N > 1
and the size of the error bars decrease drastically until N = 25.
After N = 75, the uncertainties converge to their final values,
which are at least 3 kcal/mol less than what they were using
only a single microstate.
These two analyses prove the benefits of utilizing sampling

rather than using single microstates. Over- or underestimating
the final free energy values is almost inevitable and the obtained
precision is the poorest with an ensemble of size N = 1. Even
adding just a few microstates with local sampling would result
in a more accurate and precise binding free energy. If one found
the most stable conformation of a particular ligand bound to

Figure 10. Convergence of binding free energy calculations for the ff99SB/GB test set. Blurred poses were sorted as such the ones with the most
negative energies were included in the smallest samples, hence the increase in the binding free energy estimate. Sample size was increased gradually
and its maximum depends on the compactness of the particular ligand.

Figure 11. Error bar propagation with growing sample size in ff99SB/
GB calculations. Sample sizes of N = (1, 5, 10, 25, 50, 75, 100, 125, ...)
were employed. N reached larger numbers for more compact ligands
as the “blurred” ensembles for those were naturally bigger. After N =
75, the random errors did not change by much in size. Enlarging the
sample size decreased the uncertainties in the final free energy
estimation by at least 3 kcal/mol. The biggest improvement, namely
the sharpest decrease, occurred when transiting from N = 1 to N > 1.
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the receptor and locally sampled from that minimum-energy
conformation such that only the bottom of the deepest
potential energy well was sampled, even this practice would
account for a large part of the significant contributions to the
configuration integral of the PL complexes in eq 1, and we find
that this would yield a much better free energy of binding
estimate.

■ CONCLUSIONS
We evaluated the binding free energies and their associated
uncertainty for a congeneric series of T4Lysozyme L99A
inhibitors. These were calculated directly from the ratio of the
configuration integrals of the protein−ligand (PL) complex, the
protein (P), and the ligand (L). Decomposition into entropic
and enthalpic terms was not performed which presents an
advantage: we did not have to work around the uncertainties
arising from these separate terms. Especially computing entropy
accurately would be a challenge. Importantly, we introduced for
the first time a way to estimate the systematic and random
errors in computed free energies of binding on the fly. This is a
step forward for protein−ligand binding affinity calculation
efforts because it allows for the understanding of the reliability
of the computed quantity of interest. A workflow was laid out
that involves creation of unbiased ensembles for protein−ligand
complexes and unbound ligands via our in-house “blur” code, a
direct binding free energy calculation formula from statistical
mechanics, systematic error correction for microstate energies,
and an error bar estimation protocol for the final binding free
energy estimates. The microstate energies were obtained with
the ff99SB force field and the PM6DH2 semiempirical method.
Continuum solvent models were employed where the ff99SB
force field was combined with the Generalized Born (GB)
model and the PM6DH2 approach with the Conductor-like
Screening Model (COSMO) model. In vacuo binding free
energies were also calculated with the same methods, and they
were combined with the experimental and SMD-solvation free
energies of the ligands. The systematic and random errors for
each microstate were collected from the Biomolecular Frag-
ment Database (BFDb) of Faver et al., and they were
propagated as described elsewhere.33 The results were
promising: they yielded reasonable correlation values (R2 =
0.45 with ff99SB/GB and 0.68 with PM6DH2/COSMO) to
the experimental binding affinities. However, they were all
shifted to more negative values. We suggest that this artifact
arises from the use of a single, static protein conformation, and
the inaccuracies contained within the solvent models as
demonstrated via Gedanken experiments which showed
improvements once these two sources of error were
approximately accounted for. Insufficient sampling due to the
dependency on the initial pose is another probable source of
error. Hence, there is definitely room to improve our protocol.
“Blurring” the protein would likely improve our estimates to
include receptor flexibility. Likewise, exploiting explicit solvent
for the force field scoring would enhance the results. Moreover,
a bigger ensemble could be developed by utilizing finer settings
during “blurring”, that is, systematic perturbation of the ligand
in or out of the binding pocket and potentially of the protein
receptor itself.
This work demonstrates the significant advantages of local

sampling in enhancing precision of binding affinity estimates. It
establishes the grounds for more sophisticated protein−ligand
binding free energy calculations, which correct for the
systematic errors contained in microstate energies, hence

leading to a more accurate free energy of binding estimation,
and at the same time determining error bars for binding free
energies by propagating the random errors contained in
microstate energies. We believe presenting error bars with
binding affinity calculations should become common practice in
our community. Hopefully, this study would contribute to
improving the reliability of the calculated binding free energies.
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