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Abstract
AngII and TGF-β interact in development of thoracic and abdominal aortic diseases,

although there are many facets of this interaction that have not been clearly defined. The

aim of the present study was to determine the effects of TGF-β neutralization on AngII

induced-aortic pathologies. Male C57BL/6J mice were administered with either a rabbit or

mouse TGF-β neutralizing antibody and then infused with AngII. The rabbit TGF-β antibody

modestly reduced serum TGF-β concentrations, with no significant enhancements to AngII-

induced aneurysm or rupture. Administration of this rabbit TGF-β antibody in mice led to

high serum titers against rabbit IgG that may have attenuated the neutralization. In contrast,

a mouse TGF-β antibody (1D11) significantly increased rupture in both the ascending and

suprarenal aortic regions, but only at doses that markedly decreased serum TGF-β concen-

trations. High doses of 1D11 antibody significantly increased AngII-induced ascending and

suprarenal aortic dilatation. To determine whether TGF-β neutralization had effects in mice

previously infused with AngII, the 1D11 antibody was injected into mice that had been

infused with AngII for 28 days and were observed during continued infusion for a further 28

days. Despite near ablations of serum TGF-β concentrations, the mouse TGF-β antibody

had no effect on aortic rupture or dimensions in either ascending or suprarenal region.

These data provide further evidence that AngII-induced aortic rupture is enhanced greatly

by TGF-β neutralization when initiated before pathogenesis.

Introduction
Aortic aneurysm is defined as a permanent dilation of the lumen and represents a potentially
fatal condition due to its high risk for rupture [1]. Aortic aneurysms are commonly located at
specific regions within the thoracic and abdominal aorta. Although thoracic and abdominal
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aortic aneurysms have distinct clinical presentations and pathological features, an aberrant
renin-angiotensin system (RAS) has been invoked in the pathogenesis of both regions [2]. This
includes many studies demonstrating that AngII infusion promotes formation of aneurysm
and rupture in both ascending and suprarenal aortic regions in mice [3–9]. Conversely, inhibi-
tion of AngII stimulation through either pharmacological antagonism of AT1 receptors or
genetic disruption of AT1a receptors reduces both ascending and suprarenal aortic aneurysms
in several animal models [8,10–12].

AngII-induced aortopathies have been associated with regulation of TGF-β signaling. TGF-
β is a multifunctional cytokine that may mediate aortic diseases through complex pathways in
both thoracic and abdominal regions [13,14]. Development of thoracic aortic aneurysm and
rupture occurs in several mouse models of enhanced TGF-β pathway activity. These include
mice with haploinsufficient [15] and hypomorphic [16] reductions in fibrillin1, expression of
functionally deficient TGF-β1 and 2 receptors, [17] and inducible smooth muscle cell-specific
deletions of TGF-β2 receptors [18,19].

Unlike antagonism of AngII, the effects of neutralizing TGF-β activity on aortopathies have
been variable. In thoracic aortas, the effects of TGF-β neutralization have ranged from reducing
aneurysms in fibrillin1 haploinsufficient mice [11] and AngII-infused CXCL10 deficient mice
[15], while having no effect on aortic disease in mice expressing functionally deficient TGF-β
receptors [20] to promoting ascending aortic rupture in fibrillin1 hypomorphic mice [12].
There is more limited data on the role of TGF-β in AAAs. TGF-β has been inferred to be detri-
mental based on increased expression of TGF-β1 and associated genes in abdominal aortic
aneurysmal tissue of AngII-infused ApoE-/- mice [21]. However, local overexpression of TGF-
β reduced AAAs in an explant model in rats [22]. In agreement with this protective effect of
TGF-β, antibody-induced neutralization promoted abdominal aortic rupture in AngII-infused
normocholesterolemic C57BL/6 mice [23]. Overall, the effects of TGF-β on aortopathies have
been more variable than AngII.

AngII and TGF-β interact in the development of aortopathies, although there are many
uncertainties regarding their mechanisms. These uncertainties include the variable effects on:
1. aortopathies in the thoracic versus abdominal area; 2. aortic dilatation versus rupture; 3.
effects on aortic disease when neutralization was introduced after prolonged AngII infusion.
Wang et al. [23] administered TGF-β neutralizing antibodies into AngII infused mice, provid-
ing a model to study these uncertainties. Therefore, we initially reproduced and then refined
the approach used by Wang et al. [23]. Using this approach, we observed profound effects of
TGF-β neutralization on significantly enhanced aortic rupture and dilatation in both thoracic
and abdominal regions. Also, no effects of TGF-β neutralization were observed when instigated
in mice previously infused with AngII.

Materials and Methods

Mice and Diets
Eight week old, male C57BL/6J mice were purchased from The Jackson Laboratory (Stock#
000664, Bar Harbor, ME, USA). Mice were group housed in individually vented cages with
negative air exhaust pressure on a light:dark cycle of 14:10 hours. Rodent bedding consisted of
Sani-Chip (Cat# 7090A, Harlan Teklad). Mice were fed a normal laboratory rodent diet (#
2918, Harlan Teklad) and provided with drinking water from a reverse osmosis system.

The recommendations in the Guide for the Care and Use of Laboratory Animals of the
National Institutes of Health were followed. All procedures were approved by the Institutional
Animal Care and Use Committee of the University of Kentucky (Approval # 2006–0009).
Study mice were observed daily for normal behavior and weighed weekly throughout
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experimental duration. Humane endpoints included deteriorating body condition score,
weight loss of>15%, inability to rise or ambulate, dyspnea, and dehydration. None of the
study mice exhibited any of the humane endpoint criteria. All surgeries were performed under
isoflurane anesthesia (Isothesia, NDC 11695-0500-2, Butler Schein) and post-surgery care uti-
lized local topical analgesia (LMX4, NDC 0496-0882-15, Ferndale Laboratories) for minimiz-
ing stress and pain. Aortic rupture may occur in the AngII-infusion aneurysm mouse model
(S1 Fig). In this study, none of the mice exhibited any hind leg bilateral paralysis prior to rup-
ture. Mice were found dead and necropsied to determine site of rupture. At the end of study,
mice were terminated with an overdose of anesthesia [ketamine (90 mg/kg, Ketathesia, Henry
Schein, NDC 11695-0701-1) and xylazine [AnaSed, Lloyd Laboratories, NADA 139–236, 10
mg/kg).

Pump Implantation and Antibody Injections
AngII (1,000 ng/kg/min; Cat# H-1706, Bachem) was infused via mini-osmotic pumps (Alzet
Model #2004; Durect Corp) subcutaneously implanted on the flank of mice [24].

For the first study, mice were injected intraperitoneally at a dose of 10 mg/kg twice a week
with either control rabbit nonimmune IgG antibody (Cat# AB-105-C, R&D Systems), or poly-
clonal rabbit TGF-β IgG antibody (Cat# AB-100-NA, R&D Systems). One week of IgG injec-
tions were given prior to the initiation of AngII infusion and the twice weekly injections were
continued throughout the 28 day infusion of AngII (S2 Fig).

In a monoclonal TGF-β antibody dosing study, mice were injected intraperitoneally with
mouse TGF-β IgG1 antibody or mouse IgG1 isotype control (Cat# MAB1835 and Cat# 11711,
respectively, R&D Systems) at a range of doses (0, 0.03, 0.1, 0.3, 1, 5 mg/kg, 3 times per week)
for 1 week. The dose of monoclonal TGF-β IgG1 antibody and mouse IgG1 isotype control in
the subsequent study was selected based on the outcome of the dosage experiment (0.3 or 5
mg/kg, 3 times per week). One week of IgG injections were given prior to AngII infusion, and
injections were continued throughout the 28 day infusion of AngII (S3 Fig).

To determine effects of TGF-β neutralization on aortas previously infused with AngII, either
the monoclonal TGF-βmonoclonal antibody or IgG1 control (5 mg/kg, 3 times per week) were
injected into mice after 28 days of AngII infusion. During the period of antibody injections,
mice were infused continuously with a new pump filled with AngII for an additional 28 days
(S4 Fig).

Analytical Assays
Serum TGF-β1 concentrations were measured using a sandwich enzyme immunoassay tech-
nique with an ELISA kit according to the manufacturer’s instructions (Cat# MB100B; R&D
Systems). Serum samples were acidified with HCl (1 M) for 10 minutes to activate latent TGF-
β1, and then neutralized with NaOH (0.5 M)/HEPES (1.2 N).

To examine whether rabbit IgG antibodies promoted an immune response to stimulate pro-
duction of mouse anti-rabbit antibodies, serum concentrations of mouse anti-rabbit IgG titers
were measured by ELISA. Sera from mice without antibody injection were used as negative
controls. Plates were coated with normal rabbit IgG diluted in PBS and incubated overnight in
a humidifying chamber. Serial dilutions of sera from study mice diluted in BSA-PBS (1% wt/
vol) were added to the wells and incubated for 2 hours. Goat horseradish peroxidase (HRP)
conjugated antimouse Ab (Cat# A2554, Sigma-Aldrich) was added and incubated for 30 min-
utes. Chromogen ABTS (2,2'-azino-di-(3-ethyl-benzthiazoline-6-sulphonic acid, Cat# A-9941,
Sigma-Aldrich) was added to each well and read at 450 nm using a microplate reader.

Cell numbers in peripheral blood were counted using a Hemavet 950 (Drew Scientific Inc).
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Ultrasonic imaging
Lumenal diameters of suprarenal and ascending aortas were acquired using a Vevo 2100 with a
MicroScanTM transducer (MS400; VisualSonics). The resolution of this 18–38 MHz transducer
is approximately 50 μm. Mice were anesthetized using IsofluraneTM (Isothesia, Butler Animal
Health Supply). Chest and abdominal hair was removed using clippers and depilatory cream
(Nair; Church and Dwight Co). Ultrasonic gel (Medline; Mundelein) was placed on the area to
be scanned. Two-dimensional images (B mode) of short-axis scans were acquired to measure
the maximal diameter of suprarenal aortas and long-axis scans for maximal diameter of
ascending aortas at selected intervals (S5 Fig).

Ex Vivo Measurements of Aortas
At termination, mouse aortas were removed and fixed in 10% neutral-buffered formalin over-
night at room temperature. Aortas were transferred to saline, adventitia removed, and then
they were cut crosswise at the diaphragm region. After securing abdominal aortas with insect
pins onto dental wax, the maximal ex vivo diameterswere measured (S6 Fig)[25]. For measure-
ments of ascending dilation, thoracic aortas were cut open longitudinally in the inner curva-
ture. Then the outer curvature from the proximal aorta to the subclavian arterial branch was
cut. Aortas were secured with insect pins onto dental wax, and photographed. Intimal areas of
ascending aortas were measured using an en face method with ImagePro software (S7 Fig;
MediaCybernetics; Bethesda, MD, USA). [26,9].

Statistics
Statistical analyses were performed using SigmaPlot Version 12 (SPSS Inc.). For two groups,
comparisons were performed using an unpaired two-tailed Student’s t test for normally distrib-
uted continuous variables and a Mann-Whitney U test for non-normally distributed variables.
One-way ANOVA with Student-Newman-Keuls was used to test a variable of more than 2
groups. A Fisher’s exact test was used to compare the incidence of aortic rupture. Two way
ANOVA with Holm-Sidak post hoc analysis was performed for multiple-group and multiple-
manipulation analyses. Kaplan-Meier survival curves were constructed and analyzed using log-
rank (Mantel-Cox) test. P<0.05 was considered statistically significant.

Results and Discussion

Effects of a Rabbit Polyclonal anti-TGF-β Neutralizing Antibody on
AngII-induced Aortopathies
To determine the effects of TGF-β neutralization on ascending and suprarenal aortic aneurysm
formation, we injected either IgG control or polyclonal rabbit TGF-β antibodies, at a dose of 10
mg/kg twice per week, into C57BL/6J mice infused with AngII. Injections were started 1 week
prior to infusion of AngII. Injection of the rabbit TGF-β antibody had no overt detrimental
effects on mouse health and body weight. Plasma renin was measured as an index of AngII
potency, and as expected, was decreased significantly during AngII infusion (Table 1, Study 1).
Since platelets are a major source of TGF-β, they were measured in whole blood to determine
whether the neutralizing antibody would have an effect on their population. As predicted,
platelet counts were not different between the groups (Table 1, Study 1). To determine the
extent of neutralization achieved by injection of a TGF-β antibody, serum TGF-β was mea-
sured. Injections of the polyclonal rabbit TGF-β antibody modestly decreased serum TGF-β
concentrations (P<0.05; Fig 1). This dosing regimen did not promote aortic rupture (Fig 1).
Dilation of the ascending aorta decreased modestly, but significantly, (P<0.05) in mice injected

Effects of TGF-βNeutralization on Aortic Aneurysms

PLOSONE | DOI:10.1371/journal.pone.0153811 April 22, 2016 4 / 16



with the polyclonal TGF-β antibody (Fig 1 and S8 Fig); while having no effects on AngII-
induced abdominal aortic dilation (Fig 1 and S9 Fig).

A possible basis for the minimal effects of this antibody was attributable to the injection of a
rabbit protein stimulating production of mouse anti-rabbit antibodies, thereby decreasing bio-
logical efficacy of this rabbit polyclonal TGF-β antibody. Therefore, we measured mouse anti-
rabbit IgG antibodies using an ELISA method. Mice injected with the rabbit polyclonal TGF-β
antibody had high serum titers of anti-rabbit antibodies. This immune response may contrib-
ute to the minor effects observed in the rabbit TGF-β antibody injected group (Fig 1).

Effects of a Mouse TGF-βMonoclonal Neutralizing Antibody on AngII-
induced Aortopathies
To overcome a potential confounding immune response of injecting a cross-species antibody,
we performed further studies using a mouse TGF-β neutralizing antibody (1D11) to examine
its effects on AngII-induced ascending and suprarenal aortic aneurysms in C57BL/6J mice.
First, we determined a dose of 1D11 that produced sustained reductions in serum TGF-β con-
centrations. Injections of 1D11 at 5 mg/kg, 3 times a week, substantially reduced serum TGF-β
concentrations (81% reduction, P<0.001) in 1 week (Fig 2). In subsequent experiments, mice
were injected with either the mouse TGF-β antibody or isotype-matched IgG control, at 5 mg/
kg, 3 times per week, starting 7 days before infusion. Mice were infused with either saline or
AngII for 28 days. As with the polyclonal antibody, injection of 1D11 had no effect on body
weight, plasma renin concentration, and platelet numbers in whole blood (Table 1, Study 2).
Administration of 1D11 significantly decreased serum TGF-β concentrations (P<0.001) with
no difference between AngII and saline groups (Fig 2). While neutralization of TGF-β had no
effect on rupture in saline-infused mice, it promoted aortic rupture in AngII-infused mice (Fig
2). Necropsies were performed rapidly on all mice that died during AngII infusion to deter-
mine region of rupture. Aortic rupture occurred equivalently in ascending and suprarenal aor-
tic regions (Fig 2). In addition to rupture, we also measured aortic dimensions of survivors.
Administration of 1D11 significantly increased AngII-induced ascending and suprarenal aortic
dilation (Fig 2 and S10 and S11 Figs).

Table 1. Characteristics of the mice.

Study 1 Study 2 Study 3

Ab Species Rabbit Mouse Mouse

Dose 10 mg/kg, 2/week 5 mg/kg, 3/week 0.3 mg/kg, 3/week 5 mg/kg, 3/week

Infusion AngII Saline AngII AngII

Antibody IgG Control TGF-β IgG Control TGF-β IgG Control TGF-β IgG Control TGF-β IgG Control TGF-β

N 9 10 10 10 20 20 10 10 10 10

Basal BW (g) 24.4±0.5 24.7±0.5 26.6±0.6 26.3±0.3 25.8±0.3 26.0±0.4 23.7±0.3 23.6±0.6 25.0±0.5 24.4±0.5

End point BW (g) 28.2±0.6 27.9±0.4 31.1±0.5 31.0±0.6 27.6±0.4* 27.6±0.6* 26.8±0.3 27.1±0.4 27.8±0.7 27.2±0.6

Renin (ng/ml) 1.2±0.1 1.1±0.0 2.3±0.3 2.1±0.3 1.3±0.03* 1.2±0.03* ND ND ND ND

Platelet (103/μl) 650±81 693±143 838±45 830±35 796±37 905±65 723±86 725±28 757±47 711±57

Study #1: TGF-β inhibition on AngII-infused aneurysms using a rabbit polyclonal TGF-β antibody.

Study #2: TGF-β inhibition on AngII-infused aneurysms using a mouse monoclonal TGF-β antibody

Study #3: TGF-β inhibition on AngII-infused aneurysms using a low or high dose of a mouse monoclonal TGF-β antibody

AngII = Angiotensin II; BW = body weight

*P<0.05, compared to saline groups by two-way ANOVA test. ND, not determined.

doi:10.1371/journal.pone.0153811.t001
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Fig 1. Minimal effects of rabbit TGF-β neutralizing antibody on aortic aneurysm. (A) Serum TGF-β concentration was measured at termination; N = 9 in
control group and n = 9–10 in TGF- β group; *denotes P<0.05 by Mann-Whitney Rank Sum Test. (B) Kaplan-Meier curves of survival. (C) Ascending aortic
area and (D) suprarenal aortic diameter were measured at termination. * denotes P< 0.05 by Student’s t-test. For (A), (C) and (D) circles are individual
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To examine whether there were any early changes in aortic dimensions during TGF-β neu-
tralization, we used high-frequency ultrasound to measure diameters of ascending and suprare-
nal aortas prior to, and 4 days after AngII infusion in mice injected with either 1D11 or
isotype-match IgG control. Although AngII promoted lumenal dilation in both aortic regions,
1D11 had no effects on early ascending (Fig 3 and S12 Fig) or suprarenal (Fig 3 and S13 Fig)
aortic expansion.

To determine whether TGF-β neutralization had dose-dependent divergent effects on aorto-
pathies, we compared the effects of low (0.5 mg/kg, 3/week) and high (5 mg/kg, 3/week) doses
of 1D11 on AngII-induced aortic aneurysms. Both low and high doses of 1D11 had no effect
on body weight and platelet count (Table 1, Study 3). As expected, a low dose of 1D11 modestly
decreased (40%) serum TGF-β concentration compared to the pronounced decrease (90%) of
serum TGF-β concentration in the high dose group (Fig 4). While a low dose of 1D11 had no
effect on aortic rupture, the high dose consistently promoted aortic rupture with incidence
present in both ascending and suprarenal aortic regions (Fig 4). Both low and high doses of
1D11 had no effect on AngII-induced ascending area and suprarenal aortic expansion (Fig 4
and S14 and S15 Figs).

TGF-β Neutralization Had no Effect on Aortic Aneurysm or Rupture in
Mice Previously Infused with AngII
In the above experiments, 1D11 was injected for 1 week before and during AngII infusion and
therefore affected the initial stage of aortic rupture. Next, we examined whether TGF-β neutral-
ization had effects in mice that were previously infused with AngII for 28 days, and then fol-
lowed by administration of either 1D11 or IgG1 control into mice for a further 28 days. During
the additional 28 day period of antibody injections, mice were continuously infused with
AngII. As with previous studies, injection of 1D11 had no effect on body weight or platelet
count (Table 2). Although the same high dose of 1D11 significantly decreased TGF-β1 serum
concentrations to a similar degree in mice injected with the antibody before AngII infusion
(Fig 5), it had no effect on the rate of aortic rupture (Fig 5). No difference in ascending or
suprarenal aortic expansion between groups was observed (Fig 5 and S16 and S17 Figs).

AngII and TGF-β have complex interactions during development of aortic aneurysms.
AngII inhibition by losartan in several mouse models of enhanced TGF-β activity completely
suppressed ascending aorta aneurysm and rupture [11,12,17,18]. The converse of increasing
AngII stimulation while reducing TGF-β activity has been demonstrated in only one study
[23]. This study demonstrated that AngII infusion into mice, combined with TGF-β neutraliza-
tion, had 90% incidence of aneurysm and rupture in normocholesterolemic C57BL/6 mice
[23]. The present study reproduced the effects of TGF-β neutralization on enhancing AngII-
induced aortic rupture, although only with a species-matched antibody. The present study
extends the findings of Wang et al. [23] by demonstrating the need for a sufficiently high dose
of antibody to produce major reductions in serum TGF-β concentrations to cause aortic
pathology. Also, we demonstrate a significant increase in aortic rupture in both the ascending
and suprarenal aortic regions, but only when TGF-β neutralization was initiated before AngII
infusion.

Injection of antibodies has been a common approach to inhibit TGF-β activity. Previous
studies demonstrated that injection of a rabbit TGF-β neutralizing antibody reduced diameter

measurements, diamonds are means, and error bars are SEM,. (E) Serummouse anti-rabbit titers in plasma were measured at termination in mice injected
with Rabbit IgG control, TGF-β antibody or vehicle (No Ab Control). Triangles are means and error bars are SEM. * denotes P<0.05, compared to no
antibody control by one way ANOVA on Ranks using Student-Newman-Keuls Method.

doi:10.1371/journal.pone.0153811.g001
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Fig 2. Mouse TGF-β neutralizing antibody promotes aortic rupture and aneurysm. (A) Serum TGF-β concentration was measured at termination in mice
(N = 5/group) injected with different concentrations of TGF-β antibody. Triangles are means of the groups, and error bars are SEM. (B) Serum TGF-β
concentration was measured at termination of study using 5 mg/kg, 3 times/week dose of antibody (Saline + IgG control, n = 5; Saline + TGF-β Ab, n = 5;
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expansion of the ascending aorta of fibrillin1 haploinsufficient mice [11] and enhanced AngII-
induced suprarenal aortic ruptures [23]. Using a rabbit TGF-β antibody provided by the same
supplier, we were only able to achieve a minor reduction in serum TGF-β concentrations, with
no profound change on aortic pathology in either region. Injection of the cross-species protein
generated antibodies as demonstrated by high serum titers of anti-rabbit IgG. In the present

AngII + IgG control, n = 10; AngII + TGF-β Ab, n = 5). * denotes P<0.05 by two way ANOVA. (C) Kaplan-Meier curves of survival. (D) Incidence of aortic
rupture in the ascending and suprarenal aortas of AngII-infused mice injected with TGF-β antibody (n = 20 per group; * = P<0.05; # P<0.01). (E) Ascending
aortic area and (F) suprarenal aortic diameter measured at experimental termination. * in denotes P = 0.017 in (E) and P = 0.002 in (F) when comparing TGF-
β IgG versus control IgG groups within AngII by two way ANOVA. For (C), (E) and (F): Saline + IgG control, n = 10; Saline + TGF-β Ab, n = 10; AngII + IgG
control, n = 19; AngII + TGF-β Ab, n = 8). For (B), (E), (F), circles are individual measurements, diamonds are means, and error bars are SEM.

doi:10.1371/journal.pone.0153811.g002

Fig 3. TGF-β neutralization (5 mg/kg, 3/week) had no effect on early ascending and suprarenal aortic
dilation confirmed by in vivo ultrasonography. Aortas of infused mice were ultrasonically scanned at day 4
of infusion. (A) Aortas were imaged in the parasternal long axis view to obtain the measurements of
ascending aortas. (B) Two-dimensional images (B mode) of short-axis scans were acquired to determine the
maximal diameters of suprarenal aortas. Histobars represent mean ± SEM.

doi:10.1371/journal.pone.0153811.g003
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Fig 4. No divergent effect of low dose versus high dose of mouse TGF-β neutralizing antibody on aortic aneurysm and rupture. (A) Serum TGF-β
concentration was measured at termination (N = 10 per group). * denotes P<0.05 by one way ANOVA. (B) Kaplan-Meier curves of survival. (C) Incidence of
aortic rupture in the thoracic and abdominal aorta. (D) Ascending aortic area and (E) suprarenal aortic diameter was measured at termination. For (A), (D)
and (E) circles are individual measurements, diamonds are means and error bars are SEM.

doi:10.1371/journal.pone.0153811.g004
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study, the rabbit antibody was injected twice prior to start of AngII infusion. Therefore, it is
likely that antirabbit IgG antibodies were present at the time of initiating AngII infusion and
could have reduced the effectiveness of neutralization. This minimal effect of the rabbit TGF-β
antibody was in stark contrast to the effects of a mouse monoclonal antibody and provides a
cautionary note in using the former reagent. The effects of TGF-β neutralization using the
1D11 antibody to enhance ascending aortic rupture are not restricted to models of AngII infu-
sion, since this antibody also increased ascending aortic rupture in young fibrillin1 hypo-
morphic mice [17]. Hence, while many facets of aortic rupture are unknown, there appears to
be a common mechanism in these two mouse models.

While AngII infusion generates aneurysms in two distinct regions of the aorta, there are dis-
tinct pathologies between those present in the ascending versus the suprarenal region. AngII
infusion leads to ascending aortic pathology with medial thickening, pronounced eccentric
elastin fragmentation, and a paucity of infiltrating leukocytes [9]. In contrast, the pathology in
the suprarenal aorta is characterized by focal medial rupture, adventitial thrombus, and accu-
mulation of many types of leukocytes [4]. There are also region-specific functional differences.
For example, TGF-β promotes smooth muscle cell growth in cells derived from thoracic origin,
while inhibiting growth in cells derived from abdominal aorta [27]. Also, AngII exerts different
contractile and medial thickening responses through the aorta [28–30]. Despite these regional
differences between the ascending and suprarenal aorta, neutralization of TGF-β during AngII
infusion led to similar increases in rupture and aneurysms in both regions.

Concomitant infusion of AngII with injection of a mouse TGF-β neutralizing antibody
leads to significant increases in death due to aortic rupture in both ascending and suprarenal
aortic regions. Aortic rupture usually occurs within days of initiating AngII infusion. The pres-
ence of rupture is presumed to be due to rapid destruction of the two major extracellular matrix
proteins that maintain aortic integrity; collagen and elastin. The mouse TGF-β neutralizing
antibody did not produce any aortic rupture when administration was initiated after 28 days of
AngII infusion. Since AngII promotes profound medial and adventitial fibrosis [31], it is likely
that the TGF-βmechanisms of rupture were inhibited by the enhanced fibrous nature of the
aorta that occurs after protracted AngII infusion.

In summary, this study reproduced the major tenet of Wang et al. in demonstrating that
TGF-β neutralization greatly accelerated aortic rupture in normocholesterolemic mice infused
with AngII. This study provided refinement on optimizing antibodies and doses. In addition,
the demonstration of uniformity in this effect is present in both regions prone to AngII-
induced aortic pathology. The basis for TGF-β neutralization influencing aortic pathology dur-
ing AngII infusion is unclear. However, it is likely that AngII promotes local secretion of TGF-
β within the aortic wall. For example, AngII stimulates secretion of TGF-β from smooth muscle
cells and fibroblasts which are major cell types in the aortic media and adventitia, respectively
[32–34]. This action would be expected to promote fibrosis. To gain further mechanistic
insight, future studies need to determine the TGF-β isoform involved in aortic rupture and
delete it in a cell-specific manner in mice.

Table 2. Characteristics of mice after 28 days of AngII infusion.

Group Mouse IgG Control Mouse TGF-β Ab

n 10 10

Dose of Ab 5 mg/kg, 3/week 5 mg/kg, 3/week

Basal BW (g) 25.4 ± 0.5 25.4 ± 0.4

End point BW (g) 28.0 ± 0.4 29.0 ± 0.4

Platelet (103/μl) 796 ± 36 905 ± 65

doi:10.1371/journal.pone.0153811.t002
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Conclusions
In conclusion, TGF-β inhibition during AngII infusion augments expansion and rupture in
both the thoracic and abdominal regions of the aorta.

Supporting Information
S1 Fig. Representative images of (A) ascending aortic and (B) abdominal aortic rupture in
mice infused with AngII. Arrows point to thrombi which are dark red in color.
(PDF)

S2 Fig. Experimental design for Study #1: Inhibition of TGF-β using a rabbit polyclonal
IgG in male normolipidemic AngII-infused mice. Arrows denote single time points. Red
box denotes continuous infusion in vivo. AngII = Angiotensin II (1,000 mg/kg/min).

Fig 5. TGF-β neutralization had no effect on progression of aortic dilation and rupture. (A) Serum TGF-β concentration was measured at termination. *
denotes P<0.05 by Student’s t-test. (B) Kaplan-Meier curves of survival. (C) Ascending aortic area and (D) suprarenal aortic diameter were measured at
termination. For (A), (C) and (D) circles are individual measurements, diamonds are means, and error bars are SEM. (N = 9 for IgG control group and N = 8
for TGF-β Ab group).

doi:10.1371/journal.pone.0153811.g005
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Ctrl = Isotype-matched control IgG.
(PDF)

S3 Fig. Experimental design for Study #2, 3: Inhibition of TGF-β using a mouse monoclo-
nal IgG (1D11) in male normolipidemic AngII-infused mice. Arrows denote single time
points. Red box denotes continuous infusion in vivo. AngII = Angiotensin II (1,000 mg/kg/
min). Ctrl = Isotype-matched control IgG.
(PDF)

S4 Fig. Experimental design for Study #4: Inhibition of TGF-β using a mouse monoclonal
IgG (1D11) in male normolipidemic mice previously infused with AngII. Arrows denote
single time points. Red box denotes continuous infusion in vivo. AngII = Angiotensin II (1,000
mg/kg/min). Ctrl = Isotype-matched control IgG.
(PDF)

S5 Fig. Diameter measurements of aortic regions in vivo imaged by ultrasound. A. The
ascending area of the ascending aorta is indicated by tracing in teal. Diameters of proximal
ascending aortas were measured (yellow line). Yellow asterisks indicate the innominate, com-
mon carotid and subclavian arterial branches of the aorta. B. The suprarenal abdominal aorta
is indicated by tracing in teal. Diameters of suprarenal abdominal aortas were measured (yel-
low line).
(PDF)

S6 Fig. Measurement of the abdominal aorta diameter. Representative photographs of saline
and AngII-infused abdominal aortas. Aortas are harvested from mice, fixed overnight in for-
malin, cleaned of surrounding tissues, and cut in half at the diaphragm. The abdominal por-
tions are pinned and photographed. Black lines depict maximal diameter measurements of
suprarenal aortas. Numbers in white box are actual measurement in mm.
(PDF)

S7 Fig. Measurement of the ascending aorta intimal area. Aortas were harvested from mice,
fixed overnight in formalin and cleaned of surrounding tissue. Thoracic sections were cut open
longitudinally along the inner curvature. Outer curvatures were subsequently cut longitudi-
nally from the proximal ascending to the subclavian arterial branch (A). Aortas were pinned
onto a wax dish and intimal area of the ascending aortas was measured between the yellow
lines (B).
(PDF)

S8 Fig. Images of ascending aortas ex vivo from AngII-infused mice in Study #1: Rabbit
TGF-β neutralizing IgG experiment.Numbers below images are ascending aortic area mea-
surements.
(PDF)

S9 Fig. Images of abdominal aortas ex vivo from AngII-infused mice in Study #1: Rabbit
TGF-β neutralizing IgG experiment.Numbers below images are suprarenal aortic diameter
measurements.
(PDF)

S10 Fig. Images of ascending aortas ex vivo from saline or AngII-infused mice in Study #2:
Mouse TGF-β neutralizing IgG experiment. Numbers below images are ascending aortic area
measurements.
(PDF)
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S11 Fig. Images of abdominal aortas ex vivo from saline or AngII-infused mice in Study
#2: Mouse TGF-β neutralizing IgG experiment.Numbers below images are suprarenal aortic
diameter measurements.
(PDF)

S12 Fig. Baseline and Day 4 images of ascending aortas in vivo frommice infused with
AngII and injected with mouse TGF-β neutralizing or control IgG. Teal lines indicate the
outer curvature and diameter measurements of ascending aortas.
(PDF)

S13 Fig. Baseline and Day 4 images of suprarenal aortas in vivo frommice infused with
AngII for 4 days and injected with mouse TGF-β neutralizing or control IgG. Teal lines
indicate the outer curvature and diameter measurements of ascending aortas.
(PDF)

S14 Fig. Images of ascending aortas ex vivo from mice in Study #3: Injection of a low or
high dose of mouse TGF-β neutralizing IgG.Numbers below images are ascending aortic
area measurements.
(PDF)

S15 Fig. Images of abdominal aortas ex vivo from mice in Study #3: Injection of a low or
high dose of mouse TGF-β neutralizing IgG.Numbers below images are suprarenal aortic
diameter measurements.
(PDF)

S16 Fig. Images of ascending aortas ex vivo from mice in Study #4.Mice were infused with
AngII for 28 days then injected with mouse TGF-β neutralizing IgG and infused with AngII for
an additional 28 days. Numbers below images are ascending aortic area measurements.
(PDF)

S17 Fig. Images of abdominal aortas ex vivo from mice in Study #4.Mice were infused with
AngII for 28 days then injected with mouse TGF-β neutralizing IgG and infused with AngII for
an additional 28 days. Numbers below images are suprarenal aortic diameter measurements.
(PDF)

Acknowledgments
We thank Victoria English for renin measurements.

Author Contributions
Conceived and designed the experiments: XC DLR AD. Performed the experiments: XC DLR
DAH AB JJM. Analyzed the data: XC, DLR DAH AB. Contributed reagents/materials/analysis
tools: XC DLR DAH AB JJM AD. Wrote the paper: XC DLR LAC AD.

References
1. Davis FM, Rateri DL, Daugherty A. Mechanisms of aortic aneurysm formation: translating preclinical

studies into clinical therapies. Heart. 2014; 100: 1498–1505. doi: 10.1136/heartjnl-2014-305648 PMID:
25060754

2. Lu H, Rateri DL, Bruemmer D, Cassis LA, Daugherty A. Involvement of the renin-angiotensin system in
abdominal and thoracic aortic aneurysms. Clin Sci. 2012; 123: 531–543. doi: 10.1042/CS20120097
PMID: 22788237

3. Daugherty A, Manning MW, Cassis LA. Angiotensin II promotes atherosclerotic lesions and aneurysms
in apolipoprotein E-deficient mice. J Clin Invest. 2000; 105: 1605–1612. PMID: 10841519

Effects of TGF-βNeutralization on Aortic Aneurysms

PLOSONE | DOI:10.1371/journal.pone.0153811 April 22, 2016 14 / 16

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0153811.s011
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0153811.s012
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0153811.s013
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0153811.s014
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0153811.s015
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0153811.s016
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0153811.s017
http://dx.doi.org/10.1136/heartjnl-2014-305648
http://www.ncbi.nlm.nih.gov/pubmed/25060754
http://dx.doi.org/10.1042/CS20120097
http://www.ncbi.nlm.nih.gov/pubmed/22788237
http://www.ncbi.nlm.nih.gov/pubmed/10841519


4. Saraff K, Babamusta F, Cassis LA, Daugherty A. Aortic dissection precedes formation of aneurysms
and atherosclerosis in angiotensin II-infused, apolipoprotein E-deficient mice. Arterioscler Thromb
Vasc Biol. 2003; 23: 1621–1626. PMID: 12855482

5. Liu J, Lu H, Howatt DA, Balakrishnan A, Moorleghen JJ, Sorci-Thomas M, et al. Associations of apoAI
and apoB-containing lipoproteins with AngII-induced abdominal aortic aneurysms in mice. Arterioscler
Thromb Vasc Biol. 2015; 35: 1826–1834. doi: 10.1161/ATVBAHA.115.305482 PMID: 26044581

6. Tieu BC, Lee C, Sun H, LejeuneW, Recinos A 3rd, Ju X, et al. An adventitial IL-6/MCP1 amplification
loop accelerates macrophage-mediated vascular inflammation leading to aortic dissection in mice. J
Clin Invest. 2009; 119: 3637–3651. doi: 10.1172/JCI38308 PMID: 19920349

7. Daugherty A, Rateri DL, Charo IF, Owens AP, Howatt DA, Cassis LA. Angiotensin II infusion promotes
ascending aortic aneurysms: attenuation by CCR2 deficiency in apoE-/- mice. Clin Sci (Lond). 2010;
118: 681–689.

8. Rateri DL, Moorleghen JJ, Balakrishnan A, Owens AP 3rd, Howatt DA, Subramanian V, et al. Endothe-
lial cell-specific deficiency of Ang II type 1a receptors attenuates Ang II-induced ascending aortic aneu-
rysms in LDL receptor-/- mice. Circ Res. 2011; 108: 574–581. doi: 10.1161/CIRCRESAHA.110.222844
PMID: 21252156

9. Rateri DL, Davis F, Balakrishnan A, Howatt DA, Moorleghen JJ, O'Connor W, et al. Angiotensin II
induces region-specific medial disruption during evolution of ascending aortic aneurysms. Am J Pathol.
2014; 184: 2586–2595. doi: 10.1016/j.ajpath.2014.05.014 PMID: 25038458

10. Cassis LA, Rateri DL, Lu H, Daugherty A. Bone marrow transplantation reveals that recipient AT1a
receptors are required to initiate angiotensin II-induced atherosclerosis and aneurysms. Arterioscler
Thromb Vasc Biol. 2007; 27: 380–386. PMID: 17158350

11. Habashi JP, Judge DP, Holm TM, Cohn RD, Loeys BL, Cooper TK, et al. Losartan, an AT1 antagonist,
prevents aortic aneurysm in a mouse model of Marfan syndrome. Science. 2006; 312: 117–121. PMID:
16601194

12. Cook JR, Clayton NP, Carta L, Galatioto J, Chiu E, Smaldone S, et al. Dimorphic Effects of Transform-
ing Growth Factor-β Signaling During Aortic Aneurysm Progression in Mice Suggest a Combinatorial
Therapy for Marfan Syndrome. Arterioscler Thromb Vasc Biol. 2015; 35: 911–917. doi: 10.1161/
ATVBAHA.114.305150 PMID: 25614286

13. Lindsay ME, Dietz HC. Lessons on the pathogenesis of aneurysm from heritable conditions. Nature.
2011; 473: 308–316. doi: 10.1038/nature10145 PMID: 21593863

14. Chen X, Lu H, Rateri DL, Cassis LA, Daugherty A. Conundrum of angiotensin II and TGF-β interactions
in aortic aneurysms. Curr Opin Pharmacol. 2013; 13: 180–185. doi: 10.1016/j.coph.2013.01.002 PMID:
23395156

15. Pereira L, Andrikopoulos K, Tian J, Lee SY, Keene DR, Ono R, et al. Targetting of the gene encoding
fibrillin-1 recapitulates the vascular aspect of Marfan syndrome. Nat Genet. 1997; 17: 218–222. PMID:
9326947

16. Pereira L, Lee SY, Gayraud B, Andrikopoulos K, Shapiro SD, Bunton T, et al. Pathogenetic sequence
for aneurysm revealed in mice underexpressing fibrillin-1. Proc Natl Acad Sci USA. 1999; 96: 3819–
3823. PMID: 10097121

17. Gallo EM, Loch DC, Habashi J.P., Calderon JF, Chen Y, Bedja D, et al. Angiotensin II-dependent TGF-
β signaling contributes to Loeys-Dietz Syndrome vascular pathogenesis. J Clin Invest. 2014; 124: 448–
460. doi: 10.1172/JCI69666 PMID: 24355923

18. Li W, Li Q, Jiao Y, Qin L, Ali R, Zhou J, et al. Tgfbr2 disruption in postnatal smooth muscle impairs aortic
wall homeostasis. J Clin Invest. 2014; 124: 755–767. doi: 10.1172/JCI69942 PMID: 24401272

19. Hu JH, Wei H, Jaffe M, Airhart N, Du L, Angelov SN, et al. Postnatal Deletion of the Type II Transform-
ing Growth Factor-β Receptor in Smooth Muscle Cells Causes Severe Aortopathy in Mice. Arterioscler
Thromb Vasc Biol. 2015; 35: 2647–2656. doi: 10.1161/ATVBAHA.115.306573 PMID: 26494233

20. King VL, Lin AY, Kristo F, Anderson TJ, Ahluwalia N, Hardy GJ, et al. Interferon-gamma and the inter-
feron-inducible chemokine CXCL10 protect against aneurysm formation and rupture. Circulation. 2009;
119: 426–435. doi: 10.1161/CIRCULATIONAHA.108.785949 PMID: 19139386

21. Spin JM, Hsu M, Azuma J, Tedesco MM, Dyer JS, Maegdefessel L, et al. Transcriptional profiling and
network analysis of the murine angiotensin II-induced abdominal aortic aneurysm. Physiol Genomics.
2011; 43: 993–1003. doi: 10.1152/physiolgenomics.00044.2011 PMID: 21712436

22. Dai J, Losy F, Guinault AM, Pages C, Anegon I, Desgranges P, et al. Overexpression of transforming
growth factor-beta1 stabilizes already-formed aortic aneurysms: a first approach to induction of func-
tional healing by endovascular gene therapy. Circulation. 2005; 112: 1008–1015.

Effects of TGF-βNeutralization on Aortic Aneurysms

PLOSONE | DOI:10.1371/journal.pone.0153811 April 22, 2016 15 / 16

http://www.ncbi.nlm.nih.gov/pubmed/12855482
http://dx.doi.org/10.1161/ATVBAHA.115.305482
http://www.ncbi.nlm.nih.gov/pubmed/26044581
http://dx.doi.org/10.1172/JCI38308
http://www.ncbi.nlm.nih.gov/pubmed/19920349
http://dx.doi.org/10.1161/CIRCRESAHA.110.222844
http://www.ncbi.nlm.nih.gov/pubmed/21252156
http://dx.doi.org/10.1016/j.ajpath.2014.05.014
http://www.ncbi.nlm.nih.gov/pubmed/25038458
http://www.ncbi.nlm.nih.gov/pubmed/17158350
http://www.ncbi.nlm.nih.gov/pubmed/16601194
http://dx.doi.org/10.1161/ATVBAHA.114.305150
http://dx.doi.org/10.1161/ATVBAHA.114.305150
http://www.ncbi.nlm.nih.gov/pubmed/25614286
http://dx.doi.org/10.1038/nature10145
http://www.ncbi.nlm.nih.gov/pubmed/21593863
http://dx.doi.org/10.1016/j.coph.2013.01.002
http://www.ncbi.nlm.nih.gov/pubmed/23395156
http://www.ncbi.nlm.nih.gov/pubmed/9326947
http://www.ncbi.nlm.nih.gov/pubmed/10097121
http://dx.doi.org/10.1172/JCI69666
http://www.ncbi.nlm.nih.gov/pubmed/24355923
http://dx.doi.org/10.1172/JCI69942
http://www.ncbi.nlm.nih.gov/pubmed/24401272
http://dx.doi.org/10.1161/ATVBAHA.115.306573
http://www.ncbi.nlm.nih.gov/pubmed/26494233
http://dx.doi.org/10.1161/CIRCULATIONAHA.108.785949
http://www.ncbi.nlm.nih.gov/pubmed/19139386
http://dx.doi.org/10.1152/physiolgenomics.00044.2011
http://www.ncbi.nlm.nih.gov/pubmed/21712436


23. Wang Y, Ait-Oufella H, Herbin O, Bonnin P, Ramkhelawon B, Taleb S, et al. TGF-beta activity protects
against inflammatory aortic aneurysm progression and complications in angiotensin II-infused mice. J
Clin Invest. 2010; 120: 422–432. doi: 10.1172/JCI38136 PMID: 20101093

24. Lu H, Howatt DA, Balakrishnan A, Moorleghen JJ, Rateri DL, Cassis LA, et al. Subcutaneous angioten-
sin II infusion using osmotic pumps induces aortic aneurysms in mice. JoVE 2015; 103: e53191.

25. Wang YX, Cassis LA, Daugherty A. Angiotensin II-induced abdominal aortic aneurysms. A Handbook
of Mouse Models for Cardiovascular Disease Ed. Xu Q., JohnWiley & Sons. 2006; 125–136.

26. Rateri DL, Howatt DA, Moorleghen JJ, Charnigo R, Cassis LA, Daugherty A. Prolonged infusion of
angiotensin II in apoE(-/-) mice promotes macrophage recruitment with continued expansion of abdomi-
nal aortic aneurysm. Am J Pathol. 2011; 179: 1542–1548. doi: 10.1016/j.ajpath.2011.05.049 PMID:
21763672

27. Topouzis S, Majesky MW. Smooth muscle lineage diversity in the chick embryo. Dev Biol 1996; 178:
430–445.

28. Zhou Y, DirksenWP, Babu GJ, PeriasamyM. Differential vasoconstrictions induced by angiotensin II:
the role of AT1 and AT2 receptors in isolated C57BL/6J mouse blood vessels. Am J Physiol Heart Circ
Physiol. 2003; 285: H2797–2803. PMID: 12907424

29. Owens AP 3rd, Subramanian V, Moorleghen JJ, Guo Z, McNamara CA, Cassis LA, et al. Angiotensin II
induces a region-specific hyperplasia of the ascending aorta through regulation of inhibitor of differenti-
ation 3. Circ Res. 2010; 106: 611–619. doi: 10.1161/CIRCRESAHA.109.212837 PMID: 20019328

30. Poduri A, Rateri DL, Howatt DA, Balakrishnan A, Moorleghen JJ, Cassis LA, et al. Fibroblast Angioten-
sin II Type 1a Receptors Contribute to Angiotensin II-Induced Medial Hyperplasia in the Ascending
Aorta. Arterioscler Thromb Vasc Biol. 2015; 35: 1995–2002. doi: 10.1161/ATVBAHA.115.305995
PMID: 26160957

31. Bush E, Maeda N, Kuziel WA, Dawson TC, Wilcox JN, DeLeon H, et al. CC chemokine receptor 2 is
required for macrophage infiltration and vascular hypertrophy in angiotensin II-induced hypertension.
Hypertension. 2000; 36: 360–363. PMID: 10988265

32. Gibbons GH, Pratt RE, Dzau VJ. Vascular smooth muscle cell hypertrophy vs. hyperplasia. Autocrine
transforming growth factor-beta 1 expression determines growth response to angiotensin II. J Clin
Invest. 1992; 90: 456–461. PMID: 1644917

33. Subramanian V, Golledge J, Heywood EB, Bruemmer D, Daugherty A Regulation of peroxisome prolif-
erator-activated receptor-gamma by angiotensin II via transforming growth factor-beta1-activated p38
mitogen-activated protein kinase in aortic smooth muscle cells. Arterioscler Thromb Vasc Biol. 2012;
32: 397–405. doi: 10.1161/ATVBAHA.111.239897 PMID: 22095985

34. Campbell SE, Katwa LC. Angiotensin II stimulated expression of transforming growth factor-beta1 in
cardiac fibroblasts and myofibroblasts. J Mol Cell Cardiol. 1997; 29: 1947–1958. PMID: 9236148

Effects of TGF-βNeutralization on Aortic Aneurysms

PLOSONE | DOI:10.1371/journal.pone.0153811 April 22, 2016 16 / 16

http://dx.doi.org/10.1172/JCI38136
http://www.ncbi.nlm.nih.gov/pubmed/20101093
http://dx.doi.org/10.1016/j.ajpath.2011.05.049
http://www.ncbi.nlm.nih.gov/pubmed/21763672
http://www.ncbi.nlm.nih.gov/pubmed/12907424
http://dx.doi.org/10.1161/CIRCRESAHA.109.212837
http://www.ncbi.nlm.nih.gov/pubmed/20019328
http://dx.doi.org/10.1161/ATVBAHA.115.305995
http://www.ncbi.nlm.nih.gov/pubmed/26160957
http://www.ncbi.nlm.nih.gov/pubmed/10988265
http://www.ncbi.nlm.nih.gov/pubmed/1644917
http://dx.doi.org/10.1161/ATVBAHA.111.239897
http://www.ncbi.nlm.nih.gov/pubmed/22095985
http://www.ncbi.nlm.nih.gov/pubmed/9236148

