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SUMMARY

Recent availability of biodiversity data resources has enabled an unprecedented ability to estimate

phylogenetically based biodiversity metrics over broad scales. Such approaches elucidate ecological

and evolutionary processes yielding a biota and help guide conservation efforts. However, the choice

of appropriate phylogenetic resources and underlying input data uncertainties may affect interpreta-

tion. Here, we address how differences among phylogenetic source trees and levels of phylogenetic

uncertainty affect these metrics and test existing hypotheses regarding geographic biodiversity

patterns across the diverse vascular plant flora of Florida, US. Ecological niche models for 1,490 Flor-

ida species were combined with a ‘‘purpose-built’’ phylogenetic tree (phylogram and chronogram), as

well as with trees derived from community resources (Phylomatic and Open Tree of Life). There were

only modest differences in phylodiversity metrics given the phylogenetic source tree and taking into

account the level of phylogenetic uncertainty; we identify similar areas of conservation interest across

Florida regardless of the method used.

INTRODUCTION

The recent explosion of biodiversity data (spatial and genetic) along with environmental data (regarding

climate, terrain, and vegetation), along with novel analytical methods and tools, has enabled an unprece-

dented capability to model species distributions and assemble those results into broad-scale diversity

assessments (e.g., Tittensor et al., 2010; Ezard et al., 2011; Olalla-Tárraga et al., 2011; Nagalingum et al.,

2015). Linking spatial ecological patterns to phylogenetic information is more powerful still (Mishler

et al., 2014; Nagalingum et al., 2015) given that species assemblages encompassing deeper phylogenetic

nodes and more evolutionary history are arguably more diverse than other areas with the same number of

species connected via shallower nodes (Faith, 1992). Phylogenetic approaches extend diversity measure-

ments from simplistic species counts to measures that also inform evolutionary pattern and process.

One of the keymeasures in spatial phylogenetics is phylogenetic diversity (PD; Faith, 1992). PD is calculated

as the sum of branch lengths from a phylogenetic tree connecting the terminal taxa from a specific location,

typically to the root of the tree. PD can be interpreted either as the amount of ‘‘feature diversity’’ contained

within a region of interest when using a phylogram, i.e., the number of apomorphies present in an area, or

as the amount of ‘‘evolutionary history’’ when using a time-calibrated chronogram (Davies and Buckley,

2012; Rosauer, 2010). Those regions with higher PD than others may be prioritized for conservation (i.e.,

as containing higher genetic diversity or a greater amount of evolutionary history), although there are obvi-

ously other potential criteria, such as threat status, that should be applied in conservation assessments

(Jetz and Freckleton, 2015). PD is typically strongly correlated with species richness, because more terminal

taxa in a sample means that a larger portion of the tree is expected to be sampled. Mishler et al. (2014)

developed a compound spatial phylogenetic metric, Relative Phylogenetic Diversity (RPD), designed to

examine whether unusually long or unusually short branches are present in a location. PD and RPD mea-

sures along with associated randomization tests can help elucidate the evolutionary processes that have

generated biotas, which in turn support stronger assessments of conservation priorities.

The evolutionary trees used in spatial phylogenetic studies are often not built by the authors performing

the study, and tree building is necessarily not afforded the same level of scrutiny as analysis of spatial
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ecological data, despite the critical importance of trees for rigorous inference. Instead, ecologists have

often relied on (1) converting a taxonomic hierarchy directly into a tree (e.g., Davies et al., 2007), (2) shortcut

trees constructed for focal species via Phylomatic software (e.g., Webb and Donoghue, 2005; Webb et al.,

2008; Wright et al., 2007; Liu et al., 2013) or the Open Tree of Life (OTL; Hinchliff et al., 2015), (3) automated

assembly of published sequences such as PhyloGenerator (Pearse and Purvis, 2013), (4) literature-based

trees (e.g., Beaulieu et al., 2012), or (5) framework trees vetted by the phylogenetics community (e.g.,

The Angiosperm Phylogeny Group IV, 2016; Soltis et al., 2011).

Despite the relative ease of acquiring such trees, their quality and inherent uncertainties are rarely exam-

ined, and the impact of these factors on PD assessment has not been well studied (but see Qian et al., 2015;

Swenson, 2009; Molina-Venegas and Roquet, 2013; Rangel et al., 2015; Thornhill et al., 2017). There remains

a need to better document how factors involved in constructing phylogenetic trees (e.g., phylogenetic un-

certainty and taxon sampling) influence these metrics. Both tree topology and branch lengths are deter-

mined by the sampling of taxa and the gene sequences employed, and these factors must be considered

when computing and interpreting PD measures. For example, limited taxonomic sampling from a tree will

produce longer individual branches than are truly present, whereas limited sampling of genetic data may

result in unrepresentative branch lengths. Likewise, the use of phylograms versus chronograms yields

branch length differences and therefore different values for PD measures. The phylogenetic depth over

which trees are computed will also affect the magnitude of these metrics: older clades have longer

branches in a chronogram and therefore contribute to higher estimates of PD than younger clades. Finally,

failure to account for tree uncertainty might inflate the confidence in a given result. This last issue is partic-

ularly underexplored, but crucial for interpreting PD values.

Here we provide a comprehensive examination of how the choice of input phylogenetic trees and inclusion

of phylogenetic uncertainty affect the assessment of PDmeasures, utilizing Florida vascular plants as a case

study. To test the importance of input trees, we developed phylogenetic trees for the specific purpose of

estimating biodiversity through integration with distribution models. A key rationale for doing so was to

determine if a more comprehensive, well-developed, and purpose-built phylogenetic tree would yield

different estimates of PD relative to those built from easily available and existing trees obtained, for

example, using Phylomatic (Webb and Donoghue, 2005), or by pruning a subtree from a pre-assembled

supertree (i.e., the OTL; Hinchliff et al., 2015).

We chose Florida as the focus for study because it is home to approximately 4,300 species of native or

naturalized vascular plants and a broad range of terrestrial and aquatic habitats (Wunderlin et al., 2017).

Furthermore, Florida is part of the North American Coastal Plain biodiversity hotspot (Noss et al., 2015).

Florida’s flora ranges from temperate, eastern deciduous forest taxa in the north to tropical elements in

central and southern Florida (Myers and Ewel, 1990); these unique floristic elements mix at transition zones,

leading to novel communities that might be expected to have unusual phylogenetic affinities. At the same

time, past climatic changes caused inundation of much of the state, forming ancient shorelines, such as the

Lake Wales Ridge (LWR), that still harbor an unusual, highly endemic scrub flora and fauna (Dobson et al.,

1997). The southern portion of Florida has a subtropical climate and includes unique ecoregions such as the

Everglades, Big Cypress and Miami Ridge, and Pine Rocklands, each with characteristic floristic elements

(Long and Lakela, 1971). Florida also supports the third highest concentration of federally sensitive, threat-

ened, and endangered species in the United States (Ihlo et al., 2014), after California and Hawaii (Dobson

et al., 1997). Furthermore, one-third of the flora of Florida is now composed of exotic species (either natu-

ralized or invasive), and habitat loss due to human development is mounting (Gordon, 1998). Still, despite

the magnitude of ecological and conservation concerns in this region, little is known about the overall

geographic patterns of plant diversity in Florida.

The present study had both empirical and methodological goals. Our empirical goal was to test hypothe-

ses regarding patterns of Florida biodiversity derived from previous studies of forest types, vertebrates,

and butterflies. In particular, work by documented an overall decrease in diversity from north to south in

Florida, although this pattern was only assessed qualitatively based on maps of richness from a variety

of vertebrates and butterflies. These conversed patterns of diversity, when compared with general

latitudinal diversity gradients (Wiens et al., 2009; Buckley et al., 2010), may relate more to the unique tran-

sitional zones from temperate to tropical floras in Florida and the underlying climate, soil, and terrain of the

region than to temperature. Previous work has noted that transitional areas, such as the Southern Coastal
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Plain ecoregion and northern peninsular Florida with southern hardwood forests and temperate broad-

leaved evergreen forests, harbor particularly high diversity (Greller, 1980). Observed PD patterns in plants

should be strongly concordant with previous hypotheses of diversity, but some geographic areas may

harbor unexpectedly high areas of PD, such as the Miami Ridge ecoregion and its tropical hammock forest

flora (Myers and Ewel, 1990). In such areas, where there may be mixing of floristic elements, we predicted

concentrations of significantly overdispersed (e.g., even) lineages (based on PD) and concentrations of un-

usually long branches (based on RPD). We further predicted concentrations of significant phylogenetic

clustering in areas wherein habitat may select for specific community members (also called ‘‘habitat

filtering’’), as well as significant concentrations of shorter-than-expected branches in areas where lineages

have potentially diversified in situ, such as the LWR. Finally, we attempted to contextualize these findings

from a conservation perspective, given ongoing rapid anthropogenic changes to native landscapes in

Florida.

Our methodological goals were to explore the effect of the choice of phylogenetic tree on spatial phylo-

genetic metrics (PD and RPD) and to provide an approach to account more effectively for sources of uncer-

tainty in phylogenetic trees. We generated PD and RPD using a variety of input phylogenetic trees and

compared the results using multiple approaches to understand how to interpret differences and uncer-

tainty in these assessments. We expected greater variation among branch lengths across the tree in

chronograms than in phylograms, as branches can often be either greatly lengthened or shortened, reflect-

ing constraints of evolutionary time. This difference was predicted to affect the distribution of observed

PD, but the impact on significance tests is poorly characterized (but see Thornhill et al., 2017). We also

examined how spatial phylogenetic metrics vary between trees pruned from existing supertrees and those

inferred from curated analysis where stringent efforts have been made to close gaps in taxon sampling,

using a strategic approach for gene sampling and branch length assessments. Finally, we used a Bayesian

framework to generate a distribution of trees representing uncertainty in phylogenetic estimates to assess

the impacts on PD.

RESULTS

Ecological Niche Models for Generating Species Lists per Pixel

Validationmetrics across all models were high, with training Area Under the Curve (AUC) scores of >0.8 and

test AUC scores within 0.15 of the training scores in nearly all cases. A small proportion of models had

significantly worse performance, wherein the difference between training and testing was >0.5. Such met-

rics were often due to low sample sizes; we removed species with outlier AUC scores >3 standard devia-

tions away from the mean from our final analysis. Ultimately, we accepted 1,490 models (i.e., one per spe-

cies), rejecting 12 species with poor model performance. Figure 1 shows species richness based on stacked

models for Florida at a 4-km resolution, ranging from a low of 57 species to a high of 856. We do not focus

on taxonomic measures of richness here, but instead utilize the lists of species per 4- 3 4-km pixel to mea-

sure PD. For one cell in Figure 1 colored red (found in the central peninsula of Florida), we show all the

phylogenetic branches linking taxa present in that cell. PD was highly correlated with species richness (Fig-

ure S2). Observed PD measures across the state are summarized in Figure 2 for both the phylogram and

chronogram.

Florida Plant Phylogeny Is Consistent with Previous Literature

The relationships among vascular plants based on the two plastid genes for the species sampled from

Florida agree closely with the results of previous phylogenetic analyses based on more genes and taxa.

For example, we recovered themajor subclades of angiosperms, and relationships within and among those

are also in agreement with broader analyses (Figure 1; Moore et al., 2007; Soltis et al., 2011; Ruhfel et al.,

2014; Wickett et al., 2014). Long branches are pronounced in the lycophytes, monilophytes, and gymno-

sperms, as well as in parasites, which tend to have increased substitution rates in plastid genes because

of the loss of functionality, and in herbaceous lineages, wherein longer branches would be expected

compared with woody relatives (Smith and Donoghue, 2008). Lineages known to have radiated rapidly

(e.g., Asteraceae) also exhibit generally shorter branches as expected. Likewise, there are clades of very

low phylogenetic resolution because of short branch lengths. This is particularly prevalent in Asteraceae

and Poaceae, two of the most species-rich families of angiosperms in general and in Florida. The overall

phylogenetic framework of the vascular plants of Florida is highly similar to the accepted framework based

on broader geographic analyses, and relationships within subclades of vascular plants also reflect those

found in other studies.
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Figure 1. Phylogram, Chronogram and Species Richness of Vascular Plants in Florida

(A) Phylogeny of 1,490 vascular plants in Florida, shown as both chronogram (left) and phylogram (right). The black dots on

the chronogram indicate the positions of the 17 calibration points.

(B) A map showing species richness, with PD from one grid cell highlighted in red on the phylogram and the chronogram.
The few instances in which the topology differs from published analyses are all minor deviations from

expectations and result from the limited dataset (i.e.,matK, rbcL; only Florida plants) employed here. These

deviations (e.g., a genus with a single sampled species in Florida placed in a related genus with multiple

species rather than as sister to that clade, or species of two closely related genera interdigitated) also likely

reflect sampling issues and are surprisingly minor, given that the vascular plants of Florida are a small sub-

set of global diversity. Furthermore, most inconsistencies between the Florida tree and more broadly

sampled trees occur in regions of the phylogeny where relationships continue to be difficult to resolve

(e.g., Lamiales and Asteraceae). Finally, uncertainty in a few very short branches is not likely to confound
60 iScience 11, 57–70, January 25, 2019



Figure 2. Phylogenetic Diversity of Vascular Plants in Florida

Observed (top panel) and significant (bottom panel) phylogenetic diversity measured from phylogram (left) and

chronogram (right) for vascular plants. On the top panel, the Environmental Protection Agency Level III ecoregions are

mapped with the darker lines, Level IV are mapped with the lighter lines, and areas of interest, e.g., Lake Wales Ridge and

Miami Ridge, are identified.
PD analyses, because the better-supported long branches contribute the great majority of PD (González-

Orozco et al., 2016). Calibrating this tree with the fossil constraints (Table S4) yielded a chronogram for

comparison with the phylogram in downstream analyses (Figure 1); the chronogram has smoothed branch

lengths relative to the phylogram (see Figure 1 for comparison).
Spatial Phylogenetic Patterns across Florida

Phylogenetic Diversity Patterns in PD

Plotting PD across Florida relative to the Level III and Level IV Environmental Protection Agency ecoregions

(Figure 2) and to latitude (Figure 3) revealed both ecological and geographic patterns. The highest PD

occurred from the northern parts of peninsular Florida south to near Orlando and St. Petersburg. For

both the phylogram and chronogram, PD was higher in central Florida than in the northern and southern

parts of the state (Figure 2). South Florida showed a mix of patterns longitudinally; the Everglades and Big

Cypress had relatively low PD, whereas Miami Ridge, at the same latitude, had relatively high PD (visible as

the long tail toward positive PD values in Figure 3 at latitude 26.5�N). The average PD values for the

ecoregions also showed higher PD in the Southern Coastal Plain across peninsular Florida than elsewhere

(Table 1).

Patterns of Significant Clustering or Evenness

Areas showing significantly high or low PD differed when measured on the phylogram versus the chrono-

gram (Figure 2). The chronogram-derived values showed a strong pattern of evenness in the northern and

central areas of Florida, especially in the Southeastern Coastal Plain ecoregion. The chronogram-based

results suggest that significantly more evolutionary history than expected is assembled in the north central

part of the state and significantly less than expected is assembled in the southern part of the state. In

contrast, PD significance based on the phylogram, whichmore directly represents feature diversity, showed

phylogenetic clustering in several regions of the state, particularly along the northwestern coast of Florida,

with very little evenness anywhere.
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Figure 3. Phylogenetic Diversity by Latitude

The study region was binned by 0.5� into 13 latitudinal sections represented by the lines on the maps on the right. Bean

plots on the left represent the phylogenetic diversity values for the pixels within each section for both the phylogram (top)

and chronogram (bottom).
Relative Phylogenetic Diversity Patterns

Patterns of RPD also differed substantially between the phylogram and chronogram. Geographic areas of

major difference between the chronogram- and phylogram-derived values include (Figure 4): (1) northern

Florida, where the chronogram yielded high observed RPD and a much more extensive concentration of

significantly high RPD (i.e., longer branches than expected) than yielded by the phylogram; (2) central

Florida, where the phylogram generally did not show significantly low RPD (i.e., shorter branches than

expected), whereas the chronogram did; and (3) very southern Florida, including the Miami Ridge area
Ecoregion Mean SD

Phylogram Southeastern Plains 0.3997 0.0917

Southern Coastal Plains 0.5071 0.0987

Southern Florida Coastal

Plains

0.3554 0.0512

Chronogram Southeastern Plains 0.3621 0.0868

Southern Coastal Plains 0.4214 0.0968

Southern Florida Coastal

Plains

0.2553 0.0426

Table 1. PD Calculations and SD for the Cells Contained in Three Ecoregions for the Phylogram and Chronogram
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Figure 4. Relative Phylogenetic Diversity

Observed (top panel) and significant (bottom panel) relative phylogenetic diversity measured from (A and C) phylogram

and (B and D) chronogram for vascular plants.
and the Everglades, where the phylogram resulted in high observed RPD and a much larger concentration

of significantly high RPD than the chronogram.
Alternative Source Trees Yield Both Similarities and Differences in Patterns of PD

Similar patterns of PD emerged among the alternative source trees (from Phylomatic and the OTL) and the

purpose-built tree (Figure 5). Similarities are expected between the purpose-built trees and those from the

OTL as the branch lengths were determined from the same alignment. Each source phylogram produced

PD values with significant clustering in the Florida panhandle and along peninsular Florida, whereas each

source chronogram produced PD values showing evenness along the northern edge of the panhandle. We

found that the OTL trees and purpose-built trees were the most similar, with fewer than 5% of the cells

showing a difference in significance for phylogram-derived values and fewer than 20% of the cells showing

a difference in significance for those based on the chronograms. Measures using the Phylomatic trees,

despite having fewer deleted taxa, showed more differences from the purpose-built trees; > 25% of the

cells showed a different significance result (Figure 5; Table 2). Taxon sampling differences among methods

modestly affected this spatial phylogenetic metric (e.g., with fewer taxa, only the area east of LWR was

prominent as an area of significant clustering in the phylogram; Figure 5B).
Tree Uncertainty Has Little Effect on Significance of Phylogenetic Diversity Scores

The standard deviations across the PD scores calculated from the 100 chronograms were larger in general

than those calculated from the 100 phylograms, with the similarities between the two maps most prom-

inent in the panhandle and far southern Florida (Figures 6A–6C). Significant clustering or evenness for

the 100 Bayes trees is summarized in Figures 6D and 6E. As might be expected, no cells showed a change

from significant clustering to significant evenness, or vice versa, across the 100 trees, yet some cells

showed relatively high inconsistency in significance level in one direction or another. Key questions

were whether phylogenetic uncertainty might lead to widespread errors in assessment of PD significance,

particularly if changes due to uncertainty are spatially clustered, leading to geographic bias. Although

there were some cells for which significance changed, the overall pattern does not suggest spatial

structuring in uncertainty of PD significance. Approximately 80% of all pixels were consistent in signifi-

cance for values derived from both the chronogram and the phylogram, whereas only 7% of the pixels

showed the highest level of uncertainty and these were widely scattered (Table 3). Finally, general pat-

terns of PD across latitude do not change when we include all the PD calculations across the 100 trees

(Figure 7).
iScience 11, 57–70, January 25, 2019 63



Figure 5. Diversity Hypothesis Tests Comparing Chronograms and Phylograms for Vascular Plants Built Using

Either Our Purpose-Built Tree, Phylomatic, or Open Tree

In the top panel are phylograms and chronograms for the purpose-built tree pruned to the (A) Phylomatic and (B) Open

Tree taxon dataset. In the middle panel are the (A) Phylomatic and (B) Open Tree trees. In the lower panel are the

differences between the two maps. Gray pixels are those that changed in significance level between the Phylomatic and

purpose-built tree and the Open Tree and purpose-built tree.
DISCUSSION

An Improved Understanding of Florida Floristic Diversity

Here we examined all vascular plant diversity that shapes vegetation definitions in Florida, instead of

limiting our study to only the dominant vegetation. Importantly, we found peaks of plant diversity in north-

ern peninsular Florida rather than in the panhandle. One major reason for putting effort into phylogenetic

measures is that they connect to evolutionary and ecological processes that shape diversity patterns. For

example, although PD may be the highest in northern peninsular Florida, rather than the panhandle, there

is significantly more PD than expected in many panhandle areas, especially when considering chronograms

rather than phylograms. Southeastern forests are composed of communities containing deep evolutionary

branches, particularly in the time-calibrated phylogenies. These mixed forests are stable over long time

periods, facilitating accumulation of a broad set of older lineages, as opposed to oscillations of more

open oak savannah habitats and inundation during Pleistocene sea-level incursions in central and southern

peninsular Florida.

In southern Florida, which was entirely submerged during the last interglacial (reviewed in Germain-Aubrey

et al., 2014), we find an unusual pattern of phylodiversity, where only the phylogram shows a strong signal in

RPD, i.e., significantly longer branches than expected given the null hypothesis. We argue that phylograms,

often with relatively longer branches toward the tips, are likely to show stronger patterns in some cases than

chronograms, which tend to redistribute branch length from terminal to deeper branches (demonstrated in

Figure 1). In southern Florida, communities with taxa of Caribbean or Central/South American origin may

be dominated by longer terminal branches. Further examination of both community composition and

possible artifacts from methodological choices is warranted.
Comparison with Purpose Built Tree

OpenTree Phylomatic

Phylogram 373 2,126

Chronogram 1,517 1,945

Table 2. Number of Cells Showing Different Results between the Tree Resources
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Figure 6. Uncertainty of Phylogenetic Diversity

Top: Standard deviation of observed Phylogenetic Diversity across all (A) 100 phylograms and (B) 100 chronograms

selected from the post-burn-in distribution of trees in our Bayesian analysis. (C) Difference between the two on the right in

blue. Bottom: Areas in light blue are those for which 91 (of 100) or more of the trees had the same level of significance.

Areas in yellow aremostly consistent, with 71–90 (of 100) of the trees finding the same level of significance. Areas in red are

the relatively inconsistent pixels, with only 50–70 of the trees having the same level of significance for (D) 100 phylograms

and (E) 100 chronograms.
In the central peninsula of Florida, we find strong patterns of both phylogenetic clustering and shorter

branches than expected using either the phylogram or the chronogram. Although central Florida is a floris-

tically diverse area, it includes locations that were inundated during Pleistocene interglacial sea-level rise,

as well as xeric scrub that was more persistent, but co-occurring taxa are likely filtered due to the evolution-

arily conserved preferences of some lineages for the harsh environments of these areas (e.g., excessively

drained soil and extreme heat). Alternatively, some of this pattern may be due to in situ differentiation,

whereas some taxa may bemore recent arrivals as many are derived fromwestern North American lineages

that dispersed eastward during more xeric interglacial periods (reviewed in Germain-Aubrey et al., 2014).

Our results are also consistent with those found in other, distantly related animal lineages. Used a Florida

gap analysis to document high species richness in vertebrates and butterflies especially in the panhandle

and extending into the core of central Florida. Although our methods differ from those used by these

authors, especially given the focus in on just taxic measures, the results are broadly consistent, perhaps un-

surprisingly because plant diversity may generally drive diversity in groups such as butterflies (Burkle et al.,

2013).
Classa Phylogram Chronogram

50-70 642 645

71-90 1,013 997

91-100 6,508 6,521

Table 3. Number of Cells in Each Class of Uncertainty
aClass indicates the number of trees with a consistent level of significance. For example, 50-70 class indicates that for those

pixels 50-70 of the trees were similarly significant meaning and 50-30 were not similarly significant. For the 71-90 class more of

the trees were consistently significant, and for the 91-100 class the majority of the trees found the same level of significance,

suggesting that those pixels are consistent when taking into account uncertainty in the phylogenetic estimates.
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Figure 7. Uncertainty of Phylogenetic Diversity by Latitude

The study region was binned by 0.5� into 13 latitudinal sections represented by the lines on the maps on the right. Bean

plots represent the phylogenetic diversity values for all 100 trees for each of the pixels within each section for both the

phylogram (left) and chronogram (right).
Finally, two particular areas of interest, given known endemicity and unusual floras, are the Miami Ridge/

Pine Rocklands and the LWR (location denoted in Figure 2, top left panel, and Figure S3). The Pine Rock-

lands exhibits a diverse flora of hammock species and those common across the Bahamas and Greater

Antilles (Myers and Ewel, 1990). In the Miami Ridge area, as expected, we found increased PD and signif-

icant PD clustering for some pixels based on the chronogram and significantly high RPD in others for the

phylogram. The LWR, in particular, is known to harbor high endemic species diversity (Myers and Ewel,

1990; Germain-Aubrey et al., 2014), which we hypothesize may show high neo-endemism when examined

using phylogenetic endemism metrics in the future. It is beyond the scope of this study to investigate such

patterns, especially given that we did not create full geographic range surfaces for some of the species

examined, but we found that LWR is neither particularly high in PD and nor does it show significantly

clustered or even lineages; however, areas immediately east of LWR show strong clustering. This region

is a mosaic of habitats, including pine flatwoods, dry prairies, and marshes (Myers and Ewel, 1990), and

the significant clustering in this area may indicate strong filtering for these habitats. It also suggests that

conservation priorities should not only be concentrated in areas such as the LWR but also include those

areas directly adjacent to it along zones of highly varying diversity. Zones of conservation priority are

also found in areas such as the Miami Ridge/Pine Rocklands, which are under direct threat from rapid,

continuing human development and provide a further strong justification for conservation actions to

support these unique evolutionary assemblages. To obtain a complete picture of conservation priorities,

future studies are needed of phylogenetic endemism and associated hypothesis tests (e.g., Cadotte and

Davies, 2010; Rosauer et al., 2009; Tucker et al., 2012; Mishler et al., 2014) to complement the PD studies

reported here. Future analyses of PD and RPD can compare the ecoregions noted above, as well as native

habitats and protected areas, thereby informing conservation priorities for human managed habitats and

regions as well as those areas experiencing rapid land conversion in Florida.
The Importance of Evaluating Input Trees for Phylogenetic Diversity

Quality of the Purpose-Built Tree and Community Tree Resources

Relationships within the major clades of ferns (monilophytes), gymnosperms, and angiosperms agree

closely with broader phylogenetic analyses focused on those specific subclades (e.g., The Angiosperm Phy-

logeny Group IV, 2016; Schuettpelz and Pryer, 2007; Smith et al., 2011; Soltis et al., 2011; Stevens, 2001).

Some of the more difficult areas to resolve on the purpose-built Florida tree were appropriately resolved

in the topology produced from the OTL. This is likely due to the continuously updated nature of the OTL,

where the tree topology integrates previously estimated trees into the framework to produce a ‘‘synthesis’’

tree. Our results suggest that, in the future, the OTL may be an important resource for spatial phylogenetic

analyses. Providing there is adequate sampling of the terminal taxa in a region represented in the OTL,

researchers will be able to save numerous hours in building their own region-specific trees. Of course,

for less well-studied regions of the world, many new sequences may need to be added; even for this
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dataset, a large proportion of the species did not have existing sequence data, making it necessary to

sequence many taxa to provide data for branch length estimation.

Although Phylomatic and the OTL may give relatively accurate topologies, calculating branch lengths for

these trees remains problematic, particularly when using phylograms. To address this issue, we used our

DNA sequence alignment to estimate branch lengths on the OTL topology, which likely explains why we

found fewer differences between results based on our purpose-built tree and theOTL tree when compared

with the Phylomatic tree (Figure 5). However, this method requires assembling an alignment for OTL

phylogenies, which may defeat the purpose of using such resources. Current efforts already underway to

add branch lengths estimates to the OTL method will further increase the strong utility of OTL as a source

for spatial phylogenetics analysis.

Taxon sampling may be another issue with using trees from repositories. The Phylomatic tree contained almost

all of our terminal taxa of interest (99%), and more taxa than the OTL tree (80%). It is unclear how many taxa

would be available if we were to attempt an analysis of all vascular plant species in Florida (�4,300 species). In

general, taxon sampling is a concern that is always difficult to overcome. In some studies, coarser-scale Oper-

ational Taxonomic Units (OTUs) such as genera are used to represent most of a flora when sequence data are

limited at finer scales (e.g., Thornhill et al., 2016, 2017). In our case, we included only 35% of Florida’s vascular

plant species because the tree was built to match the species for which sufficient occurrence data were avail-

able for constructing distribution models. Although we do not know how these patterns might change if we

were to add more taxa, pruning of species for comparison with community resources (e.g., OTL) provided a

means to examine effects of reduced taxon sampling. We found that the number of cells with significant clus-

tering decreased considerably in central Florida when �250 taxa were removed (Figure 5). This result suggests

that some power may be reduced with more limited taxonomic sampling. However, our current analyses likely

reasonably capture general trends in PD in Florida, providing a much-needed, initial snapshot of diversity.

Tree Uncertainty

Using a different way to examine uncertainty, by comparing multiple outcomes of RaxML searches, Thorn-

hill et al. (2017) found virtually no effect of tree uncertainty on spatial phylogenetics results. Here we used a

Bayesian approach to examine uncertainty, which has the potential to yield trees with more differences, yet

we hypothesized that tree uncertainty would have a minimal impact on measures of PD significance given

that, in most cases, shorter branches are affected, especially for phylograms. However, with larger trees

and limited character sampling (nucleotides), uncertainty could have an impact on assessments of PD. Fig-

ure 6 shows that approximately 20% of pixels showed moderate to high differences in significance among

the 100 trees, flipping between non-significant and either significantly high or significantly low (but never

from significantly high to significantly low). This pattern is found for both the phylogram and chronogram,

although standard deviations per pixel are much higher for the chronograms. Tree uncertainty in chrono-

grams has more impact on branch lengths due to time scaling—if nodes are uncertain then swapping of

branches can result in more pronounced changes in branch lengths than seen at the same place in the cor-

responding phylogram wherein the uncertain branches tend to be quite short (see demonstration of this in

González-Orozco et al., 2016). Our example is an empirical one, andmore work using simulated trees could

further elucidate expectations of the impacts of tree uncertainty as it relates to measures of phylodiversity.

Two key messages come from our analyses. First, although uncertainty is likely to affect judgments of sig-

nificance in PD and RPD for certain grid cells, there appeared to be no geographic structuring of such cells,

and thus the modest amounts of uncertainty seen here do not broadly affect conclusions at the landscape

scale. For example, our general assessment of significant clustering in central Florida still appears to hold

despite some differences in results among the 100 trees. Second, whereas changes between non-signifi-

cant and significant clustering or evenness in one direction were seen occasionally due to uncertainty,

no changes were seen between significantly high and significantly low. This suggests that, although uncer-

tainty may affect our interpretations of significance or not, it will not change our interpretation of significant

clustering to significant evenness. Still, we argue that phylogenetic uncertainty should be considered in

phylodiversity analyses, which is currently often not the case.

Phylograms vs. Chronograms

The divergent results seen in significance tests inferred from the phylogram versus the chronogram were

the largest differences observed in this analysis, much larger than differences due to tree uncertainty or
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tree source. The tree topology is the same between the two analyses, whereas the branch lengths are

different, and each approach has unique interpretations. An analogy would be travel directions for a route

using either geographic distances or times; both indicators are informative in different ways. Generally, it is

thought that evenness of lineages measured on the phylogram directly relates to the unexpectedly high

genetic disparity and thus may indirectly relate to high functional trait disparity, if the change in those traits

is correlated with genetic change in the markers employed. By contrast, evenness of lineages measured on

the chronogram directly relates to unexpectedly high temporal disparity and may likewise indirectly relate

to high functional trait disparity, if the change in those traits is correlated with time. Both correlations are

quite plausible; the interpretation of differences in significance patterns may come down to tempo and

mode of evolution. If anagenesis in functional traits is correlated with heterogeneous rates of genetic

change on different branches, as, for example, due to generation time effects as commonly seen when

comparing woody plants with herbaceous relatives (Smith and Donoghue, 2008) or major adaptive effects

such as commonly seen when comparing parasitic plants with autotrophic relatives, then the phylogramwill

illuminate those processes with significance of PD. On the other hand, if anagenesis in functional traits is

relatively uniform and generally correlated with the amount of time elapsed along a branch, then the

chronogram will likely indicate that process.

The same distinction is important when using PD-related results to help set conservation priorities. Areas

with high PD measured on the phylogram by definition have high genetic diversity, and this may be the

better measurement if the goal is preserving genetic diversity, whereas high-PD areas measured on the

chronogram contain an unusually large amount of evolutionary time, and this may be the better measure-

ment if the goal is preserving evolutionary diversity. Which form of branch lengths is preferred for a proxy

for functional trait diversity depends on the value placed on these processes along with the conservation

priorities (Thornhill et al., 2017).
Limitations of the Study

Although this study includes 1,490 taxa of Florida plants, more than 4,000 vascular plant species are known

to occur in the state, and it is possible that full inclusion of all species could affect the results presented

here. Further efforts to assemble more complete distribution data, especially for range-restricted species,

are ongoing, and those records can hopefully lead to further refined and accurate species distribution

modeling. We note that although the phylogeny recovered using a small set of markers aligns with known

relationships, further work to develop more robust phylogenetic hypotheses is a next step. Finally, further

work correlating these patterns with areas of high population growth and encroaching sea-level rise will

provide additional insights for conservation efforts and planning.
METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.
SUPPLEMENTAL INFORMATION

Supplemental Information includes Transparent Methods, five figures, and five tables and can be found

with this article online at https://doi.org/10.1016/j.isci.2018.12.002.
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TRANSPARENT	METHODS 

Ecoregions in Florida 

The U.S. Environmental Protection Agency (EPA) has defined a nested set of North American ecoregions, 

areas that are similar in terms of both biotic and abiotic variables (Omernik and Griffith 2014). The EPA 

Level III ecoregions include 105 areas in North America, three of which are found in Florida (Figure S1). 

Many plant species from northern Florida have distributions that occur across the southeastern U.S.A.; 

therefore, we used distribution points across the three Level III ecoregions to generate species distribution 

models, as discussed below. The EPA’s more subdivided Level IV ecoregions include 20 within Florida that 

define a number of important vegetation regions, including the Everglades and the Miami Ridge. We interpret 

results in light of the Level IV ecoregions and specific ecogeographic areas of interest.  

 

Species Distribution Models and Predictions of Community Composition  

To calculate PD across Florida, we developed species distribution models for 1,490 species of vascular plants. 

To generate the models, we collected specimen locality information of vascular plants of Florida based on 

the statewide flora by Wunderlin and Hansen (2011). These data came from seven herbaria in the southeastern 

U.S.A. (FLAS - University of Florida Herbarium, FSU - Florida State University Robert K. Godfrey 

Herbarium, LSU - Louisiana State University Herbarium, MISS - Tomas M. Pullen Herbarium Mississippi 

State, UNA - University of Alabama Herbarium, USCH - A.C. Moore Herbarium University of South 

Carolina, USF - University of South Florida Herbarium) and the Global Biodiversity Information Facility 

(GBIF), and inventory data from the Florida Natural Areas Inventory (FNAI). All non-florida taxa were 

removed before georeferencing. We used Biogeomancer (Guralnick et al. 2006) and Geolocate 

(http://www.museum.tulane.edu/geolocate/) to help retrieve computer-readable geospatial coordinates for 

specimen records that were not associated with GPS coordinates. This was especially important for older 

collections (i.e. pre-GPS collections). Taxonomic components of specimen records were input into the 

Taxonomic Name Resolution Service tool (Boyle et al. 2013) of the iPlant Collaborative (now Cyverse).  

 We limited the extent of our assembly of occurrences to three EPA ecoregions across Florida and the 

Southeastern U.S.: the Southeastern Plains (in the northwestern panhandle), the Southern Coastal Plains 

(covering the southern and eastern panhandle and most of the peninsula), and the Southern Florida Coastal 



Plains (covering the southern tip of the peninsula and the Florida Keys; Figure S1).  The species occurrences 

included in the model came from the entire extent of their ranges within the three ecoregions. Many of the 

species for which we developed models have wider ranges, but we chose to limit population occurrences and 

the extent of modeling to these three ecoregions.  Our rationale is that populations adapting to local and 

regional conditions are more the norm than the exception, thus reducing the commission errors (Valladares 

et al. 2014) likely in the context of ecoregions and their strong ties to edaphic and terrain characteristics of 

those regions.   

We set minimum requirements for modeling as follows: for widely distributed taxa, we retained 

only those with 30 or more unique occurrences; for narrowly distributed taxa, only those with 20 or more 

occurrences; and for Florida endemic plants, at least 10 occurrences were required to retain the species for 

modeling (Table S5). We coded each species either as narrow (if a species was restricted to 10 or fewer 

adjacent counties) or widespread (if a species was found in more than 10 counties, especially if not adjacent) 

according to the Florida Plant Atlas (http://florida.plantatlas.usf.edu/). In total, 1,502 species of vascular 

plants had sufficient data for modeling.  

To incorporate the background environmental layers for building the models, we calibrated models 

utilizing bioclimatic, topographic, and edaphic variables. We downloaded bioclimatic variables at 30 arc-

second (~1-km) spatial resolution from Worldclim (http://www.worldclim.org; Hijmans et al. 2005) and 

generated a correlation matrix among these 19 variables. We removed highly correlated bioclimatic variables 

(those with a correlation coefficient > 0.7) within the maximum model calibration region, resulting in eight 

non-correlated bioclimatic variables to build the models; these variables were Mean Diurnal Range (Mean 

of monthly (max temp - min temp)), Max Temperature of Warmest Month, Min Temperature of Coldest 

Month, Mean Temperature of Wettest Quarter, Mean Temperature of Driest Quarter, Annual Precipitation, 

Precipitation of Wettest Month, and Precipitation of Driest Month. We also downloaded a digital elevation 

model at ~1-km spatial resolution (GTOPO30, supplied by USGS; https://lta.cr.usgs.gov/GTOPO30) and a 

soil layer from USGS (USGS.gov), resulting in a total of 10 background variables to calibrate the models.  

To fit the models to migration potential, we developed an automated methodology to select 

appropriate accessible areas for calibrating each species model (Barve et al. 2011). We used county-level 

presence information from the Atlas of Florida Plants (Wunderlin et al. 2017) in addition to the occurrence 



records. We buffered the occurrences by the average distance between each occurrence using the county 

centroid as an occurrence. Thus, buffered distance varied depending upon available occurrences for each 

species. This buffering distance, while automated, ensures that accessible area was not overly broad, which 

typically negatively impacts model predictions and the ability to assess model performance accurately (Barve 

et al. 2011). It is still an open empirical question if such approaches are generally equivalent to hand-defined 

accessible areas. We clipped the environmental background data layers to accessible area shapefiles using 

the function CropRaster from the R package ENMGadgets (Barve and Barve 2014).  

For all taxa that met data requirements, we constructed niche models using the software package 

MaxEnt 3.3.3k (Phillips et al. 2006), which employs a maximum entropy algorithm to predict the potential 

distribution of species. We used default parameters except the regularization parameter was set to 1.5 based 

on initial testing of model performance.  We used 10 bootstrap replicates to calibrate the model and used the 

averaged model. We projected the model in the ecoregion(s) where the species is known to occur. Once 

species distribution models were assembled for all species, the resulting potential distribution outputs were 

converted into presence-absence maps by thresholding using two threshold methods.  First, we used the equal 

test sensitivity and specificity threshold (ESS) values, because this approach optimized the omission and 

commission errors between the presences and background in the calibration region. In the second threshold 

method, we extracted the probability values from the generated surfaces by omitting the least suitable 10% 

of occurrences. Both threshold methods generated very similar distribution surfaces. Thus, we used the 

distributions generated by the ESS method as this approach equalizes the commission and omission error.  To 

perform thresholding, we used the function ModelThreshold from the R package ENMGadgets (Barve and 

Barve 2014).  We calculated model validation metrics for all models, including, in particular, AUC values 

generated from ROC curves.  The training AUC was always >0.8 and the difference between training and 

testing was always <0.15 otherwise the model was discarded (Figure S5). We removed 12 species where 

niche models performed particularly poorly based on AUC values, resulting in a final set of 1,490 species 

distribution models.  

These models extended across the three ecoregions then they were then clipped to the state borders 

of Florida, including all natural land-sea boundaries except Florida’s northern border. Both for computational 

reasons and given the challenges with predictions of richness in thresholded and stacked species distribution 



models (Calabrese et al. 2014), we resampled these potential distributions from 1-km to 4-km resolution, 

using the nearest neighbor algorithm in ArcMap, overlaid thresholded maps, and created species lists for each 

pixel at a resolution of 4-km.  This reduced the number of pixels for randomization tests from ~600,000 to 

~30,000 across the three ecoregions and was meant to provide a more accurate list of species per pixel, trading 

that benefit with the cost of lower spatial grain.  Species lists are a critical component for phylodiversity 

analyses and are needed for linking to phylogenies.   

 

Genetic Data Collection and Phylogenetic Tree Reconstruction 

For the 1,490 species with distribution models, we produced phylogenetic trees using both published 

sequence data and newly generated sequences. We selected two genes commonly used in plant phylogenetics, 

rbcL and matK of the plastid genome (e.g., Hollingsworth et al. 2011), and queried GenBank for our taxa; 

463 of these species had sequences available from Florida collections. These DNA sequences were checked 

throughout the alignment and tree-building process, and problematic sequences were removed.  

A total of 1,027 species lacked DNA sequence data on GenBank. We therefore collected wild and 

cultivated material of these species from throughout Florida; voucher specimens were deposited at the 

University of Florida Herbarium (FLAS). In addition, herbarium specimens from FLAS were sampled for 

rare or hard-to-access taxa.  

DNA extraction  

Genomic DNA was extracted from silica-dried (Chase and Hills, 1991) and herbarium material using a 

modified CTAB method (Doyle and Doyle, 1987) scaled to a 1 mL volume reaction. Approximately 10 mg 

of dried tissue was ground in 1 mL of CTAB 2X buffer and 10 μL of proteinase-K.  Problematic DNA isolates 

(i.e., samples that failed to provide high-quality amplicons through PCR) were cleaned using Axygen 

AxyPrepTM, Qiagen QIAquickTM, or Promega WizardTM cleaning kits according to the manufacturer's 

protocols. For further detail, see Neubig et al. (2014). 

PCR, sequencing, and sequence editing 

PCR amplification of rbcL was performed in several labs, so reaction components differ slightly. Either 

Biometra Tgradient or an Eppendorf Mastercycler EP Gradient S thermocycler was used.  SigmaTM brand 

reagents were used to amplify rbcL in 25 μL volumes with the following reaction components: 0.5-1.0 μL of 



template DNA (~10-100 ng), 18 μL of water, 2.5 μL of 10X buffer, 3 μL of 25mM MgCl2, 0.5 μL of 10 mM 

dNTPs, 0.5 μL each of 10 μM primers, and 0.5 μL of Taq or with 1 μL of template DNA (~10-100 ng), 9.4 

μL H2O, 5.0 μL of 5X buffer, 2.5 μL of 25 mM MgCl2, 1.0 μL of 2.5 mM dNTPs, 2.0 μL saturated betaine 

solution, 2 μL each 5 μM primer, and 0.1 μL Taq.  Three different primer combinations were used for rbcL 

(Table S1). These were used in succession if the first combination failed to amplify: Z1 and 3’ (Zurawski, 

Clegg & Brown, 1984), rbcLaF and rbcLaR (Shokralla et al., 2010), and NY35 or NY149 (Cameron, 2004). 

PCRs were amplified using 94°C, 3 min; 33X (94°C, 30 sec; 55°C, 30 sec; 72°C, 2 min); 72°C, 4 min, or as 

described in Clayton et al. (2007). 

The plastid gene matK was amplified using SigmaTM brand reagents in 25 μL volumes with the 

following reaction components: 0.5-1.0 μL of template DNA (~10-100 ng), 17.5 μL of water, 2.5 μL of 10X 

buffer, 2.5 μL of 25mM MgCl2, 0.5 μL of 10 mM dNTPs, 0.5 μL each of 10 μM primers, and 0.5 μL of Taq.  

For matK, many primer combinations were required: 1) 390F and1326R (Cuénoud et al., 2002); 2) F 

(Equisetum) + R (Equisetum) (Nicolalde-Morejón et al., 2011); 3) XF and Malp_R1 (Dunning and 

Savolainen, 2010; Sun, McLewin & Fay, 2001), 3F; 4) 1R (CBOL Plant Working Group, 2009); 5) 472F and 

1248R (Yu et al. 2011). PCR cycling conditions for the 390F and 1326R primer set were as follows: 94°C, 3 

min; 33X (94°C, 30 sec; 51°C, 30 sec; 72°C, 1 min 30 sec); 72°C for 3 min. PCR cycling conditions for the 

other primer combinations were equivalent to the previous specifications except the annealing temperature 

was increased from 51°C to 53°C at each cycle. PCR products for both genes were sequenced via Sanger 

sequencing using the ABI 3130 at the Interdisciplinary Center for Biotechnology Research at UF.  Sequences 

were edited in Sequencher 4.9 (Gene Codes, Corp., Ann Arbor, MI). Sequences were deposited in GenBank 

(Table S5). Three outgroup taxa (Physcomitrella patens (Funariaceae), Syntrichia ruralis (Pottiaceae), and 

Mastigophora woodsii (Mastigophoraceae)) were added using data from GenBank (Table S5).  

Alignment and Tree Assembly 

The final two-gene, 1,490-species matrix was nearly complete, with only 6.9% of taxa missing sequence 

data. matK and rbcL DNA sequences were aligned according to a reference protein coding sequence using 

Pal2Nal (Suyama et al., 2006) which builds a multiple codon alignment and were then checked by eye. 

Initially trees for each gene were built to look for major issues within each genetic dataset and then combined. 

PartitionFinder (Lanfear et al. 2012) was used to select the appropriate model and partition for the 



concatenated dataset. All models of molecular evolution were tested using a BIC selection criterion, and four 

different partitioning schemes tested (Table S2). The best scheme as determined by PartitionFinder included 

each codon position for each gene as a separate partition and a GTR +I + G model of molecular evolution.   

RAxML (Stamatakis  2014, v. 7.03) was run with a partitioned dataset and the GTR + G model of molecular 

evolution for each partition.  The invariant sites parameter (I) was not included in the run to prevent over-

parameterization based on recommendations by A. Stamatakis (RAxML manual).  Finally, 100 fast bootstrap 

replicates (Stamatakis et al. 2008) were used to determine level of internal support for initial tree evaluation. 

The resulting phylogenetic tree was examined for topological issues, including possible 

misidentifications of species, contaminants, and misplaced taxa. When these issues were encountered, the 

alignment was examined and either edited or the problematic taxon removed.   For this final phylogenetic 

tree we added a single constraint to ensure that the three lycophytes sampled formed a clade  (Selaginella 

arenicola, (Lycopodiella appressa, Lycopodiella alopecuroides)); because of their long branches and absence 

of close relatives, these taxa tended to float around the tree. Finally, the same partitioning scheme and model 

were used as before, with 200 bootstrap replicates. 

The tree was then rebuilt using the methods above and reexamined to produce a ‘purpose-built’ 

phylogram of Florida plants.  To assess tree uncertainty, the best tree from RAxML was used as a starting 

tree in a Bayesian analysis using MrBayes (version 3.2.2; Ronquist et al., 2012), with the same constraint 

and model for 20 x 106 generations with twenty independent runs. Each run was checked for stationarity and 

the top 10 runs found to have reached stationarity were selected. The posterior distribution of trees was 

pruned to the last 50% of the generations to remove burnin. The top 10 trees were sampled from each of the 

top 10 runs, based on likelihood score.  To check that our 100 sampled trees represented much of the variation 

in the full posterior distribution of trees, a consensus tree was built from the full distribution of trees and 

support values estimated on each node. The support values were then estimated on the topology using only 

the 100 sampled trees with DendroPy v. 4.0.0 (Sakumaran and Holder 2010). There was a high correlation 

in the support values for the sample of trees to the support values of the full distribution (linear model; p < 

0.001, r2  = 0.98; Figure S4). Therefore, these trees were considered to be a good representation of the 

posterior distribution of trees and used in downstream analyses to examine the effects of topological 

uncertainty on phylogenetic diversity metrics PD and RPD.  



 

Phylogenetic Dating 

The best maximum likelihood tree and the sampled bayesian trees were then rooted to the outgroups and 

modified into chronograms using 17 calibration points (Table S4). These points have been well curated as 

valid calibration points for Angiosperms (Bell et al., 2010). We added one root calibration to constrain the 

base of the tree (max age = 377 Million years; Soltis et al., 2002). The 17 calibration points were then used 

with penalized likelihood in the program r8s (Sanderson et al., 2003).  To do this, a smoothing parameter was 

first estimated using the cross validation approach with a tree pruned to one taxon per genus to reduce the 

computational time necessary for each cross-validation. Smoothing parameters from -13 to 7 were tested at 

increments of one integer and the parameter with the lowest chi-squared error, 5.0, was selected as the 

smoothing parameter. The smoothing parameter was then used on the full tree with the same calibrations for 

the maximum likelihood tree as well as the 100 bayesian trees.  In sum, we had a set of 101 phylograms and 

101 chronograms.  The NEXUS file with aligned sequence data and the 202 trees  will be deposited in 

DRYAD upon acceptance. 

Adding Missing Taxa 

A total of 98 taxa, for which we built ecological niche models for, could not be included due to unavailability 

of tissue or poor sequencing results. These missing species are often rare and narrowly distributed, but 

strongly associated to local habitats and thus valuable to include. Rarity also means that quality tissue with 

the potential to yield adequate sequencing results for these ecologically important taxa is in most cases 

lacking. While adding missing taxa can add uncertainty to a phylogenetic analysis, these taxa only represent 

6.5% of the full dataset and thus imputation error is likely to be smaller than in cases where the available data 

is sparse. In order to do so, we determined the placement of each species by finding an appropriate sister 

taxon within the most up to date phylogenetic studies. Taxa for which only a single representative of the 

genus was represented on the tree were placed sister to those taxa, and for taxa for which no known generic 

representative was available we placed the sister to a closely related genus based on the literature (Table S3). 

Once the placement of each taxon was determined within this classification, we developed a custom perl 

script that located the sister taxon, added the missing taxon forming an unresolved node, and the two sister 

taxa were considered  to have the same branch lengths.   



 

Evaluating Phylogenetic Diversity (PD) and Relative Phylogenetic Diversity (RPD) 

There are a number of ways to calculate PD, in this analysis PD is expressed relative to the total length of 

the tree, so PD for a cell is the proportion of the total tree length present in that place (index PD_P in 

Biodiverse; Laffan et al. 2010). Both tails of the distribution are considered, providing a means to determine 

(using PD) if a region contains taxa that are more closely related to each other, or are more distantly related 

to each other, than expected, i.e., phylogenetic clustering or evenness, respectively (Webb et al. 2002).  

Relative Phylogenetic Diversity (RPD) is the ratio of PD measured on the original tree to PD 

measured on a comparison tree that has the same topology but all branches of equal length (Mishler et al. 

2014). The RPD ratio was evaluated for statistical significance using the same spatial randomizations 

described below and a two-tailed test, which determines whether either long or short branches are over-

represented in a particular geographic region (Mishler et al. 2014).  

Spatial randomization tests  

Comparing observed patterns of richness and PD with results of the separate statistical tests provides the best 

basis for insights into ecological, evolutionary, and biogeographic processes, e.g., those processes that either 

allow older lineages to persist, new lineages to diversify, or biotic interactions that limit distribution of closely 

related taxa, as well as conservation decision-making (Thornhill et al. 2016). 

The statistical significances of PD and RPD were assessed using the ‘rand_structured’ 

randomization option in Biodiverse (Laffan and Crisp 2003; Laffan et al. 2010). For each iteration, taxon 

occurrences were randomly reassigned to grid cells without replacement; thus, richness in each grid cell (i.e., 

the number of taxa present) and the range size of each taxon (i.e., the number of grid cells where it occurs) 

were held constant. The analysis was run with 999 iterations, re-calculating PD and RPD at each iteration 

using the randomly generated assemblages, and finally calculating the rank relative position of the observed 

index value for each cell versus the randomized values.   

Comparing observed patterns of richness and PD with results of the separate statistical tests provides 

the best basis for insights into ecological, evolutionary, and biogeographic processes, e.g., those processes 

that either allow older lineages to persist, new lineages to diversify, or biotic interactions that limit 

distribution of closely related taxa, as well as conservation decision-making (Thornhill et al. 2016). 



Both PD and RPD were assessed using a two-tailed test to determine.  For PD this enables an 

assessment of whether a region contains taxa that are more closely, or distantly, related to each other than 

expected, i.e., phylogenetic clustering or evenness, respectively (Webb et al. 2002). For RPD, the test 

determines whether a location contains an over-representation of longer or shorter branches than expected 

(Mishler et al. 2014). In the case of the chronograms, this means that a location contains a greater number of 

older or younger branches than expected. 

 

Spatial Arrangement of Phylogenetic Diversity 

We examined patterns of diversity along latitudinal gradients and across Florida ecoregions. To examine 

latitudinal trends, we binned the state into 13 non-overlapping latitudinal bins of 0.5 degree and examined 

the trend in PD by latitude. We also compared PD and RPD among the larger EPA Level III and Level IV 

ecoregions to test whether different ecoregions showed differing patterns, with particular attention to 

transitional ecoregions (e.g., Southern Coastal Plain). We overlaid maps of significant PD in both phylograms 

and chronograms and counted the number of significant pixels within each of the three ecoregions described 

above. We produced maps of observed RPD and RPD significance to make visual comparisons among the 

ecoregions. 

 

Purpose-Built Trees Compared to Generated Trees  

To compare our purpose-built tree to an automatically generated tree, we built a tree using Phylomatic (Webb 

and Donoghue 2005). Our query with the 1,490 species for which we had distribution models (above) to 

Phylomatic resulted in 1,476 species found. We used two versions of this tree. The first was simply the 

Phylomatic tree, without age calibration, as is sometimes but now less frequently used in the literature for 

PD calculation. The second was a chronogram version constructed using the bladj algorithm in Phylocom 

(Webb et al. 2008) using 76 calibration points (Wikström et al. 2001). This method is commonly used for 

assessing PD when sequence data for some or all species are lacking (Montesinos-Navarro et al. 2017; Qian 

et al. 2017; Burkle et al. 2013; Athayde et al. 2015). 

The Open Tree of Life is a recent synthesis product and has not been used extensively in the 

literature for spatial phylogenetic analysis; thus, there are not yet public methods, such as the bladj algorithm 



in Phylomatic, for obtaining branch lengths and calibrating the tree. Therefore, we downloaded sequence 

data for the available species from our taxon list (n=1,201, approximately 80% of the full taxon list) and 

added branch lengths with RAxML, using the Open Tree of Life (Hinchliff et al. 2015) tree as a constraint 

and our alignment with the same molecular model as above. Finally, we calculated an Open Tree of Life 

chronogram using the same method as for our purpose-built tree and the same calibration points. To compare 

our purpose-built tree to the trees resulting from each of these methods, we pruned our tree to the taxa 

available in each of these repositories and conducted the following analyses with the pruned trees. 

 

Impact of Tree Uncertainty on Phylodiversity Metrics 

Estimates and significance of PD and RPD were calculated for each of the 100 Bayes phylograms and 

chronograms, as described above. To determine the level of variation in each of these metrics across the trees, 

the standard deviation of the observed values for each pixel was calculated and mapped. Finally, the number 

of times each pixel was found to be significantly high, significantly low, or not significant was tallied, and 

the most frequent of those categories was mapped. A score of 100 for a pixel means that all trees produced 

the same category of significance for that pixel. In contrast, a score of 33 means that values for a pixel are 

significantly high, low, and not significant an equal number of times, suggesting that phylogenetic uncertainty 

is impacting the spatial phylogenetic data and potential interpretations thereof. 
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Supplementary Items Figure S1 – Table S4 

Figure S1: Three ecoregions in Florida. Related to figures 1, 2, and 3. 

Figure S2: Phylogenetic diversity correlated with species richness. Related to Figure 1 
 
Figure S3: Map of Florida endembics. Related to Figure 2 
 
Figure S4: Posterior probabilities of sample of trees vs. full distribution. Related to Figure 1 

Figure S5: Values for the training AUC, testing AUC and ratio. Related to Figures 1, 2 

Table S1: Primer names, sequences, and references. Related to Figure 1 

Table S2: Models tested in Partition Finder. Related to Figure 1 

Table S3: Placement of missing taxa. Related to Figure 1 

Table S4: Calibration points and references. Related to Figure 1 
 
Table S5:  Locality data and taxonomic information of all species. Related to Figures 1, 2, 3, 4, 
5, 6, 7 
 
  



Figure S1: Three ecoregions in Florida. Related to figures 1, 2, and 3. 

EPA Ecoregions of Florida level III (legend) and level IV (shades of brown, green and purple). 
The smaller map shows how the Southeastern Plain and Southern Coastal Plain regions extend 
beyond the Florida border. Maps modified from 
http://www.epa.gov/wed/pages/ecoregions/level_iii_iv.htm.  
 

 



Figure S2: Phylogenetic diversity correlated with species richness. Related to Figure 1 
 
Correlations of Phylogenetic Diversity and Species Richness for all 8,045 points in Florida for 
A) Phylogram B) Ultrametric Tree.  Correlation Coefficient:  Phylogram 0.9807995, 
Chronogram 0.9651092. 
 

 
 
Figure S3: Map of Florida endembis. Related to Figure 2 
 
Map of Florida endemics only in Florida overlaid with the Level 4 ecoregions - The majority of 
the endemic species are found along the Lake Wales Ridge area. 
Endemic Map of Florida Max = 38.964 Min = 1.989. 
 
 

 
  



Figure S4: Posterior probabilities of sample of trees vs. full distribution. Related to Figure 1 

The x-axis represents the posterior probabilities calculated from the entire post-burnin 
distribution of trees. The y-axis is the posterior probabilities calculated from our 100 sampled 
trees. The graph indicates a tight correlation (linear model; p < 0.001, r2  = 0.98) between the full 
distribution and our sample suggesting that the sampled trees are a good representation of the 
variation found among the full distribution of trees. 

 
 

Figure S5: Values for the training AUC, testing AUC and ratio. Related to Figures 1, 2 

 



Table S1: Primer names, sequences, and references: Related to Figure 1 

Primer names, sequences, and references used for both matK and rbcL amplifications along with 
the original references for the sequences.  

Primer Name Sequence Reference 

matK   

390F CGATCTATTCATTCAATATTTC Cuénoud et al. (2002) 

1326R TCTAGCACACGAAAGTCGAAGT Cuénoud et al. (2002) 

F (Equisetum) ATACCCCATTTTATTCATCC 
Nicolalde-Morejónet al., 
(2011) 

R (Equisetum) GTACTTTTATGTTTACGAGC 
Nicolalde-Morejónet al., 
(2011) 

XF TAATTTACGATCAATTCATTC Sun et al. (2001) 

Malp_R1 ACAAGAAAGTCGAAGTAT Dunning & Savolainen (2010) 

3F CGTACAGTACTTTTGTGTTTACGAG CBOL working group (2009) 

1R ACCCAGTCCATCTGGAAATCTTGGTTC CBOL working group (2009) 

427F CCCRTYCATCTGGAAATCTTGGTTC Yu et al. (2011) 

1248R GCTRTRATAATGAGAAAGATTTCTGC Yu et al. (2011) 

rbcL   

Z1 ATGTCACCACAAACAGAAACTAAAGCAAGT Zurawski et al. (1984) 

3’ CTCGGAGCTCCTTTTAGTAAAAGATTGGGCCGA Zurawski et al. (1984) 

rbcLaF ATGTCACCACAAACAGAGACTAAAGC Shokralla et al. (2010) 

rbcLaR GTAAAATCAAGTCCACCRCG Shokralla et al. (2010) 

NY35 CTTCACAAGCAGCAGCTAGTTC Cameron (2004) 

NY149 ATGTCACCACAAACAGAAAC Cameron (2004) 
 

  



Table S2: Models tested in Partition Finder. Related to Figure 1. 
 

Partition Finder Models: 

allsame = (Gene1_pos1,Gene1_pos2,Gene1_pos3,Gene2_pos1,Gene2_pos2,Gene2_pos3); 

alldiff = (Gene1_pos1) (Gene1_pos2) (Gene1_pos3) (Gene2_pos1) (Gene2_pos2) (Gene2_pos3); 

12_3 = (Gene1_pos1, Gene1_pos2, Gene2_pos1, Gene2_pos2) (Gene1_pos3,Gene2_pos3); 

genes = (Gene1_pos1, Gene1_pos2, Gene1_pos3) (Gene2_pos1, Gene2_pos2, Gene2_pos3); 
 

 

Table S3: Placement of missing taxa. Related to Figure 1 

Taxa were placed next to known congener if available. For taxa for which no congener was represented 
on the phylogeny the literature was searched to identify their closest relative on the phylogeny and that 
taxon is identified and the literature cited. 
 

Missing Taxon Where to Place Source* 

Aeschynomene_pratensis Aeschynomene_indica  

Agave_decipiens Agave_sisalana  

Ageratina_altissima Ageratina_aromatica  

Aletris_aurea Aletris_lutea  

Aletris_farinosa Aletris_lutea  

Andropogon_arctatus Andropogon_brachystachyus  

Anemia_adiantifolia Lygodium_japonicum Pryer et al., 2004 

Arnoglossum_diversifolium Arnoglossum_floridanum  

Asplenium_dentatum Asplenium_platyneuron  

Asplenium_pumilum Asplenium_platyneuron  

Bletia_purpurea Epidendrum_nocturnum Cameron et al., 1999 

Carex_nigromarginata Carex_baltzellii  

Catopsis_berteroniana Tillandsia_bartramii Givnish et al., 2007 

Catopsis_floribunda Tillandsia_bartramii Givnish et al., 2007 

Centrosema_arenicola Centrosema_virginianum  

Chamaesyce_deltoidea Chamaesyce_maculata  



Chamaesyce_garberi Chamaesyce_maculata  

Chrysopsis_delaneyi Chrysopsis_lanuginosa  

Ctenitis_sloanei Dryopteris_ludoviciana Liu et al., 2007 

Delphinium_carolinianum Clematis_terniflora Emadzade et al., 2010 

Digitaria_pauciflora Digitaria_ciliaris  

Eragrostis_amabilis Eragrostis_elliottii  

Erythronium_umbilicatum Lilium_superbum 
Allen et al., 2003; Fay et al., 2006; 
Clennett et al., 2012 

Euphorbia_polyphylla Euphorbia_exserta  

Euphorbia_rosescens Euphorbia_exserta  

Galium_obtusum Galium_hispidulum  

Gratiola_virginiana Gratiola_pilosa  

Habenaria_floribunda Habenaria_quinqueseta  

Harrisia_aboriginum Harrisia_fragrans  

Harrisia_simpsonii Harrisia_fragrans  

Helenium_flexuosum Helenium_amarum  

Helianthus_resinosus Helianthus_angustifolius  

Hymenocallis_palmeri Hymenocallis_henryae  

Hypericum_drummondii Hypericum_brachyphyllum  

Hypericum_edisonianum Hypericum_brachyphyllum  

Hypericum_exile Hypericum_brachyphyllum  

Ipomoea_microdactyla Ipomoea_cordatotriloba  

Jacquemontia_pentanthos Jacquemontia_tamnifolia  

Jacquemontia_reclinata Jacquemontia_tamnifolia  

Lechea_divaricata Lechea_deckertii  

Liatris_gholsonii Liatris_chapmanii  

Lilium_catesbaei Lilium_superbum  

Lilium_iridollae Lilium_superbum  

Linum_westii Linum_medium  

Ludwigia_decurrens Ludwigia_microcarpa  

Lysiloma_latisiliquum Acacia_auriculiformis Miller et al., 2003 



Macranthera_flammea Seymeria_pectinata Bennett & Mathews, 2006 

Malaxis_unifolia Epidendrum_nocturnum Cameron et al., 1999 

Manilkara_jaimiqui Manilkara_zapota  

Marshallia_graminifolia Balduina_atropurpurea Watson et al., 1991 

Matelea_alabamensis Matelea_floridana  

Micranthemum_glomeratum Micranthemum_umbrosum  

Microgramma_heterophylla Phlebodium_aureum Schneider et al., 2004 

Monotropa_uniflora Ceratiola_ericoides Kron et al., 2002 

Nymphoides_cordata Nymphoides_aquatica  

Okenia_hypogaea Boerhavia_diffusa Douglas & Manos, 2007 

Oldenlandia_salzmannii Oldenlandia_corymbosa  

Ophioglossum_palmatum Botrychium_lunarioides Pryer et al., 2004 

Panicum_repens Panicum_dichotomiflorum  

Parnassia_caroliniana Parnassia_grandifolia  

Pecluma_dispersa Phlebodium_aureum Schneider et al., 2004 

Pecluma_plumula Phlebodium_aureum Schneider et al., 2004 

Phegopteris_hexagonoptera Macrothelypteris_torresiana He & Zhang, 2012 

Pinguicula_ionantha Pinguicula_lutea  

Pinguicula_planifolia Pinguicula_lutea  

Piptochaetium_avenacioides Piptochaetium_avenaceum  

Platanthera_clavellata Platanthera_ciliaris  

Platanthera_cristata Platanthera_ciliaris  

Platanthera_integra Platanthera_ciliaris  

Polygala_smallii Polygala_lutea  

Potamogeton_floridanus Potamogeton_diversifolius  

Ranunculus_pusillus Clematis_terniflora Emadzade et al., 2010 

Sabatia_decandra Sabatia_grandiflora  

Salvia_urticifolia Salvia_azurea  

Schoenolirion_croceum Schoenolirion_albiflorum  

Sida_ulmifolia Sida_cordifolia  

Solanum_donianum Solanum_americanum  



Spermacoce_terminalis Spermacoce_remota  

Spigelia_gentianoides Spigelia_loganioides  

Stachys_hyssopifolia Stachys_floridana  

Stenanthium_densum Schoenocaulon_dubium Zomlefer et al., 2001 

Stylisma_humistrata Stylisma_abdita  

Tectaria_fimbriata Tectaria_heracleifolia  

Tephrosia_angustissima Tephrosia_rugelii  

Tephrosia_spicata Tephrosia_rugelii  

Tillandsia_flexuosa Tillandsia_bartramii  

Tillandsia_simulata Tillandsia_bartramii  

Tragia_urticifolia Tragia_saxicola  

Trichomanes_punctatum Thelypteris_interrupta Dubuisson et al., 2003; Pryer et al., 2004 

Triphora_craigheadii Epidendrum_nocturnum Cameron et al., 1999 

Utricularia_cornuta Utricularia_foliosa  

Utricularia_resupinata Utricularia_foliosa  

Utricularia_simulans Utricularia_foliosa  

Verbena_simplex Verbena_officinalis  

Vicia_ocalensis Vicia_acutifolia  

Viola_bicolor Viola_lanceolata  

Xyris_laxifolia Xyris_difformis  

Ziziphus_celata Ceanothus_americanus 
Richardson et al., 2004; Islam & 
Simmons, 2006 

 

  



Table S4: Calibration points and references. Related to Figure 1 
 

Node Calibration Reference 

Fabales min_age=59.9 Bell et al., 2010 

Arecales min_age=65 Bell et al., 2010 

Sapindales min_age=65 Bell et al., 2010 

Malvales min_age=65.5 Bell et al., 2010; based on Wheeler et al., 1987; 1994 

Poales min_age=68.1 Bell et al., 2010 

Myrtales min_age=88.2 Bell et al., 2010 

Caryophyllales min_age=83.5 Bell et al., 2010 

Cornales min_age=85.8 Bell et al., 2010 

Ericales min_age=91.2 Bell et al., 2010 

Fagales min_age=87.5 Takahashi et al. 2008; Magallon et al. 2015 

Magnoliales min_age=108 Doyle and Endress 2010; Magallon et al. 2015 

Polypods min_age=121 Schneider et al., 2004 

Eudicots min_age=125 Bell et al., 2010 

Gymnosperms min_age=290 Bell et al., 2010 

Monilophytes age=354 Schneider et al., 2004 

Euphyllophyta min_age=380 Schneider et al. 2004 

Tracheophyta min_age=416 Clarke et al., 2011 
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