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Discovering novel therapies and defining the causal 
contribution of genes, proteins and lipids is challenging 
in sepsis, because sepsis is so heterogeneous; effective 
therapies in one patient may not be effective in another, 
explaining in part why sepsis trials have not been very 
successful.

We highlight Mendelian randomization (MR), a sta-
tistical methods that first helps establish causal relation-
ships between intermediate phenotypes such as plasma 
proteins and clinical phenotypes using genetics. In sepsis, 
there are innumerable studies showing significant asso-
ciations between proteins, metabolites, other biomarkers 
and outcomes, yet the causal contribution of biomark-
ers is highly uncertain, potentially due to confounding, 
reverse causation, or because, for example, inflamma-
tory markers are non-specific epiphenomena. Genetics 
are a powerful tool to interrogate which intermediate 
traits, including plasma proteins, metabolites, or even 
radiographic features, contribute to a disease. MR also 
enhances prognostic and predictive enrichment of sep-
sis trials by better defining biologically relevant clinical 
subgroups. The technique has been successfully used to 
define several traits with causal contributions to risk for 
acute respiratory distress syndrome (ARDS) [1–3] and to 
sepsis mortality [4, 5], highlighting pathways which war-
rant targeting and identifying specific at-risk populations. 
Thus, MR holds promise to advance successful precision 
sepsis trials.

MR uses observational data and genotype as a statis-
tical instrument to estimate an intermediate variable 
(e.g., protein, metabolite), because humans are randomly 
“assigned” their genotypes at conception [6, 7]. Under-
lying MR is the assumption that the portion of the trait 
that is genetically determined is less vulnerable to meas-
urement error or confounding, and not at risk for reverse 
causality, since genotype always precedes outcome. MR 
aids predictive enrichment by separating biologically 
causal pathways from the numerous non-causal bio-
marker and outcome associations.

Although MR lacks utility for individual subject classi-
fications, we argue that it has value in preparing for pre-
cision medicine trials by highlighting the key variables 
that classify individuals and that influence disease risk 
or outcome. Exciting biomarker-enriched sepsis trials 
[8] and retrospective evaluations suggest that heteroge-
neity of treatment effect can be predicted by biologically 
defined subtypes [9, 10] suggesting that precision sepsis 
treatment might soon be reality.

Mendelian randomization relevance in sepsis
MR is an adaptation of instrumental variable analy-
sis, a tool for causal inference from observational data, 
wherein the instrument is genotype. In other complex 
traits, MR very effectively identifies which intermediate 
variables (e.g., plasma proteins, imaging markers or phys-
iologic measurements) contribute causally to disease, as 
opposed to being merely correlated [11]. In sepsis, few 
causal intermediates have been identified, and better elu-
cidation of these traits might focus attention on the most 
promising targets.

In sepsis, MR links three types of evidence to infer cau-
sality, (1) genotype versus intermediate phenotype, (2) 
intermediate phenotype versus clinical phenotype, and 
(3) genotype versus clinical phenotype.
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Figure  1A illustrates how a statistical instrument 
(tobacco tax) can infer causality (smoking causes can-
cer) from observational data. Figure  1B extends these 
concepts to illustrate how MR rules out alternative 

explanations for changes in the protein and changes in 
the phenotype in the absence of a causal relationship 
between the protein and clinical phenotype (e.g., sever-
ity of sepsis could independently cause both). In this 
case the genotype of the protein, which is randomized 
at conception according to the independent assortment 
of alleles, can be used as the instrument. If (1) the geno-
type of the protein is related to the activity of the protein 
(e.g., by protein abundance, isoform, or function) and (2) 
genotype of the protein is also related to the clinical phe-
notype (e.g., sepsis survival) then alternate explanations 
are avoided. Thus, the protein likely causally contributes 
to the clinical phenotype. Note that both cis regulation 
(‘genotype of the protein’) and trans regulation are rele-
vant, since multi-locus MR uses all variants with strong 
effect and tests for consistency.

We used Mendelian randomization to answer the fol-
lowing question: do low low-density lipoprotein (LDL) 
levels increase sepsis mortality? We used Proprotein 
Convertase Subtilisin/Kexin type 9 PCSK9) genotype and 
3-Hydroxy-3-Methylglutaryl-CoA (HMG-CoA) reduc-
tase (HMGCR) genotype as instrumental variables with 
demonstrable influence on LDL concentration [4].

HMG-CoA reductase is the rate-limiting enzyme for 
cholesterol synthesis; PCSK9 regulates LDL clearance. 
We reasoned that if both PCSK9 loss-of-function geno-
type (which increases LDL clearance) and HMGCR 
loss-of-function genotype (which reduces LDL produc-
tion) similarly increase mortality, one would conclude 
that low LDL causes sepsis mortality. However, HMG-
CoA reductase genetic score was not associated with 
increased sepsis mortality, whereas PCSK9 genetic score 
was associated with decreased mortality. Thus, increased 
LDL clearance via PCSK9 genotype effects may lower 
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Fig. 1 A Illustrates the underlying rationale of MR by raising the 
question of whether smoking causes cancer (red arrow). It is possible 
that an observed or even unobserved variable within the environ-
ment may entice a person to smoke and that same environmental 
variable may also contribute to causing cancer. If a tobacco tax (the 
instrument) 1. (straight horizontal black arrow) results in a decrease 
in smoking and 2. (curved arrow) is also associated with a decrease 
in incidence of cancer then smoking must indeed cause cancer, 
because a tobacco tax could not reduce cancer incidence in any 
other way. The instrument avoids confounders. B Is similar to Panel 
A in that it raises the question of whether a protein (e.g., IL-1b) caus-
ally alters (red arrow with question mark) a clinical phenotype (e.g., 
sepsis survival) or whether there is an alternate explanation. C IgG 
SNP effect and COVID-19. Each point corresponds to the SNP effect 
in each dimension. The grey lines represent the standard errors of 
each dimension. The blue line corresponds to the linear regression 
estimate of the relationship between the effects on the two variables
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mortality [4] by increasing LDL-bound pathogen lipid 
clearance. Furthermore, PCSK9 genotype could be used 
to enrich trials of PCSK9 inhibitor(s) in sepsis.

MR also shows that body mass index [12] and high-
density lipoprotein (HDL) levels causally contribute to 
sepsis mortality [13, 14] and vitamin D causally contrib-
utes to risk of bacterial pneumonia [15].

In another MR example, we evaluated whether native 
IgG antibody level alters risk of hospitalization due to 
coronavirus disease 2019 (COVID-19). First, we identi-
fied IgG genotypes associated with IgG level (via GWAS 
catalogue data set from 70 studies), restricting analysis 
to variants that function as strong statistical instruments 
(p < 5 ×  10–8). Second, we used the GWAS statistics 
from the COVID-19 Host Genetics Initiative (freeze 
6, B2_(12)ALL_leave_23andme) for COVID-19 hospi-
talization (n = 24,274) versus non-COVID population 
(n = 2,061,529) [16]. Genetic variants with a greater effect 
on IgG levels had a greater effect on decreasing COVID-
19 hospitalization (Fig. 1C).

Limitations of MR include the need for large sample 
sizes and the potential for differential genetic predic-
tors for quiescent versus evoked sepsis traits. Further 
limitations are inadequate phenotype definition, gene–
environment interaction, measurement error, and link-
age disequilibrium [17]. There are examples in which 
the Mendelian randomization assumptions are violated 
causing biases [17]. Sensitivity analysis can determine 
the consequences of assumption violations and tries to 
mitigate such violations [17]. Furthermore, an extension 
of MR, the MR–Egger method uses tests to determine 
whether genes have (1) multiple effects—directional plei-
otropy—(2) causal effects, and (3) an estimate of the size 
of the causal effect [18]. However, causal estimates from 
the MR–Egger method causal estimates can be biased 
with Type 1 error.

In conclusion, familiarity with Mendelian randomi-
zation may help better (1) elucidate causality and (2) 
enhance selection of patients for trials through enrich-
ment and classify patients likely to benefit, thus catalys-
ing more successful sepsis trials.
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