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The blind deconvolution of ultrasound sequences in medical ultrasound technique is still a major problem despite the efforts made.
This paper presents a blind noninverse deconvolution algorithm to eliminate the blurring effect, using the envelope of the acquired
radio-frequency sequences and a priori Laplacian distribution for deconvolved signal. The algorithm is executed in two steps. Firstly,
the point spread function is automatically estimated from the measured data. Secondly, the data are reconstructed in a nonblind
way using proposed algorithm. The algorithm is a nonlinear blind deconvolution which works as a greedy algorithm. The results
on simulated signals and real images are compared with different state of the art methods deconvolution. Our method shows good
results for scatters detection, speckle noise suppression, and execution time.

1. Introduction

Medical ultrasound imaging is considered to be one of the
edge technologies in noninvasive diagnose procedures. Des-
pite its great advantages, as cost-benefit, accessibility, porta-
bility, and safety, it has a weak resolution. This is the result of
the attenuations, refractions, nonlinearities, frequency selec-
tion, or probe properties [1]. As a result, important efforts
were made in the direction of image quality improvement.
Signal processing methods offer a reasonable approach
for resolution improvement. From this point of view the most
important methods for reconstruction are superresolution
and deconvolution. If superresolution methods seem to be
impractical, the deconvolution ones are more practical [2].
Supperresolution is a complex problem because of the dif-
ficulties in aproximation of reconstruction operators (e.g.,
motion, degradation, and subsampling operators) and the use
of multiple frames which puzzles also the implementation.
This was conducted on the proposition of multiple decon-
volution approaches for ultrasound imaging, like methods
used in system identification or Bayesian statistics based ones
[3]. From these algorithms, the methods based on Bayesian

approach, especially maximum a Posteriori (MAP) seem to
offer the most interesting results [4-10]. In these methods the
point spread function (PSF) is estimated and then the inform-
ation is reconstructed in a nonblind way using a priori infor-
mation about tissue reflectivity function.

As the PSF estimation is an important problem that is
complex, a lot of methods were advanced to propose an acc-
eptable solution. Primary studies have considered a measured
radio-frequency (RF) PSF [4, 11]. However, the use of only
one RF PSF to deconvolve the entire image is not feasible
due to the nonstationarity of the PSF along the RF line
which results from the attenuations, reflections, refractions,
and phase aberrations phenomena. A common solution is to
estimate the PSF locally by supposing that it is a slow variant
in time. This needs to divide the image in segments where one
may consider that the PSF is constant and can be estimated for
each segment.

Based on the local estimation of the PSE a certain number
of methods were proposed. An approach based on a 1D
implementation was proposed to estimate the RF PSF using
high order statistics [5].
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Taxt et al. introduced a method of RF PSF estimation
using the cepstrum and homomorphic deconvolution [6, 12—
14]. In this approach it is considered that the PSF spectrum is
a function smoother than the reflectivity function.

Another method of unidimensional RF PSF estimation
from ultrasound sequences was proposed in [15]. This appro-
ach was developed for the cases when the interrogated tissues
are composed by high reflectors superimposed by speckle
noise, that is, the reflectivity function has Laplacian distribu-
tion. For that, it was proposed a complex homomorphic pro-
cedure, where for the elimination of the spectrum of reflectiv-
ity function a multilevel decomposition denoising technique
was used [16]. This denoising technique was improved with
an outlier resistant denoising procedure [17] and the phase
was estimated using minimum phase assumption.

From the point of view of nonblind algorithms used
for deconvolution, the proposed methods supposed that the
reflectivity function has a Gaussian or a Laplacian probability
of distribution function. For that it was frequently used the
Wiener filter (or I,-norm regularization) [4-6, 11-14] or [;-
norm regularization [7, 9]. If the Wiener filtering seems to
smooth the information and to offer a resulted image with a
small resolution improvement and speckle noise suppression,
the methods based on Laplacian distribution showed a
better improvement in terms of contrast and speckle noise
reduction.

Other kinds of approaches were proposed in [8] or [10].
In [8] the authors proposed an expectation-maximization
algorithm that solved the problem iteratively, by alternating
between Wiener filtering and wavelet-based denoising. In
[10], 2-steps deconvolution algorithm was proposed, where
in first step the PSF is estimated using the Cepstrum tech-
nique and for deconvolution a two steps iterative shrink-
age/thresholding (TwIST) is used.

However, all the previous methods suffer of difficulties
in the phase approximation of the RF PSF in the algorithm
robustness. To overcome these difficulties recent works were
focused to extract the reflectivity function using the envelope
of RF data [8-10, 18]. The most important part of algorithms
based on RF envelope intends to extract the tissue reflectivity
function using the idea of the inverse filtering. These methods
imply matrix inversion which may produce singularities. For
such reason, it was necessary to introduce regularization
methods which ask for additional computation.

In this paper two major contributions are proposed. The
first contribution concerns the combination of three main
steps that are the envelope detection based on Hilbert trans-
form, the PSF estimation based on a general homomorphic
deconvolution approach, and the deconvolution algorithm
based on greedy implementation. Knowing that each method
taken alone is not novel, this combination of the above three
steps constitutes a novelty. The second contribution concerns
the application’s field since it is the first time when it is used
in ultrasound medical imaging.

Being a blind algorithm, it performs the reconstruction
process automatically in two steps. Firstly, the PSF is esti-
mated for each sequence composing the ultrasound image,
and, secondly the reflectivity function is obtained using pro-
posed algorithm with the a priori assumption that reflectivity
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function is a sparse signal; that is, it has a Laplacian proba-
bility of density function (PDF). The proposed approach is
an iterative algorithm based on the matching pursuit [19]
principle that avoids the difficult inverse problem in signal
reconstruction [20]. Finally, to take into account that PSF can
be variant with depth, note that the proposed method can be
used on short time subsequences derived from the analyzed
sequence at different depths.

In the following, the paper is organized as follows.
Section 2 describes the problem reconstruction for ultra-
sound imaging, Section 3 presents the proposed method,
Section 4 shows the experimental results, and Section 5
provides several comments and concludes the current study.

2. Problem Formulation in Ultrasound
Medical Images Restoration

In ultrasound imaging the obtained A-mode and B-mode
images suppose the interaction between the acoustic beam,
generated by the transducer and the scanned tissues. Usually,
the phenomena are not linear but for computations simplicity
the greatest part of the methods proposed in the literature
suppose that the acquired signal is a quasi-linear combination
between the reflectivity function and the RF pulse. This sup-
poses that the ultrasound sequences are divided in segments
and each segment is processed individually. For the sake of
simplicity we reduce the analysis to singular segment. The
mathematical formulation of the measured signal y(n) can be
described as follows:

ym)=hmn)exn) +u), (1)

where ® is the convolution operator, h(n) is the PSE x(n)
is reflectivity function, u(n) is a Gaussian white noise, and
n is the samples index. In the frequency domain, (1) can be
written as

Y () = H(w) X (0) +U (w), 2)

where the upper case letters represent the Fourier Transform
(FT) of the components from (1) and w is the angular
frequency.

As previously mentioned in Section 1, the purpose of the
blind reconstruction methods is to obtain the true signal x(n)
starting from the acquired signal y(n). A natural solution
from (2) is to obtain X(w) by inverting H(w), which is the
FT of the PSE Equation (2) can be rewritten as

X (w) = ﬁY(w) - ﬁU(w). 3)

The main problem is that the small values of H(w) will
amplify by its inversion the high frequencies and implicitly
the noise. The most used solutions on this problem are the
regularization, according to PDF of the reconstructed signals.
In ultrasound imaging a part of the generated pulse is reflec-
ted when it finds an interface between two tissues with differ-
ent physical properties. Therefore, we classically suppose that
the reflectivity function has a Laplacian PDF (7, 9, 10, 15].
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3. Envelope Based Blind Deconvolution

The acquired signal can be described like an amplitude
modulated signal, where the carrier is the wave generated by
the transducer and the information is located in its envelope.
Based on this assumption, the proposed method starts from
the acquired RF signals. From these signals, we extract the
envelope and afterwards, this envelope is used in two steps
blind deconvolution algorithm: in the first step, the PSF is
extracted; then it is used in the greedy noninverse decon-
volution algorithm. In the following sections we detail the
methods implemented in this paper:

(i) hilbert transform for envelope detection;

(ii) homomorphic deconvolution and soft-thresholding
denoising for PSF estimation;

(iii) noninverse greedy deconvolution.

3.1. Envelope Detection. The most popular methods for enve-
lope detection are Hilbert transform or low-pass filtering to
separate the useful information contained in envelope from
the sinusoidal RF carrier wave. Since the design of low-pass
filter may be critical due to the unclear signals spectrum
specifications, in this work the Hilbert transform has been
preferred. The envelope y(n) can be extracted by applying the
absolute value operator at the analytic signal as follows:

y (1) =y, ()], (4)

where the y,(n) means the analytic signal, y(n) means the
obtained envelope, and | - | is the absolute value operator. The
analytic signal is generated using Hilbert transform as fol-
lows:

Yo (1) = ypp () + I {yre (M)}, (5)

where y,(n) is the analytic signal, ypp(#) is the original RF
signal, and #{ ypp(n)} is the Hilbert transform of ypp(n).

3.2. Point Spread Function Estimation. In ultrasound imaging
it was widely assumed in many works that the PSF is a much
smoother function than the tissue reflectivity function and
that two composing signals of the measured signal spectrum
can be separated using homomorphic deconvolution [21] and
the denoising procedure as in [15]. The greatest advantage
of this kind of homomorphic filters is that they may accept
as input a signal composed of two components and return a
signal with one of them removed.

The proposed estimation is a three steps algorithm; in the
first step we assume that the noise level in (2) is quite small
and we may ignore it. In this case it can be rewitten as follows
[21]:

InY (w) =InH (w) + In X (w), (6)

where In is the natural logarithm. In this way the output signal
is split into two parts: a part which comes from PSF and
another one, which occurs from the input signal.

This linear transformation helps us to make a distinction
between the signals, under the above presented assumptions

that PSF is a smoother function. Thus, the wave separation
problem could be changed in a denoising one. This is in the
second step of the homomorphic deconvolution. The main
idea of this technique is the use of a denoising method in the
frequency domain by applying a wavelet soft thresholding
and an outlier resistant denoising algorithm. The threshold
was calculated as follows [22]:

T=0V2InN, 7)

where N is the length of the array and o is the noise
variance. The o parameter is automatically estimated by o =
M, /0.6745, where M, was the median absolute value of the
finest decomposition level.

Having obtained In H(w), the final step of the homomor-
phic deconvolution is to get the PSF h(n) by using the Inverse
Fourier Transform (IFT) of the logarithm spectrum of the
PSE, as follows:

h(n) = IFT {exp [In (H (w))]}. (8)

In our implementation, the Fourier Transform was evaluated
using Discrete Fourier Transform (DFT).

3.3. Greedy Deconvolution Algorithm. This section describe
the proposed algorithm for reflectivity function recovery.
It is a greedy algorithm analogous with matching pursuit
algorithm. Before describing the computational method, let
us to make a short mathematical description for scanned
tissues.

The ultrasound imaging is a technique based on the
physical properties of acoustical wave reflection when it finds
an interface of two different regions with different densities
along its propagation. This allows the consideration of the
acquired signal as a collection of RF echoes with different
amplitude size. Using the above presented considerations,
one can say that the useful information, that is, the topo-
logical function of scanned tissues can be simulated as a
sparse signal superimposed by white gaussian noise. Here, the
high amplitude pulses simulate the strongest reflectors and
correspond to edges/details of imaging target. The white
gaussian noise will correspond to the speckle noise, which
according to the final objective of ultrasound sequences proc-
essing must be eliminated, reduced, or preserved.

Using the sparsity constraint, we propose an algorithm
which is able to reconstruct the original signal without inver-
ting the PSE. This helps us to avoid the inverse problem, which
has been known as one of the difficult problems in signal
processing.

Within this approach it is considered that the problem
could be divided into subproblems. Each subproblem has the
objective to eliminate the influence of the most important
reflector. In this way, it extracts iteratively from the envelope
of the measured signal the influence of the most important
blurred scatter; then replaces it with a unit pulse in the output
signal, at the same position. At the beginning, it has all posi-
tions zero. The algorithm is a greedy algorithm since it works
top-down. It provides a locally optimal choice to solve the
subproblem, in the hope that at the end, the final solution is
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Initialisation:
Repeat
(ii) x(ni) — Ri(”i)§

(iv)ie—i+1;

Input: signal envelope y(n), PSF h(n), threshold k.
Output: reflectivity function x(n).

x(n) < 0; R(n) « y(n)i — 0;
(i) n; = arg max(R;(n))
(iii) R;y; <« R, —h® R;(n;);

Until stop criterion (max(R;(n)) < k)

AvrGoriTHM I: Noninverse greedy deconvolution.

optimal [23]. For the implementation of the proposed decon-
volution algorithm see Algorithm 1.

Here, R(n) is so called the residual signal, R;(n;) is the
value of maximum amplitude at the position #; at iteration i,
and ® is the convolution operator. For this study it was fixed
that k = 0, because in this way the algorithm extracts the
maximum number of possible reflectors.

Being an iterative deconvolution algorithm, its conver-
gence must be studied. According to the condition of posi-
tiveness for the reflectivity function, the proposed algorithm
iterations have sense, while the residual signal has values
greater than zero. Also, the envelope of the PSF being a
positive function, it results that the subtraction of a positive
function from another positive one will generate a new
residual function, at the iteration i + 1 which always satisfy
the inequality R, ;(n) < R;(n). This condition is enough to
prove that the algorithm will always reach the exit condition.
The number of iterations corresponds with the sparsity
coeficient, where sparsity coefficient means the number of
nonzero elements in the final result. The PSF amplitude is
normalized to preserve the same amplitude as in the envelope
signal for the resulted sparse signal.

4. Results

The method was tested using synthetic RF-signals and real
ultrasound sequences. The experiments with simulated sig-
nals are motivated by the allowance of quantitative evalua-
tions under controlled conditions. Then the algorithms were
applied to real data to test the feasibility of algorithms in
clinical applications where the original topology of tissues is
unknown. In the following, these two directions of evaluation
will be presented as follows: Section 4.1 presents the results
for simulated data and Section 4.2 shows the results for real
data.

4.1. Experiments Using Simulated Signals. The so called reflec-
tivity function, which simulates the tissues topology, was
generated using Laplacian PDF assumption. For the simula-
tions we generated sparse synthetic signals for reproduction
of the strongest reflectors. It is contaminated with gaussian
white noise to simulate the speckle noise. The length of the
signals was 512 points, the sampling frequency was 20 MHz,
and the central transducer frequency was 3.2 MHz. This

corresponded to a sequence of 160 us and an approximately
3.94 cm deep scanning (for a standard ultrasound velocity
¢ = 1540 m/s). During the experiments the above mentioned
added gaussian white noise was generated according to
different SNR values. With this noise we intended to simulate
different types of tissues. For example, we find more speckle
noise and weak scatters in the soft tissues, like abdominal
tissues.

This reflectivity function must be transformed into an
RF signal to simulate the acquired signal of the ultrasound
probe. According to (1) it can be obtained if the reflectivity
function is convolved with a simulated radio-frequency PSE.
For current studies the RF PSF was generated using the
formula [24]:

2
PSF = A-exp [—(;\‘])—t> ]sinwt, 9)
i

where A means the PSF amplitude, exp is the exponential
function, w is the angular frequency, t symbolizes time, and N
is the number of the periods of the sinusoidal wave of the PSE.
The use of this formula is motivated by its capability to control
the number of oscillations in the simulated RF pulse. From
the experiments it was observed that the sinusoidal wave had
3 or 4 periods.

Figurel presents an RF simulated signal example as
follows: Figure 1(a) represents simulated tissue reflectivity
function, Figure 1(b) represents the generated RF PSE, and
Figure 1(c) represents the RF obtained after convolution and
its envelope.

Wavelet decomposition and denoising were performed
using Wavelab Toolbox, downloaded from http://statweb
.stanford.edu/~wavelab/. For the ¢ parameter in (7), it was
observed experimentally that using 5 levels of decomposition
was enough for a good elimination of the noise. Also, the
estimation of the PSF was made under assumption of min-
imum phase.

The second step of the algorithm was the deconvolution.
The current algorithm, described in Section 3.3 was com-
pared also with different state of the art methods used in
deconvolution as follows: regularized least square using [;-
norm, Wiener filter (or /,-norm regularization), and total
variation [3, 25].

The lagrangian parameter, A, for comparative methods
was fixed empirically to obtain the best results as follows: for
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FIGURE 1: Simulated signals. (a) The generated reflectivity function.
(b) The generated PSF. (c) The resulted RF signal and its envelope.

I,-norm A = 0.2, for Wiener filter (also known as Tikhonov
regularization) A = 0.08, and for TV-norm A = 0.14.

The results were presented in terms of visual and quanti-
tative evaluation. For quantitative measurements, we assessed
the execution time for each method and we computed the
normalized Mean Square Error (nMSE) and also resolution
gain (RG) parameter. RG parameter is based on the ratio
between normalized autocorrelation function of the original
envelope and the resulted signal higher than —3 dB [12]. The
nMSE is defined as follows:

= 2

X —X

nMSE = E [”—2"2] , (10)
lx1I2

where E is the statistical expectation, x is the original reflec-
tivity function, and X is the resulted reflectivity function.
Figure 2 presents the results on simulated signals. It
contains in Figure 2(a) the original RF signal envelope, which
was used in all deconvolution methods as input signal; then
the obtained results as follows: Figure 2(b): results were
obtained with our algorithm, Figure 2(c): results obtained
with [;-norm, Figure 2(d): results obtained with Wiener
filter, and Figure 2(e): results obtained with TV-norm. For a
better evaluation of the results, all signals were superimposed
over the original reflectivity function (dotted signal). After
computations, all results were normalized and then displayed
to have the same dynamic ranges. It could be seen that our
algorithm outperforms the comparative methods in terms of
amplitude and scatters estimation. Almost all extracted peaks
superimposed the original ones. /; -norm method offered also
a sparse solution for the final result, but it could be seen that
the final result was more contaminated with noise, which
limits the approach for clinical investigations. The last two
methods, Wiener filtering and TV-norm, offered smooth
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FIGURE 2: Simulated signals results. (a) Envelope of the simulated RF
signal; (b) results obtained with our algorithm; (c) results obtained
with [;-norm; (d) results obtained with Wiener filter; (e) results
obtained with TV-norm. All signals are superimposed over original
reflectivity function (dotted signal).

TaBLE 1: Comparison of different restoration techniques according
to nMSE (n-Mean Square Error) from (10) and RG (resolution gain).
RG is a parameter which evaluates the level of decorrelation for
speckle noise in the resulted signal.

SNR =7dB SNR =14 dB SNR = 21dB
Methods
nMSE RG nMSE RG nMSE RG
Our method 136 17.56 117 15.48 1.05 14.28
I,-norm 1.18 17.04 111 15.02 0.98 13.82
Wiener 2.82 2.15 2.62 1.68 2.69 1.52

TV-norm 2.52 0.76 2.33 0.87 2.32 0.91

solutions which did not always offer well distinct or well con-
toured reflectors.

To complete the qualitative evaluation, the results were
assessed using some numerical criteria. Table 1 summarizes
the results for the nMSE according to (10) and resolution
gain. The displayed values are the results of trade off over 100
independently generated signals for all SNR values. In terms
of nMSE it could be observed that the best results were offered
by [,-norm followed closely by our method, but Wiener filter
and TV-norm were outperformed and in terms of resolution
gain the best results are offered by our method followed by
I,-norm. Wiener filter and TV-norm had an insignificant
resolution improvement.
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TABLE 2: Execution time evaluation for tested algorithms.
Our alg. I,-norm Wiener TV-norm
Time (s) 0.002 19.01 0.7 3.83

TABLE 3: Real scatters detection according to their density.

Density  Method SNR (dB)
5 10 15 20 25
Our. alg. 9.05 9.07 9.07 9.12 9.15
2% Wiener 8.38 8.76 8.68 8.68 8.86

I,-norm 8.94 8.95 8.92 8.96 8.94
Our. alg. 18.9 19.00 19.68 19.72  20.06
5% Wiener 18.48 19.56 19.62 19.78 19.88
I,-norm 18.6 19.06 19.70 19.74 19.98
Our. alg. 37.62 37.94 3762 3830  39.02
10% Wiener 3434  34.62 3474 34.8 35.16
I,-norm 38.62 3950 39.80 3956 3992

Also, an important feature of the proposed algorithm
was its execution time. In Table 2 it could be seen that our
method outperformed all the compared techniques. This was
the logical consequence of the fact that it worked directly in
time domain and with the most important operation being
vector subtraction. It must be mentioned that for execution
time, deconvolution algorithms without PSF estimation were
evaluated.

Table 3 showed the results of a statistical evaluation for
scatters detection for proposed algorithms (our method,
Wiener filter, and /; -norm). The evaluations were made using
simulated signals using different levels of speckle noise and
different number of scatters. It must be said that to make
the same evaluation for Wiener filter result, we use a signal
where we keep only all local maximums. The objective of this
simulation was to evaluate the detection capability for each
algorithm in different conditions. It could be observed that
the proposed algorithm and [, -norm offer similar results and
they have a bigger detection capacity than Wiener filter. This
is normal because Wiener filters smooth the information and
a part of small details was lost in the reconstruction process.
From the point of view of real scatters discovery, we can
observe that the more the number of scatters increased, the
more the number of detected ones decreased. This can be
explained if we refer to Rayleigh condition of superresolution.
In the case of a high number of scatters a part of them cannot
be recovered, the scatters that are closer to A/2, where A is
the wavelength of the emitted PSE This fact is visible also
in Figure 2 (at the samples 250) where a part of them is not
recovered.

4.2. Experiments on Real Ultrasound Sequences. As a next
step, the proposed deconvolution algorithms were com-
pared using real ultrasound sequences composing ultra-
sound images. As shown in synthetic signals evaluations, the
ultrasound sequences can be done in the same procedure.
The envelope could be obtained using Hilbert transform;
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FIGURE 3: Measured signals results. (a) Envelope of measured signal;
(b) results obtained with our algorithm; (c) results obtained with /; -
norm; (d) results obtained with Wiener filter; (e) results obtained
with TV-norm.

TABLE 4: Resolution gain evaluation on measured signals.

Criteria Our alg. I,-norm Wiener TV-norm
RG 15 15 3 1

then PSF was estimated for each sequence and finally the
reflectivity function was estimated.

The first experiment on this section is focused on testing
real independently measured signals. In the Figure 3 are
shown the real measured signal in the subplot Figure 3(a)
and then, the results of reconstruction for used algorithms, in
the same order as in Figure 2. Because of no a priori informa-
tion about the original reflectivity function it was impossible
to evaluate the nMSE parameter and also to make the
superimposition of the obtained results over the original
reflectivity function. For that, the qualitative evaluation is
completed using just the RG parameter. In Table 4 the results
of quantitative evaluation for the evaluated methods using
this parameter are presented. Both visual and quantitative
evaluations validated the results obtained for the synthetic
signals. It can be seen that our method outperforms the
Wiener filter and TV-norm and offers similar results with [, -
norm.

Then, in our experiments we used multiple images
obtained in our laboratory. Figure 4 is a log-compressed B-
mode image of the skin obtained by an ultrasound scanner
developed in-house called Ecoderm. The probe used with
this imaging device is a 128 elements linear array working at
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FIGURE 4: (a) Original data; (b) proposed method; (c) /;-norm method; (d) Wiener filtering; and (e) TV-norm method.

20 MHz center frequency with 87% relative bandwidth. The
linear scan is performed by the scanner through an emission
aperture composed of 15 elements having focalization delays
set up for 8 mm in soft tissues. For computation constraint all
the sequences were zero-padded until the next 2P value.

In terms of visual evaluation our method outperformed
the comparative techniques. Here, the reflectors are more
visible and the speckle noise, which reduces the image quali-
ty, was almost suppressed. Moreover, the contours were
more visible and the regions without reflectors were better
distinguished.

The proposed algorithm assumes that the signal to be
recovered is sparse; that is, it has a Laplacian distribution.
For that it and [;-norm are more adapted to reconstruct
ultrasound images of tissues with a small number of scatters.
This means that in the final result the important details are
furthermore revealed and the smaller details (i.e., the speckle
noise) are reduced or eliminated. Such similar behavior is
observed also in the synthetic signals and real sequences.

As expected, in some cases, the sparse reflectivity
sequence is difficult to be interpreted directly because of
speckle noise suppression. Some possible improvement can



be made for a more realistic interpretation like convolution
with an ideal PSF or superimposition of the sparse data over
B-mode image.

5. Discussion and Conclusion

The present paper addresses the problem of blind deconvolu-
tion for ultrasound sequences in medical imaging by formu-
lating a solution that is able to extract the reflectivity function
avoiding the hard problem of inverse filtering. The pro-
posed algorithm is a time domain blind deconvolution that
works as a greedy algorithm. The solution estimates in a
blind way the PSF, and then, it extracts iteratively the tissue
reflectivity function using the estimated PSE

Being a blind technique, it was assumed a priori that
the reflectivity function had a sparse shape (ie., it follows
the Laplacian distribution law). Another important feature
of this method is its execution time. From the accomplished
experiments, it can be seen that the greedy algorithm method
outperforms the most used methods in the domain. Also
the algorithm works using the envelope of the acquired RF
signals, which avoid the problem of the acoustic wave central
frequency estimation.

It is well known that in its moving along the propagation
direction the PSF shape is changing according to attenua-
tion/nonlinear effects in the tissues. Generally, for perfect
results the state of the art approaches divide the image in
sections and then the PSF is calculated locally for each sec-
tion. In reconstruction, for each section, it is used the locally
estimated PSF with the same deconvolution algorithm. This
means that the deconvolution algorithms work identically,
but the results change because of the different used PSFs. The
purpose of this research is to prove their feasibility for
ultrasound sequences; therefore we only considered the non-
variant case in the experimentations.

From the simulations it resulted as well that scatters were
well identified and the speckle noise was almost suppressed.
However, in some conditions the results were too sparse and
this could create some difficulties in information interpreta-
tion.

Finally, a number of future works can be outlined. First,
the next step will be to analyze the proposed method for dif-
ferent types of tissues in a clinical investigation. Also, we can
try to improve the algorithm by imposing supplementary
constraints for a better interfaces detection in the situations
when they are very close. As discussed before, the sparsity
constraint is not always well suitable and this could be
improved by making a convolution of the resulted sparse
signal with a PSF as in [26]. Choosing the width for PSF
can be an interesting study and can offer different solutions
according to desired application.
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