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Abstract: Cystic fibrosis (CF) is a life-shortening monogenic disease caused by mutations 
in the gene encoding the CF transmembrane conductance regulator (CFTR) protein, an anion 
channel that transports chloride and bicarbonate across epithelia. Despite clinical progress in 
delaying disease progression with symptomatic therapies, these individuals still develop 
various chronic complications in lungs and other organs, which significantly restricts their 
life expectancy and quality of life. The development of high-throughput assays to screen 
drug-like compound libraries have enabled the discovery of highly effective CFTR mod-
ulator therapies. These novel therapies target the primary defect underlying CF and are now 
approved for clinical use for individuals with specific CF genotypes. However, the clinically 
approved modulators only partially reverse CFTR dysfunction and there is still a consider-
able number of individuals with CF carrying rare CFTR mutations who remain without any 
effective CFTR modulator therapy. Accordingly, additional efforts have been pursued to 
identify novel and more potent CFTR modulators that may benefit a larger CF population. 
The use of ex vivo individual-derived specimens has also become a powerful tool to evaluate 
novel drugs and predict their effectiveness in a personalized medicine approach. In addition 
to CFTR modulators, pro-drugs aiming at modulating alternative ion channels/transporters 
are under development to compensate for the lack of CFTR function. These therapies may 
restore normal mucociliary clearance through a mutation-agnostic approach (ie, independent 
of CFTR mutation) and include inhibitors of the epithelial sodium channel (ENaC), mod-
ulators of the calcium-activated channel transmembrane 16A (TMEM16, or anoctamin 1) or 
of the solute carrier family 26A member 9 (SLC26A9), and anionophores. The present 
review focuses on recent progress and challenges for the development of ion channel/ 
transporter-modulating drugs for the treatment of CF. 
Keywords: anionophores, CFTR modulators, drug development, ENaC, precision medicine, 
SLC26A9, TMEM16A

Introduction
Mutations in the gene encoding the cystic fibrosis (CF) transmembrane conductance 
regulator (CFTR) protein cause CF – one of the most common life-shortening 
autosomal recessive diseases.1–3 CFTR is a member of the ATP-binding cassette 
(ABC) transporter family and functions as a chloride (Cl–) and bicarbonate 
(HCO3

–) channel expressed at the apical plasma membrane (PM) of epithelial 
cells in the airways, intestine, pancreas, sweat glands and other organs.4,5 This 
protein is composed of 1480 amino acid residues that are organized into five 
domains (Figure 1):6,7 two transmembrane domains (TMD1 and TMD2), two 
nucleotide binding-domains (NBD1 and NBD2) and an intrinsically disordered 
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regulatory domain (RD). The latter connects the two 
homologous halves of the protein and is unique to CFTR 
among ABC transporters. The TMD segments cross the 
phospholipid bilayer and are connected by extracellular 
and intracellular loops, thus forming the channel pore 
through which anions are conducted.6,7 Conformational 
changes in the protein occur following ATP binding and/ 
or hydrolysis in NBDs and phosphorylation of RD by 
protein kinase A (PKA) and protein kinase C (PKC), 
leading to channel opening.6–8 For this complex protein 
to attain its native functional state, domain folding and 
interdomain interactions have to occur by cooperative 
mechanisms.9,10

CF affects over 90,000 individuals worldwide who are 
heterogeneously distributed, but with a higher incidence 
among Caucasians.11 Clinically, the disease has multi- 
organ involvement, being the respiratory disorder the 
major cause of morbidity and premature death.4,5,12,13 A 
cycle of airways dehydration and obstruction by a thick 
tenacious mucus, chronic inflammation and recurrent 
infections leads to epithelial injury, tissue remodeling and 
progressive loss of lung function, ultimately resulting in 
respiratory failure.4,5,12,13

Over the last decades, major clinical and therapeutic 
advances have been achieved to delay CF progression. 
These include mostly time-consuming symptomatic 
therapies that mitigate lung function deterioration and 
compensate intestinal malabsorption and pancreatic 

insufficiency (Table 1). Along with the implementation 
of newborn screening programs and specialized health-
care management, CF life expectancy has significantly 
increased with many individuals currently living in their 
40s and beyond.14–16 However, these individuals are still 
overwhelmed by considerable clinical, economic and 
psychosocial issues, which have a negative impact on 
their quality of life.11 In order to further enhance life 
expectancy and significantly reduce therapeutic burdens, 
CF must be treated beyond its symptoms by addressing 
the primary defect associated to CFTR mutations, thus 
halting the detrimental effects downstream of CFTR dys-
function, as indeed has occurred over the last decade.

Numerous assays and high-throughput screens (HTS) 
have been developed and optimized to screen drug-like 
compound libraries and identify CFTR modulators.11,17 

These specialized small molecules target the root cause 
of CF by rescuing the functional expression of several 
CFTR mutants. Significant success has been achieved in 
this field as a growing number of compounds are under 
experimental and early-stage clinical development, and 
four CFTR modulators are now approved for clinical use 
for individuals with specific CF genotypes (Table 1).18–23 

However, the clinically available CFTR modulators, even 
the highly effective CFTR modulator therapies, only par-
tially correct CFTR dysfunction,24–29 which suggests that 
there is scope for further enhancement. Moreover, a sig-
nificant number of individuals with CF, who presumably 

Figure 1 Overall structure of CFTR protein. CFTR structure is composed of five functional domains: two transmembrane domains (TMD1 and TMD2), two nucleotide- 
binding domains (NBD1 and NBD2) and an intrinsically disordered regulatory domain (RD). Ribbon diagram of two conformations of human CFTR: dephosphorylation, 
ATP-free conformation (left, PDB: 5UAK) (data from Liu et al)6 and phosphorylated, ATP-bound conformation (right, PDB: 6MSM) (data from Zhang et al).7 Notably, only a 
small portion of RD is depicted as most of its structure remains undetermined due to being intrinsically unstructured.
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carry very rare CFTR mutations (termed as “orphan muta-
tions”), remain without any effective “on target” therapy.

More than 2,100 CFTR gene variants have been reported 
to date (Cystic Fibrosis Mutation Database, http://www.genet. 

sickkids.on.ca/), for which only 440 the associated disease 
liability is established and being approximately 360 confirmed 
as disease causing (Clinical and Functional Translation of 
CFTR, https://cftr2.org/). However, one single mutation – 

Table 1 Pharmacological Therapies Commonly Used in Therapeutic Regimens of Individuals with Cystic Fibrosis

Drug Mode of Action

Antibiotics

Aztreonam Promotes bactericidal actions by binding to penicillin protein 3 and inhibiting bacterial cell wall synthesis.

Azithromycin Promotes bactericidal action by binding to bacterial 50S ribosomal subunit and inhibiting translocation of 

peptide synthesis.

Colistin/Colomycin Promotes bactericidal action by interacting with bacterial plasma membrane and increasing its permeability.

Tobramycin Promotes bactericidal action by inhibiting translation initiation and elongation of proteins and ribosome 

recycling as well as affecting bacterial membrane permeability.

Bronchodilators and equivalents

Formoterol Activates β2-adrenergic receptors on airway smooth muscles that leads to an increase in intracellular cAMP 
levels in airway smooth muscles, which results in smooth muscle relaxation.

Salbutamol Activates β2-adrenergic receptors on airway smooth muscles that leads to activation of PKA and inhibition of 
myosin phosphorylation, which results in smooth muscle relaxation.

Nonsteroidal anti-inflammatory drugs

Ibuprofen Promotes non-selective inhibition of cyclooxygenase activity, leading to decrease expression of inflammation- 

related mediators and neutrophil transmigration.

Mucolytics, hydrators and equivalents

Dornase alpha (recombinant 

human DNase)

Promotes cleavage of extracellular DNA present in airway mucus, thus facilitating mucus removal by decreasing 

its viscoelasticity.

Mannitol Promotes an osmotic gradient that alters properties of airway surface mucus layer, thus facilitating mucociliary 

clearance.

7% hypertonic saline Promotes hydration of airway mucus, thus facilitating mucociliary clearance.

Gastrointestinal supplements

Pancreatic enzymes Lipases, proteases and amylases that facilitate the hydrolysis of lipids, proteins and carbohydrates to be 

absorbed by the organism.

Fat-soluble vitamins (A, D, E, K) Restore the normal nutritional status.

CFTR modulators

Ivacaftor (VX-770) CFTR potentiator that increases channel open probability, thus allowing for CFTR-dependent anion transport.

Lumacaftor (VX-809) CFTR corrector that rescues CFTR folding and trafficking to the plasma membrane.

Tezacaftor (VX-661) CFTR corrector that rescues CFTR folding and trafficking to the plasma membrane. Note: VX-809 and VX-661 

appear to act by a similar mechanism as no additive effects are observed when these molecules are used in 
combination.

Elexacaftor (VX-445) Promotes dual activity as both CFTR corrector and potentiator. Note: VX-445 acts by a distinct mechanism 
compared to the aforementioned CFTR modulators as additive effects are observed when these molecules are 

used in combination.
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the deletion of a phenylalanine at position 508 (F508del) 
located in NBD1 – is found in at least one allele of 80–85% 
of individuals with CF worldwide.11,17 Nevertheless, such 
wide variety of CFTR mutations poses substantial challenges 
as specific drug development for every single mutation is 
unfeasible and most CFTR mutations are present in a very 
low number of individuals worldwide. Although all CF-caus-
ing mutations result in CFTR-dependent Cl–/HCO3

– defective 
transport, these are due to distinct cellular/functional defects. 
Accordingly, CFTR mutations have been grouped into func-
tional classes/theratypes,11,12,17,30 characterized by: (I) no pro-
duction of full-length protein, (II) defective folding and 
trafficking, (III) defective gating, (IV) reduced anion conduc-
tance, (V) reduced protein production, (VI) reduced stability at 
the PM, and (VII) no mRNA production. Despite not all CFTR 
gene variants have been characterized according to their 
respective cellular/functional defect(s), this classification has 
been useful as mutations within the same group are expected 
to be treated by the same therapeutic strategy if not by the 
same drug.

In parallel to CFTR modulators, other pharmacological 
therapies have emerged aiming to modulate non-CFTR ion 
channels/transporters that may potentially compensate for 
CFTR dysfunction.16,31–33 These include strategies to inhibit 
the epithelial sodium (Na+) channel (ENaC), which is upre-
gulated in CF epithelia, or modulate alternative Cl– channels/ 
transporters, such as the calcium (Ca2+)-activated Cl– chan-
nels (CaCCs), namely transmembrane 16 (TMEM16A, or 
anoctamin 1 [ANO1]), or the solute carrier family 26A 
member 9 (SLC26A9). Modulating the activity of these ion 
channels/transporters offers the advantage of functioning 
agnostically (ie, regardless of the CFTR mutation class) 
and, therefore, may benefit the entire CF population. These 
drugs might also be used alone or in combination with CFTR 
modulators for improved clinical outcomes. Here, we review 
the recent advances and challenges in the development of 
pharmacological modulators of CFTR and of other ion chan-
nels for the treatment of CF. Furthermore, we summarize 
advances in the development of anionophores, which are 
small artificial transmembrane anion transporters, as poten-
tial therapeutic strategies for CF.

CFTR Modulator Drugs and 
Personalized Medicine
CFTR Modulator Drugs
The CF drug development pipeline has been expanding 
with the discovery of novel small molecules from a 

diversity of chemical series that are able to correct specific 
cellular/functional defect(s) generated by CF-causing 
mutations.17,30 Accordingly, CFTR modulator drugs may 
be grouped into five main types according to their actions 
on CFTR mutations: read-through agents, correctors, 
potentiators, amplifiers and stabilizers (Figure 2). 
Examples of promising CFTR modulators that are under 
both experimental and clinical investigation are described 
in the following sub-sections.

Class I Mutations: Read-Through Agents
Read-through agents are molecules that enable the incor-
poration of an amino acid in a site where a premature 
termination codon (PTC) was introduced into the CFTR 
mRNA (ie, class I CFTR mutation).34,35 These agents 
(also termed as PTC suppressors) may prevent protein 
translation from stopping at PTCs, ie, before the full- 
length CFTR is produced. PTC suppression is mediated 
by the base pairing of a near-cognate aminoacyl-tRNA to 
the PTC and subsequently, the respective amino acid 
becomes incorporated into the nascent polypeptide chain 
at the site of the PTC. Accordingly, the local mRNA 
sequence context plays a key role in near-cognate aminoa-
cyl-tRNA selection during PTC suppression and different 
PTC mutations will incorporate distinct amino acids, 
despite treatment with the same read-through agent.36 

Furthermore, PTC-carrying transcripts are susceptible to 
nonsense-mediated decay (NMD)-related degradation, 
which significantly reduces the abundance of these PTC- 
carrying transcripts.34,35 Therefore, both NMD and PTC 
should be suppressed in order to achieve therapeutically 
relevant levels of CFTR rescue for class I mutants.

Ataluren (PTC124, PTC Therapeutics) was identified 
in a HTS of ~800,000 molecules using firefly luciferase- 
based read-through reporters37 and was considered one of 
the leading compounds to rescue class I CFTR mutations. 
Despite its promising effects in the experimental setting, 
ataluren was unable to demonstrate efficacy in Phase III 
clinical trials involving individuals with CF and thus failed 
to reduce sweat Cl– concentration and improve the percen-
tage of predicted forced expiratory volume in 1 sec 
(ppFEV1; a commonly used parameter to measure lung 
function).38,39 This lack of efficacy led to discontinuation 
of ataluren development for CF, albeit not for other con-
ditions (eg, Duchenne muscular dystrophy), leaving an 
unmet need for novel drugs targeting CFTR PTC 
mutations.
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In an effort to identify more effective read-through 
agents, three ataluren derivative compounds were found 
to have a higher read-through efficacy, while maintaining 
low toxicity in a human bronchial epithelial cell line 
(W1282X/F508del CF genotype).40 However, their effi-
cacy in rescuing PTC CFTR function still needs further 
investigation. Alternatively, structural chemical replace-
ments, such substitution of 1,2,4-oxadiazoles to 1,3,4- 
oxadiazoles, were demonstrated to be highly important 
in drug discovery and enhanced compound properties.41 

A novel molecule with structural similarity to ataluren 
but with a 1,3,4-oxadiazole heterocycle core (termed as 
NV2445) revealed greater read-through activity when 
compared to the former molecule and rescued CFTR 
PM expression and function in cell models carrying dif-
ferent CFTR PTC mutations, including G542X and 
W1282X.41 NV2245 was also shown to have better 

pharmacological properties than ataluren,42 and its 
effects on in vivo experimental and early-stage clinical 
studies are under investigation.

A molecule able to inhibit the serine/threonine-protein 
kinase-1 (SMG-1i) was identified as a promising NMD 
inhibitor.43 SMG-1i was able to modestly increase CFTR 
mRNA abundance, protein expression and channel func-
tion in the 16HBEo– cell line CRISPR-edited to express 
W1282X-CFTR,44 although such effects were not 
observed in a following study by other group using this 
cell model.45 SMG-1i also demonstrated to rescue 
W1282X-CFTR in primary human nasal epithelial (HNE) 
cells,46 and synergistic effects were also observed when 
SMG-1i and other read-through agents (eg, gentamycin, 
G418/geneticin, paromomycin) were co-administered,47 

reinforcing the idea that combination of read-through 
agents and NMD inhibitors may represent a potential 

Figure 2 Site of action of the different CFTR modulator drugs. CFTR modulator drugs may be grouped into five main types according to their actions on CFTR mutations: 
read-through agents (for class I mutants), correctors (for class II mutants), potentiators (for classes III and IV mutants), amplifiers (for class V mutants, and possibly all others, 
except VII) and stabilizers (for class VI mutants). These molecules have a different putative site of action in order to correct specific defects in CFTR mutations. Some 
examples of promising CFTR modulators that are under experimental and clinical investigation have been provided (see text for further details). 
Notes: Adapted from Lopes-Pacheco M. CFTR modulators: the changing face of cystic fibrosis in the era of precision medicine. Front Pharmacol. 2020;10:1662.11 Copyright 
© 2020 Lopes-Pacheco. Creative Commons Attribution License (CC BY).
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therapeutic option for the treatment of individuals with CF 
carrying PTC mutations.

ELX-02 is a novel aminoglycoside analogue drug 
developed by Eloxx Pharmaceuticals that demonstrated 
read-through activity on CFTR PTC mutations.48 In 
Phase I clinical studies (NCT02807961, NCT03292302, 
NCT03309605), 62 healthy volunteers were treated with 
ELX-02 and no serious adverse events or deaths were 
reported.49 Two Phase II clinical studies have been 
initiated with 24 individuals with CF carrying the G542X 
mutation in at least one allele (NCT04126473, 
NCT04135495). Interestingly, ELX-02 demonstrated to 
rescue CFTR activity in the forskolin-induced swelling 
assay using intestinal organoids from individuals with CF 
carrying G542X-CFTR.50 An increase in CFTR mRNA 
abundance and appearance of the fully-glycosylated form 
of CFTR were also observed in this study.50 Such promis-
ing results have supported the ongoing clinical evaluation 
of ELX-02 for individuals with CF carrying the G542X 
mutation; however, its read-through activity for other 
CFTR PTC mutations needs to be further elucidated.

Several HTS have been performed over the last few 
years in an attempt to identify novel read-through agents 
for CFTR PTC mutations.11,30 A library containing 
~85,000 molecules was screened by the CF Foundation 
Therapeutics laboratory and some promising hits were 
found to rescue the Y122X and W1282X mutations, 
including CFFT-0182812 and CFFT-0176974, which 
were able to increase both CFTR PM expression and 
transepithelial conductance.51 Notably, the five leading 
hits of W1282X increased CFTR PM expression to more 
than 20% of the WT-CFTR levels, which makes it 
encouraging to conclude that these hit compounds may 
yield full-length functional CFTR protein.51 Moreover, 
this study demonstrated that certain CF-causing mutations 
may benefit from development of mutation-specific mod-
ulators but efficacy ranking may differ significantly among 
different mutations in the same functional class. A more 
recent study screening over 660,000 molecules (Scripps 
Drug Discovery Library) for their ability to rescue G542X 
identified 188 compounds that rescue this PTC mutation 
when in combination with other modulators.52 These com-
pounds are now being evaluated in primary cells from 
individuals with CF in order to validate the previous 
results and to analyze the translational read-through in a 
more physiologically relevant context. If successful, trans-
lational read-through would be an exciting approach to 
restore the expression of CFTR carrying PTC mutations 

to levels approaching those of WT-CFTR. However, as 
shown by previous studies,35,36,53 the combination of a 
read-through agent with other modulators that have com-
plementary mechanisms may be required to efficiently 
rescue CFTR PTC mutations, as the incorporation of a 
random amino acid may produce a full-length protein 
which is still misfolded or dysfunctional. Accordingly, in 
the pursuit of therapeutic options for individuals with CF 
carrying PTC mutations, and the lack of any clinically 
approved therapy for this group of individuals, it will be 
of the outmost importance to exploit the possibility of 
developing an effective combination of modulators.

Class II Mutations: Correctors
Correctors are small molecules that rescue CFTR mutants 
with a traffic defect (ie, class II CFTR mutation) to the 
PM.4,12,54 Defective traffic occurs as a result of CFTR 
mutations that cause protein misfolding, thus being recog-
nized by the endoplasmic reticulum quality control and 
targeted to be prematurely degraded in the proteasome.55,56 

As the F508del mutation belongs to this class, a consider-
able number of CF drug programs has been focused on the 
development of small-molecule correctors that rescue its 
PM traffic.

Lumacaftor (VX-809) and tezacaftor (VX-661) are two 
correctors (first- and second-generation, respectively) 
developed by Vertex Pharmaceuticals that were already 
approved some years ago by both the US Food and Drug 
Administration (FDA) and the European Medicines 
Agency (EMA).19,20,57,58 However, despite their promising 
effects in rescuing F508del-CFTR in vitro,59,60 their 
effects on improving lung function in clinical studies was 
somewhat more modest than anticipated.19,20 Indeed, 
either VX-809 or VX-661 in combination with the poten-
tiator VX-770 (see next sub-section) only led to a fairly 
small improvement in lung function of individuals with CF 
homozygous for F508del (~4 and ~7 ppFEV1, 
respectively).19,20 More recently, a next-generation correc-
tor – elexacaftor (VX-445) – was approved in combination 
with VX-661/VX-770 and this triple combination led to 
greater therapeutic benefits in individuals with CF carrying 
one or two copies of F508del-CFTR,22,23 although this 
combination of two correctors still promotes only a partial 
rescue of F508del-CFTR traffic defect.61 A label extension 
of these drugs has been granted by the FDA to other CF- 
causing mutations based on in vitro data in cell lines,17 

thus significantly increasing the number of individuals 
with CF who may benefit from these causative therapies. 
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However, there are several class II CFTR mutations unre-
sponsive or only modestly responsive (ie, below therapeu-
tically relevant levels) to experimental and clinically 
approved correctors.62–68 The real-life and long-term 
effects of clinically available correctors are also being 
further investigated, namely regarding liver and kidney 
function and overall tolerability. Another major limitation 
of these drugs is their very high costs, which makes them 
inaccessible for many individuals with CF, particularly for 
those living in low- and middle-income countries.11,69 In 
parallel, the same company (Vertex Pharmaceuticals) is 
pursuing the development of novel correctors, such as 
VX-121, which is currently being evaluated in combina-
tion with VX-661/VX-561 in phase II clinical studies 
(NCT03912233).

Many other studies have been performed by several 
academic laboratories and pharmaceutical companies in 
order to identify more potent correctors that could rescue 
class II CFTR mutations alone or in combination with the 
clinically approved ones. Some promising drugs developed 
by Abbvie/Galapagos include ABBV-2222, ABBV-2737 
and ABBV-3221. ABBV-2222 is a first-generation corrector 
that demonstrated greater efficacy in rescuing CFTR func-
tion in F508del homozygous primary human bronchial 
epithelial (HBE) cells, being 25% more potent than VX- 
809 or VX-661.70,71 However, ABBV-2222, VX-809 and 
VX-661 seem to share a similar mechanism in rescuing 
F508del-CFTR, as these molecules were not additive 
when tested together.68 Although ABBV-2222 was safe 
and reduced sweat Cl– concentration in individuals with 
CF homozygous for F508del, it showed no improvements 
in ppFEV1 in a phase IIa clinical trial,72 and therefore, 
another clinical study is currently ongoing 
(NCT03969888). ABBV-2737 is a second-generation cor-
rector that was well-tolerated in phase I studies and demon-
strated to rescue CFTR function in F508del/F508del HBE 
cells synergistically with VX-809, suggesting that these two 
molecules act by distinct mechanisms.73,74 In a phase IIa 
study, ABBV-2737 led to a reduction in sweat Cl– concen-
tration and improved ppFEV1, albeit modestly, in indivi-
duals with CF homozygous for F508del.75 ABBV-3221 is 
another second-generation corrector that demonstrated res-
cue of F508del-CFTR function with greater effects when in 
combination with corrector ABBV-2222 and potentiator 
ABBV-974 (formerly GLPG1837).76 Abbvie also has two 
additional investigational correctors (AC1 and AC2) that 
were shown to rescue processing and trafficking of other 

class II CFTR mutations, including G85E, M1101K and 
N1303K.46,77

Other investigational correctors include FDL-169 
(Flatley Discovery)68 and RDR01752,78 which also appear 
to share the rescue mechanism with VX-809 and VX-661. 
In addition, three small-molecule series were identified in 
a HTS of ~600,000 drug-like molecules: 6258, 3151 and 
4172, which target defects at NBD1, NBD2 and TMD 
interfaces, respectively.79 Although their individual use 
demonstrated a modest rescue of F508del-CFTR, the com-
bination of these three compounds demonstrated much 
greater effects and were also able to rescue other class II 
mutations located at different CFTR domains.79 

ARN23765 is another novel corrector that demonstrated 
to be synergistic with other type of correctors in rescuing 
F508del-CFTR with the advantage of having picomolar 
potency.80 Synthetic analogues of the marine natural pro-
duct latonduine A also demonstrated to rescue F508del- 
CFTR traffic by inhibiting function of Poly(ADP-ribose) 
polymerase 3 and 16 (PARP3 and PARP16).81 Novel pyr-
rolothiazole derivative compounds were recently synthe-
sized and their ability to rescue F508del-CFTR was 
evaluated in a small-scale screen.82 Among these, com-
pound 44 rescued F508del-CFTR processing and function 
being additive to VX-809 but not to VX-661.82 

Proteostasis Therapeutics also developed a potent correc-
tor – posenacaftor (PTI-801) – that was described as hav-
ing a similar efficacy to VX-661 in rescuing F508del- 
CFTR traffic defect. Its safety, tolerability, and pharmaco-
kinetics was evaluated in combination with other modula-
tors from this company, namely a potentiator and an 
amplifier (see next sub-sections), in individuals with CF 
in a clinical trial (NCT03500263) with promising clinical 
outcomes. However, the clinical development of these 
compounds was discontinued after Proteostasis 
Therapeutics merged with another pharmaceutical com-
pany, Yumanity Therapeutics. Overall, all these com-
pounds provide a good resource to further explore their 
mechanisms of action and pharmacophore structural space 
by medicinal chemistry to identify novel and more potent 
correctors.11,30

Classes III and IV Mutations: Potentiators
Potentiators are compounds that increase CFTR channel 
open probability, thus allowing for anion transport through 
CFTR.11,83 These compounds are useful for CFTR muta-
tions in which channel gating or conductance is impaired 
(ie, classes III and IV, respectively), or for those in which 
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protein translation or traffic are deficient and after rescue 
by another modulator type, the channel is still not func-
tioning properly.

Ivacaftor (VX-770, Vertex Pharmaceuticals) was the 
first potentiator approved for clinical use.18,84 It was initi-
ally approved by both FDA and EMA for individuals with 
CF carrying G551D-CFTR in at least one allele after 
remarkable improvement in lung function (~10 ppFEV1) 
and significant reduction in sweat Cl– concentration.18,85 

Thereafter, its approval was extended for other eight gat-
ing mutations.86 More recently, the FDA has extended the 
approval of VX-770 for 96 residual function mutations 
(among gating, conductance and splicing mutations) 
based on in vitro data in cell lines,17 with subsequent 
clinical studies also confirming therapeutic benefit in 
some of these mutations.87 As F508del-CFTR still exhibits 
a gating defect when the protein is rescued to the PM, VX- 
770 was also tested and approved in combination with 
VX-809,19 VX-66120 and VX-445/VX-66122,23 as 
described above (see previous sub-section). Nevertheless, 
VX-770 only partially reverses G551D-CFTR 
dysfunction24,84 and individuals with CF taking this mod-
ulator may benefit from a combination of potentiators with 
complementary mechanisms (termed as co-potentiators).-
28,88,89 Surprisingly, VX-445 was recently demonstrated to 
have dual activity as both corrector and potentiator,90 

being its potentiator activity additive to VX-770 in rescu-
ing F508del- and G551D-CFTR gating defect.29 

Furthermore, a deuterated form of ivacaftor (VX-561, 
deuticaftor) is currently under clinical investigation 
(NCT03911713). Since the replacement of hydrogen by 
the heavier deuterium atoms, renders the molecule more 
stable, as a drug it could be taken once daily instead of 
twice as it is the case of VX-770.91

ABBV-974 and GLPG-2451 are two novel potentiators 
developed by Abbvie/Galapagos. These molecules were 
demonstrated to rescue mutant CFTR carrying G551D, 
G178R, R334W, S549N or F508del – the latter in combi-
nation with either VX-809 or ABBV-2222 – in both cell 
lines and CF HBE.73,92,93 Patch-clamp functional studies 
showed that ABBV-974 and GLPG-2451 reduce the closed 
time and increase the open time of CFTR channels by a 
similar mechanism to that of VX-770, as no additive 
effects were observed when these molecules were tested 
together.73,92,93 ABBV-3067 is another potentiator devel-
oped by Abbvie that was demonstrated to rescue F508del- 
CFTR in combination with the corrector ABBV-2222,74 

and this combination is currently under clinical 

investigation (NCT03969888). Abbvie also has two other 
investigational potentiators that are being pre-clinically 
tested: AC2-2 and AP2. The former was found to have 
dual activity as both corrector and potentiator in rescuing 
G85E- and M1101K-CFTR, but it only functions as a 
potentiator for N1303K-CFTR.77 The combination of 
these two potentiators with the AC1 corrector efficiently 
rescued the functional expression of the ultra-rare I1234- 
R1239del-CFTR in HNE cells.94

Novartis has developed icenticaftor (QBW251), a 
novel potentiator that showed to improve lung function 
(6.5 ppFEV1) and reduce sweat Cl– concentration in 
individuals with CF carrying a class III or IV CFTR 
mutation in at least one allele.95 In parallel, QBW251 
was evaluated in individuals with chronic obstructive 
pulmonary disease in a phase II trial and demonstrated 
to improve systemic inflammation and sputum bacterial 
colonization,96 indicating that CFTR potentiators may 
benefit individuals with other lung diseases. Proteostasis 
Therapeutics also developed a potentiator termed as 
Dirocaftor (PTI-808) that was shown to have a similar 
efficacy to VX-770, and its effect was also assessed in an 
aforementioned clinical trial (NCT03500263) in indivi-
duals with the F508del mutation in at least one allele. 
Despite promising outcomes, its clinical development 
was discontinued.

A considerable number of pre-drugs has been identi-
fied by HTS programs and are under further development 
by academic research groups. For instance, some thiazole 
derivatives were found to act as both correctors and 
potentiators of F508del-CFTR, although the potentiator 
effect was lower in comparison to VX-770.97,98 

Compounds containing a 2,3,4,5-Tetrahydro-1H-pyrido 
[4,3-b]indole core were able to efficiently rescue the 
function of F508del- and G551D-CFTR.99 A spiro[piper-
idine-4,1-pyrido[3,4-b]indole compound demonstrated 
potentiation activity for N1303K and I1234-R1239del 
CFTR with additive effects when in combination with 
VX-770.100 ASP-11 is an arylsulfonamide-pyrrolopyri-
dine co-potentiator that acts synergistically with VX- 
770 in the rescue of F508del-, G551D-, N1303K- and 
W1282X-CFTR mutations in cell lines.101 The effects of 
ASP-11 were confirmed for N1303K in HBE cells, but 
not for W1282X.28,101 This considerably high number of 
compounds with distinct chemical structures provide a 
great source for the development of novel potentiator 
drugs.
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Class V Mutations: Amplifiers
In a HTS of a library containing ~54,000 drug-like com-
pounds, a novel type of CFTR modulator was identified: 
the amplifiers.102 These molecules act on CFTR gene 
expression and, consequently, increase the total amount 
of protein produced.103 Such compounds may be beneficial 
not only for class V mutations that result in a reduction of 
protein production, but also as adjuvants for all other 
CFTR mutation classes (except for class VII mutations 
that do not produce CFTR mRNA), as amplifiers may 
increase the protein abundance to be rescued by other 
CFTR modulators.

Nesolicaftor (PTI-428) is an amplifier developed by 
Proteostasis Therapeutics and the first-in-class evaluated 
in clinical studies.102 In the experimental setting, this 
molecule was able to selectively increase CFTR expres-
sion with no alterations on cytosolic stress or endoplasmic 
reticulum-associated unfolded protein response pathways. 
PTI-428 also augmented the effects of VX-809 and VX- 
770 in rescuing F508del- and I1234-R1239del- 
CFTR.102,104 A more recent study demonstrated that PTI- 
428 enhances the stability of CFTR mRNA by directly 
enhancing the binding of poly(rC)-binding protein 1 to a 
consensus sequence present in the open reading frame of 
CFTR mRNA.103 This finding provides novel insights into 
the cellular regulation of CFTR biosynthesis along with 
mechanistic information on how amplifiers may be used to 
enhance the therapeutic benefits of other types of effective 
CFTR modulators.

Class VI Mutations: Stabilizers
Stabilizers are molecules that enhance the anchoring of 
CFTR channel to the PM, being thus able to significantly 
reduce its internalization rate. Even when CFTR mutants 
reach the PM, they may present intrinsic protein instability 
(ie, class VI CFTR mutations) that result in increased 
CFTR endocytosis105 and/or decreased recycling back to 
the PM.106 For instance, F508del-CFTR rescued either by 
low-temperature incubation107 or by VX-809,25,108 VX- 
661 and/or VX-44561 exhibits much lower PM stability 
in comparison to WT-CFTR, thus being rapidly removed 
from the PM by peripheral quality controls 
mechanisms.109

Cavosonstat (N91115) is a stabilizer developed by 
Nivalis Therapeutics and the first-in-class evaluated in 
clinical studies.110 It was demonstrated to enhance CFTR 
maturation and PM stability by inhibiting 
S-nitrosoglutathione reductase.111 Hepatocyte growth 

factor (HGF) was also demonstrated to facilitate the PM 
anchoring of F508del-CFTR by activating endogenous 
Rac1 signaling that promotes the interaction of CFTR 
with the Na+/H+ exchanger regulatory factor 1 
(NHERF1).112 Furthermore, HGF treatment had a more 
significant effect in rescuing F508del-CFTR processing 
and PM stability when combined with VX-809.113,114

Chemical inhibition of calpain 1 was also found to 
rescue F508del-CFTR expression and function as this 
interactor prevents ezrin recruitment, a key player in facil-
itating PM anchoring of F508del-CFTR.115 GM1 ganglio-
side is a bioactive lipid that also demonstrated to increase 
PM stability of F508del-CFTR.116 In cells chronically 
treated with VX-809 and VX-770, GM1 increased total 
levels of NHERF1 and ezrin, as well as levels of the 
mature form of F508del-CFTR, which was accompanied 
by an augment in CFTR-dependent Cl– transport in cell 
lines and HBE cells.116

CFTR PM expression is negatively regulated by the 
CFTR-associated ligand (CAL)117,118 and PGD97 is a 
cyclic peptidyl inhibitor of the interaction between CAL 
and CFTR, leading to an increase in F508del-CFTR PM 
stability and function in cell lines and HBE cells with a 
greater effect when combined with VX-661.119 Such find-
ings provide evidence for the interest in further developing 
PGD97 and other CAL inhibitors to rescue F508del-CFTR 
PM stability.

Personalized Medicine: Theratyping and 
Theranostics
The responsiveness of CFTR mutations to current available 
modulator drugs has been assessed in a process termed as 
theratyping, which consists in grouping mutations into 
classes to be treated by the same strategy (see above section 
and Figure 2).17,30,120 Although still incomplete, this process 
has been useful for the approval of label extension to less 
common CF mutations, thus clinically benefiting a larger 
population of individuals with CF.17 However, variability in 
clinical improvement was observed in clinical studies evalu-
ating CFTR modulators even in individuals carrying the 
same CF genotype.18,57,58,85 While it is assumed that such 
differences may in part account for the structural tissue injury 
occurred over disease progression in each individual, it is 
currently known that responsiveness to a certain drug 
depends not only on the CF genotype but also on a number 
of modifier genes and epigenetic factors.11,30,121–123 

Accordingly, it is generally accepted that every individual 
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with CF is unique, not only in terms of prognosis for the same 
CFTR genotype but also regarding response (and benefit) 
from CFTR modulators. As it is also expected that more 
CFTR modulator drugs will become available for clinical 
use, there is a need to advance in the development of tools 
that enable predicting the clinical effectiveness of drugs by 
ex vivo assays performed in individual-derived specimens so 
as to select the best therapeutic option(s) for that individual – 
a process termed theranostics, the principle underlying pre-
cision medicine.30,124 Such fact becomes even more relevant 
when treating individuals who have CF genotypes combining 
two different rare CFTR mutations (one in each allele) or 
even a complex allele.

In order to assess individual responses to CFTR modu-
lator drugs (approved and under development), several 
assays have been developed and optimized using specimens 
from individuals with CF.59,125–130 Primary human airway 
epithelial cells are considered the gold standard since they 
have been successfully used as pre-clinical data for the CFTR 
modulators currently approved for clinical use. Indeed, this 
ex vivo cell model provides responsiveness in a physiologi-
cally relevant tissue and allows for the measurement of 
CFTR-dependent Cl– transport.59,60,79 Primary HNE cells 
have emerged as a surrogate for bronchial epithelial cells as 
they share many phenotypic features59,126,130 and may be 
obtained by less invasive procedures (nasal scrapping instead 
of bronchoscopy or explanted lungs).

Intestinal organoids grown from stem cells obtained 
from biopsies have served as another robust and feasible 
model to evaluate the efficacy of CFTR modulators at an 
individual level, using the forskolin-induced swelling 
(FIS) assay.128,129 Using similar technology, airway (bron-
chial or nasal) organoids/spheroids have been developed 
based on the same FIS assay.127,131

Induced pluripotent stem cells (iPSCs) might also be a 
useful model since they can be differentiated in several cell 
types and recapitulate the variable responses of individuals 
with the same CF genotype to modulator drugs.132–134 

Several studies have been performed to establish correla-
tions between responses in ex vivo individual-derived speci-
mens and clinical parameters to identify which are the most 
precise biomarkers.59,62,135–137 The possibility of evaluating 
drug effectiveness at an individual level using ex vivo 
individual-derived specimens enables precision medicine 
and therapeutic counseling – ie, theranostics. More impor-
tantly, it can reduce the prescription of drugs that would 
create high expectation to the individual and family 

members but which do not necessarily provide significant 
clinical benefits.

Modulation of Alternative (Non- 
CFTR) Channels/Transporters
Despite remarkable progress in developing highly effec-
tive CFTR modulator therapies that target the cellular/ 
functional defects for different CFTR mutations, several 
issues still need to be resolved: 1) 10–15% of individuals 
with CF do not benefit from any clinically available CFTR 
modulator; 2) those who benefit, do so with different 
levels of responsiveness, which never reach levels of indi-
viduals without CF (or carriers); 3) some individuals can-
not tolerate or respond poorly to available modulators; 4) 
there is no equitable access to these drugs due to their very 
high costs and lack of international regulatory issues; 5) 
real-world and long-term benefits and sequelae are yet to 
be demonstrated. Accordingly, an alternative therapeutic 
option that has gained increasing attention over the last 
few years consists in the modulation of other (non-CFTR) 
ion channels/transporters expressed at the PM of secretory 
epithelia.16,31–33 The main allure of this approach is that it 
may possibly be used for all individuals with CF, regard-
less of their CF genotypes, thus being a “mutation-agnos-
tic” approach. Notably, CFTR modulators and drugs 
targeting alternative channels/transporters may also be 
combined for additive effects in improving fluid secretion 
in CF. Here, we have discussed three of these alternative 
targets: ENaC, TMEM16A and SLC26A9 (Figure 3).

Epithelial Na+ Channel (ENaC)
The idea of targeting ENaC as a therapy for CF came from 
studies of its role in both healthy and CF airways. 
However, there is still a debate that encompasses two 
different hypotheses (not mutually exclusive) regarding 
the underlying cause of CF pathogenesis. The first one 
proposes that there is altered pH of air surface liquid 
(ASL) in CF resulting from absence of CFTR-dependent 
HCO3

– transport, which leads to inactivation of natural 
antimicrobial peptides in the ASL.138,139 The second 
model is based on the idea that loss of CFTR function 
leads to Na+ hyperabsorption by ENaC, leading to subse-
quent higher absorption of water and consequent ASL 
dehydration that causes impaired mucociliary clearance 
(MCC) in CF.140,141 As research data continue to support 
that a hyperactivation of ENaC occurs in CF cells, specific 
inhibition of ENaC function may represent a pathway to 
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partially reverse the disruptive downstream effects of CF 
pathophysiology.

Numerous ENaC inhibitors have been developed with 
promising effects on the experimental setting but still 
failed to demonstrate clinical improvements in individuals 
with CF, including amiloride and SPX-101.32,141 There are 
several challenges that need to be overcome to success-
fully develop ENaC inhibitor compounds. These include 
the ability to penetrate the mucus barrier, the potency, the 
correct dose without off-target effects and a long half-life 
to achieve the best therapeutic effects. Accordingly, dif-
ferent strategies are under development to directly or 
indirectly inhibit ENaC function (Figure 4) and several 
novel molecules are advancing in the experimental pipe-
line, such as BI 1265162 and ARO-ENaC.142–144

Amiloride was the first ENaC inhibitor developed in 
the 1960s by Merck and it is still commonly used in the 
experimental setting. Furthermore, its structural motif is 
present in several novel ENaC inhibitors under develop-
ment. Amiloride directly binds to ENaC and promotes a 
decrease in the channel open probability.32 This molecule 
was initially used as a diuretic due to its action on block-
ing Na+ absorption on the distal convoluted tubule of the 
kidney and in the fine tuning of Na+ and water levels in the 
human body. In order to avoid any kidney side-effects or 
in other ENaC-expressing organs, amiloride was evaluated 
as an inhaled therapy in CF clinical trials.141 However, 

results were modest and showed only short-term effects on 
MCC, which was mainly attributed to the short half-life of 
amiloride.

Due to clinical failure of amiloride and other first-gen-
eration ENaC inhibitor drugs, different strategies were pur-
sued resulting in the discovery of SPX-101, a compound 
indirectly inhibiting ENaC by mimicking a protein named 
short palate lung and nasal epithelial clone 1 
(SPLUNC1).145,146 Experimental data demonstrated that 
SPX-101 was able to significantly increase ASL height in 
primary HBE cultures and recover MCC in CF animal 
models145,146 and a phase I trial validated the safety of 
SPX-101 for clinical use.142 However, SPX-101 failed to 
promote any therapeutic benefit in individuals with CF in a 
phase II clinical trial (NCT03229252), resulting in the dis-
continuation of its clinical development. Other SPLUNC1- 
like compounds may become promising drugs to target 
ENaC for the treatment of CF.

BI 1265162 is a pre-drug developed by Boehringer 
Ingelheim that directly inhibits ENaC. It demonstrated a 
higher potency than amiloride with promising effects in 
experimental and phase I clinical studies.144 BI 1265162 
dose was selected based on data from a CF rat model in 
which this compound was administered intratracheally and 
then the fluid absorption net was calculated. BI 1265162 
was also studied in a CF sheep model and the deposition 
of this drug in human airways was estimated by using a 

Figure 3 Modulation of ion channels/transporters as alternative therapies for CF. In healthy airways, CFTR, ENaC, TMEM16A and SLC26A9 are expressed at the plasma 
membrane (PM) of epithelial cells where they contribute to ion and water homeostasis. In CF airways, due to the absence of functional CFTR, Cl– secretion is compromised 
and Na+ absorption is upregulated, leading to a dehydrated air surface liquid (ASL) and impaired mucociliary clearance (MCC). Expression of TMEM16A and SLC26A9 at the 
PM are also diminished in CF ciliated cells, although the role of TMEM16A overexpression in secretory cells and its role in mucus secretion are still controversial. Alternative 
therapies for CF thus include blocking ENaC, enhancing SLC26A9 expression at the PM, and modulating TMEM16A. Although for the latter is still not clear whether 
activators or inhibitors are beneficial, a TMEM16A potentiator in currently under clinical investigation.
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“soft mist aerosol” (Respimat®) inhaler.143 The safety and 
efficacy of BI 1265162 are under investigation in a phase 
II clinical trial (NCT04059094).

IONIS-ENAC-2.5Rx is a novel genetic strategy devel-
oped by Ionis Pharmaceuticals to reduce ENaC function. It 
consists of an antisense oligonucleotide (ASO) sequence 
that targets and degrades the pre-mRNA α-subunit of 
ENaC, critical for channel formation. This degradation 
induced the RNase H1 activity that subsequently lead to 
a reduction in ENaC expression. In a phase I trial, IONIS- 

ENAC-2.5Rx demonstrated to be safe and reduced ENaC 
mRNA expression on airways of healthy volunteers, after 
product inhalation via a nebulizer. Subsequent phase II 
clinical studies were performed to evaluate the safety and 
efficacy of IONIS-ENAC-2.5Rx in individuals with CF. 
However, due to recent pre-clinical toxicological data, the 
company discontinued the development of this drug.

The small interfering RNAs (siRNAs) consist of 
important alternatives to ASOs. These are composed of 
21–23 nucleotides containing a mRNA sequence capable 
of degrading the mRNA of a specific target gene. The 
target mRNA degradation occurs with the association 
between the developed siRNAs with the RNA-induced 
silencing complex (RISC).32,147 ARO-ENaC (from 
Arrowhead Pharmaceuticals) is the key siRNA under 
development to target ENaC.32,147 ARO-ENaC was 
recently shown to significantly reduce ENaC mRNA and 
protein levels in lung tissue of rats. Although further 
studies are necessary to evaluate and optimize the efficacy 
of this therapy, its safety is currently under investigation 
on a phase I clinical study (NCT04375514).

Despite the several challenges, ENaC inhibitors are 
still a promising strategy to treat prominent abnormalities 
in CF lungs: the CF dehydrated mucus and its downstream 
detrimental consequences in CF airways. In addition, as 
mucus hyperproduction has been implicated in the patho-
genesis of a variety of lung diseases, ENaC inhibitors may 
be beneficial therapeutics far beyond CF. Notwithstanding, 
it has been argued that an intensive ENaC inhibition 
should not be pursued as this may lead to excessive liquid 
in the lungs, ie, pulmonary edema, an equally pathological 
condition. Therefore, modulators that normalize Na+ 

homeostasis and, consequently, water, are likely to consti-
tute a more appropriate approach.148

Transmembrane Protein 16A (TMEM16A) 
or Anoctamin 1 (ANO1)
TMEM16A/ANO1 is a Ca2+-activated Cl– channel (CaCC) 
expressed in various epithelia, including the airways, large 
intestine, salivary glands, pancreas, kidney and liver.33,149 

It is also expressed in the nervous system,150,151 smooth 
muscles152 and tumor cells.153 Such a broad tissue expres-
sion justifies its multiple physiological roles, which 
include airway and exocrine gland secretion, smooth mus-
cle contraction, neuronal signaling control and peristalsis 
regulation of gastrointestinal system.154 Furthermore, 
TMEM16A upregulation has been described in various 

Figure 4 Summary of different strategies to inhibit ENaC. (A) Indirect inhibition: 
SPX-101 is a peptide analogue mimicking the inhibitory actions of SPLUNC1; (B) 
Direct inhibition: both amiloride and BI 1265162 promote direct inhibition of ENaC 
by binding to channel and decreasing its open probability; (C) Genetic inhibition: 
IONIS-ENAC-2.5Rx is an antisense oligonucleotide that recruits RNase H to 
degrade ENaC mRNA and consequently decrease ENaC protein synthesis and 
channel function; ARO-ENaC is a small interfering RNA (siRNA) that also pro-
motes degradation of ENaC mRNA transcripts by the RNA-induced silencing 
complex (RISC) mechanism.
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types of cancer, such as gastrointestinal squamous cancer,-
155 head and neck squamous cell carcinoma,156 breast 
cancer157 and lung cancer,158 and it is generally associated 
with a poor prognosis.159

Targeting TMEM16A for the treatment of CF has been 
a matter of debate. While some research groups support 
the need to activate TMEM16A in the context of CF in 
order to compensate for the absence of CFTR-mediated 
Cl–/HCO3

– transport and thus increase airway hydration 
and MCC, others consider the opposite and suggest that 
inhibition of TMEM16A might decrease mucus secretion 
and bronchoconstriction. Efforts have been performed in 
both directions to discover TMEM16A modulators (acti-
vators and inhibitors) and to better understand the role of 
TMEM16A in CF.

TMEM16A Activators
The rationale for the activation of TMEM16A as a ther-
apeutic strategy for CF was based on its role on fluid 
secretion in order to increase the hydration of the ASL, 
thus ameliorating MCC and recovering antimicrobial 
activities. In support of these arguments, reports demon-
strated that TMEM16A knockout (KO) mice have low Cl– 

secretion and mucus accumulation in the airways, which 
are features in common with CF lung disease.160–162 

TMEM16A also plays a role in intestinal fluid secretion 
and in protecting the intestinal epithelium from colitis.163 

Furthermore, TMEM16A KO mice showed early signs of 
inflammation, and their airway cellular landscape is 
altered, lacking epithelial cell progenitors. Interestingly, 
in human cell models, inhibition of TMEM16A decreased 
ASL height in vitro, leading to airway dehydration, simi-
larly to dysfunctional CFTR.164 A strong functional rela-
tionship between TMEM16A and CFTR has also been 
proposed. Namely, in the absence of TMEM16A, both 
CaCC- and CFTR-mediated currents are reduced in 
mouse intestine and airways.165 In human cells, genetic 
inactivation of TMEM16A led to dramatically reduction of 
WT-CFTR PM expression and function.165 Along these 
lines, inhibiting TMEM16A would also cause CFTR inhi-
bition, an important fact if we consider that some people 
with CF have mutations still associated with residual func-
tion of CFTR.

Different approaches can be used to activate TMEM16A 
in CF.166 The most obvious would be to increase channel 
opening probability, enabling TMEM16A-dependent Cl– 

secretion, but in a Ca2+-independent way, as an increase in 
Ca2+ concentration may lead to activation of multiple 

signaling pathways. To date, several TMEM16A modulator 
drugs have been identified, although their specificity and 
mechanism of action remain poorly elucidated (Table 2). 
An alternative strategy would be to stabilize the channel in 
the open state or to prevent its desensitization. TMEM16A 
channels are characterized by a time-dependent current 
decay after prolonged Ca2+-dependent activation. This pro-
cess is thought to be regulated by phosphatidylinositol 4,5- 
bisphosphate (PIP2).167 Indeed, PIP2 has been reported to 
bind to TMEM16A and promote its stabilization in the open 
pore conformation.167,168 Inositol phosphates, such as Ins 
(3,4,5,6)P4, have demonstrated to regulate Cl– channels in 
multiple epithelia. Furthermore, INO-4995 (a cell permeant 
InsP4 derivative compound) directly activates TMEM16A 
in overexpressing cells.169 Another approach to stimulate 
TMEM16A-dependent Cl– secretion consists in increasing 
its expression at the PM, either by increasing its anterograde 
traffic170 or by blocking its endocytosis. Examples of rele-
vant TMEM16A activators are further described below.

Some drugs able to indirectly modulate CaCCs in airway 
epithelia have already been investigated in clinical trials. 
Denufosol is a selective P2Y2 receptor agonist that was 
evaluated as an inhaled therapy for CF. Experimental and 
clinical data demonstrated promising effects by increasing 
both Cl– and water secretion, enhancing ciliary beat fre-
quency and stimulating mucus release. Despite such effects, 
denufosol failed to demonstrate improvement in lung func-
tion in individuals with CF in phase III trials.171,172 The lack 
of clinical efficacy may be related to its limited time of action 
(shorter than its expected half-life in the airways) and recep-
tor desensitization.173 Furthermore, purinergic stimulation 
induces a transient increase in Ca2+ concentration that leads 
to a short-term activation of CaCCs, which might be insuffi-
cient to compensate for the lack of CFTR-mediated anion 
secretion.174 An increase in intracellular Ca2+ concentration 
may also lead to undesired side effects, such as increased 
mucus release from airway secretory cells.173 Duramycin 
(Moli1901/lancovutide) is an antibiotic that indirectly pro-
motes CaCC activation by interacting with phosphatidyletha-
nolamine at the PM175 and raising intracellular Ca2+ 

concentration.176 Although it was demonstrated to be safe 
and to improve lung function in individuals with CF in a 
phase II clinical study,177–179 no further studies have evalu-
ated the utility of duramycin for the treatment of CF.

Silurian Pharmaceuticals has developed brevenal, a 
brevetoxin antagonist and candidate drug for CF and 
other respiratory diseases. Brevenal demonstrated to bind 
to the voltage sensitive Na+ channel180 and mobilize ATP- 
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Table 2 TMEM16A Activators

Molecule Structure IC50 

(μM)
References Clinical 

Stage
Putative Mode of Action/Targets

INO-4995 ~5 [169] Preclinical Endogenous TMEM16A potentiation and 

activation of overexpressed TMEM16A

Denufosol 10 [171,172] Phase III P2Y2 agonist

Duramycin 
(Moli1901)

– [177–179] Phase II Interacts with phosphatidylethanolamine in cell 
membranes and increases intracellular Ca2+

Brevenal – https://www. 
silurianpharma. 

com/

Preclinical Activation of voltage sensitive Na+ channel and 
CaCCs

Eact 3 [183] Preclinical Intracellular Ca2+ elevation by TRPV1/TRPV4 

stimulation

Fact 6 [183] Preclinical Potentiator of TMEM16A

Ginsenoside 

Rb1

38.4 [254] Preclinical Activation of voltage-gated and ligand-gated ion 

channels and CaCCs

(Continued)
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dependent intracellular Ca2+ that results in the TMEM16A 
activation. In an animal model, brevenal was able to block 
brevetoxin-induced bronchoconstriction, increase mucus 
secretion181 and reduce lung inflammation.182 Silurian 
Pharmaceuticals has attempted to initiate a phase I clinical 
study with brevenal for the treatment of CF; however, 
there are no further reports so far.

Eact and Fact are two small molecules identified by 
HTS that were shown to activate TMEM16A.183 Eact 

promotes a strong increase in Cl– currents in the 

absence of Ca2+. On the other hand, Fact potentiates 
TMEM16A by reducing the EC50 for Ca2+-dependent 
activation of TMEM16A.183 Although Eact was initially 
described as a direct activator of TMEM16A, subse-
quent studies demonstrated that its targets are indeed 
transient receptor potential channels, namely TRPV1184 

and TRPV4,185 which lead to increase in intracellular 
Ca2+ concentration and, consequently, indirect activation 
of TMEM16A and CFTR (via Ca2+-dependent adenyl 
cyclases).

Table 2 (Continued). 

Molecule Structure IC50 

(μM)
References Clinical 

Stage
Putative Mode of Action/Targets

Resveratrol 47.92 [188] Preclinical Activation of CaCCs in a Ca2+-independent way

Chitosan 

Oligosaccharide

74.5 

μg/ 
mL

[186] Preclinical TMEM16A activation

Canthaxanthin 5.7 [189] Preclinical Activation of TMEM16A through direct binding

Cinnamaldehyde 9.73 [190] Preclinical Intracellular Ca2+ elevation

Melittin – [192–194] Preclinical Activation of phospholipase A2

ETX001/ 

ETD002

0.116 [195] Preclinical/ 

Phase I

Potentiator of TMEM16A
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Some natural and safe compounds have also been 
reported as TMEM16A activators with no apparent effects 
on intracellular Ca2+ concentration, which constitutes an 
advantage. These compounds include ginsenoside 
Rb1,186,187 resveratrol,188 chitooligosaccharide186 and 
canthaxanthin.189 Cinnamaldehyde is another natural com-
pound that activates TMEM16A, but it does so by increas-
ing Ca2+ concentration.190 These molecules may have 
therapeutic value for gastrointestinal disorders, such as 
hypomotility and constipation, as they demonstrated to 
increase ileum contractions in guinea pigs. Melittin, a 
major component of bee venom,191 is also a potent acti-
vator of TMEM16A and of other TMEM16 family 
members.192 It acts by phospholipase A2 stimulation and 
has anti-inflammatory properties, being widely used as an 
anti-cancer therapy.193,194 Notably, most of these com-
pounds are not specific to TMEM16A and they actually 
have demonstrated a range of effects in different organs 
and modulate a number of other ion channels. 
Nevertheless, their chemical structures may serve as 
sources for medicinal chemistry in order to identify spe-
cific TMEM16A activators.

Enterprise Therapeutics identified a novel TMEM16A 
potentiator – ETX001 – that was able to enhance 
TMEM16A-dependent anion secretion in a Ca2+-indepen-
dent way, ASL height, and MCC both in vitro (in CF 
primary HBE cells) and in vivo (in a CF sheep model).195 

ETX001 demonstrated to potentiate TMEM16A-mediated 
Cl– secretion without negatively affecting CFTR or 
ENaC.195,196 This portfolio has been recently acquired by 
Roche, including ETD002, a novel molecule that is cur-
rently in phase I clinical trials. Results are expected to 
demonstrate the ability of this TMEM16A potentiator in 
reducing mucus congestion, improving lung function and 
reducing frequency of lung infections. Overall, activating 
TMEM16A can be of interest not only for the treatment of 
CF, but also for other obstructive respiratory diseases and 
motility disorders in the gastrointestinal tract. However, it is 
clear that most currently known TMEM16A activators act 
via non-specific pathways – some of them by increasing 
intracellular Ca2+ concentration – rather than by directly 
binding and activating TMEM16A. Accordingly, one can-
not safely assume that cellular effects promoted by these 
compounds occur by TMEM16A-specific mechanisms.

TMEM16A Inhibitors
Some studies have suggested that, in the airways, 
TMEM16A is more abundant in mucus producing cells 

rather than in ciliated cells.33 TMEM16A expression and 
Ca2+-dependent Cl– secretion are also increased under 
inflammatory conditions, namely in asthmatic patients or 
in cells stimulated with Th2 interleukins (IL-4 or IL-13). 
Furthermore, as its expression is upregulated concomi-
tantly with mucus hypersecretion, TMEM16A has been 
associated with goblet cell metaplasia.197,198 Following 
studies have demonstrated that inhibition of TMEM16A 
leads to a reduction in mucus secretion in airways152 and 
intestine,198 proposing a causal relationship between these 
two events. It is therefore tempting to conclude that inhi-
bition of TMEM16A (rather than activation) might be 
beneficial in CF.

In addition to the possible effects of TMEM16A on 
mucus hypersecretion, activation of TMEM16A in airway 
smooth muscles was shown to result in membrane depo-
larization, causing muscular contraction and potentially 
bronchoconstriction.152 Accordingly, inhibition of 
TMEM16A may induce bronchodilation, which could be 
advantageous in airway inflammatory disease.199 

Attenuation of intestinal contraction and diarrhea200,201 

as well as nociception, itching and heat perception150 

may also be achieved by inhibiting TMEM16A. Finally, 
it has been argued that inhibition of TMEM16A might 
induce anti-cancer effects by blocking proliferation, migra-
tion and invasion of cancer cells, while also increasing the 
sensitivity to chemotherapies.153 Nevertheless, the role of 
TMEM16A in cell proliferation is also controversial, with 
a recent report suggesting that TMEM16A is upregulated 
by cell proliferation and not the opposite.164 Indeed, the 
data showed that, during wound, expression levels of 
TMEM16A rise concomitantly with the proliferation mar-
ker Ki-67, indicating that it is proliferation that triggers 
TMEM16A upregulation.

A growing number of molecules able to inhibit 
TMEM16A has been identified (Table 3). These include 
niflumic acid (NFA),202 flufenamic acid (FFA),203 5-nitro- 
(3-phenylpropylamino)-benzoic acid (NPPB)204 and 4–4ʹ- 
diisothiocyanatostilbene-2-2ʹ-disulfonic acid 
(DIDS),205,206 which are broad spectrum Cl– channel 
blockers widely used for long to inhibit CaCCs and more 
recently demonstrated to act also on TMEM16A. 
However, they are non-selective and may elicit several 
other cellular responses. Talniflumate, a pro-drug of 
NFA, is a potent analgesic and anti-inflammatory that has 
been used for the treatment of rheumatoid disease. 
Experimental studies have demonstrated that talniflumate 
increases the survival rate of CF mice, which is a model of 
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Table 3 TMEM16A Inhibitors

Molecule Structure IC50 

(μM)
Reference Clinical 

Stage
Putative Mode of Action/Targets

Niflumic Acid (NFA) ~10 [202] Preclinical Non-selective inhibition of Cl– 

channels, including TMEM16A and 

CFTR. Inhibition of phospholipase A2 
and COX-2

Flufenamic Acid (FFA) 28–35 [203] Preclinical Inhibition of non-selective cation 

channels and Cl– channels. Modulation 
of K+, Ca2+, and Na+ channels

NPPB 22–68 [204,206] Preclinical Non-selective inhibition of Cl– 

channels

DIDS 10– 

100

[205,206] Preclinical Non-selective inhibition of Cl– 

channels

Talniflumate - [207] Phase II Prodrug of niflumic acid

Tannic Acid 6 [208] Preclinical Inhibition of CaCCs

Eugenol 150 [209] Preclinical Inhibition of cyclooxygenase and 

biosynthesis of prostanoids. Cl– 

channel inhibition

(Continued)

Journal of Experimental Pharmacology 2021:13                                                                                   https://doi.org/10.2147/JEP.S255377                                                                                                                                                                                                                       

DovePress                                                                                                                         
709

Dovepress                                                                                                                                                            Pinto et al

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


Table 3 (Continued). 

Molecule Structure IC50 

(μM)
Reference Clinical 

Stage
Putative Mode of Action/Targets

Shikonin 6.5 [201] Preclinical Inhibition of CaCCs and Ca2 

+-activated basolateral K+ channel

Natural flavonoids (1 – Luteolin, 2 
– Galangin, 3 – Quercetin and 4 – 

Fisetin)

4.5–15 [210] Preclinical Modulation of several ion channels. 
Inhibition of TMEM16A

Matrine 27.94 [211] Preclinical Inhibition of TMEM16A

Dehydroandrographolide ~20 [212] Preclinical Inhibition of TMEM16A. Anticancer 

activity

Avermectins 0.15– 
1.32

[213] Preclinical Anthelmintic agents. Modulation of 
ligand-gated chloride channels. 

Inhibition of CaCCs

(Continued)
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Table 3 (Continued). 

Molecule Structure IC50 

(μM)
Reference Clinical 

Stage
Putative Mode of Action/Targets

Sesquiterpenoids (1 – 

Curzerenone, 2 – Curdione, 3 – 
Furanodienone, 4 – Curcumol, 5 – 

Germacrone)

13.55– 

62.42

[214] Preclinical Inhibition of intracellular Ca2+ 

concentration and K+ channel activity. 
Inhibition of TMEM16A and CFTR

10bm 0.03 [215] Preclinical Inhibition of TMEM16A

CaCCinh-A01 10 [216] Preclinical Inhibition of CaCCs

T16A-A01 1 [217] Preclinical Inhibition of CaCCs

MONNA 0.08 [230] Preclinical Inhibition of CaCCs

Niclosamide 0.132 [199] Preclinical Anthelmintic. Hydrogen ionophore. 

Inhibition of CaCCs

(Continued)
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Table 3 (Continued). 

Molecule Structure IC50 

(μM)
Reference Clinical 

Stage
Putative Mode of Action/Targets

Idebenone 9.2 [218] Preclinical Inhibition of CaCCs

Dichlorophen 5.49 [152] Preclinical Inhibition of CaCCs

Hexachlorophene 10 [152] Preclinical Inhibition of CaCCs

Benzbromarone 9.97 [152] Preclinical Inhibition of CaCCs and CFTR

Ani9 0.077 [231] Preclinical Inhibition of TMEM16A

5f (Ani9 derivative) 0.022 [232] Preclinical Inhibition of TMEM16A

9-Phenantrol 11.4 [255] Preclinical Inhibition of TRPM4 and TMEM16A

(Continued)
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distal intestinal obstructive syndrome.207 Talniflumate has 
also been investigated as a mucoregulator for the treatment 
of various respiratory diseases,207 namely CF, chronic 
obstructive pulmonary disease and asthma; however, its 
clinical development has been discontinued.

Some natural products have also been identified as 
TMEM16A inhibitors, including tannic acid and other 
gallotannins, which are known to inhibit smooth muscle 
contraction and intestinal Cl– secretion.208 Other natural 
compounds like eugenol209 and shikonin210 have anti-
diarrheal effects, and flavonoids (galangin, luteolin, quer-
cetin and fisetin),210 matrine,211 

dehydroandrographolide,212 avermectins213 and sesqui-
terpenoids (curzerenone, curdione, curcumol, furanodie-
none and germacrone)214 demonstrated anti-proliferative 
and anti-cancer effects.

Several TMEM16A inhibitors have been identified 
by HTS, such as cycloalkylthiophene 10bm,215 

CaCCinh-A01,216 T16inh-A01,217 MONNA,199 

niclosamide,218 idebenone, dichlorophem, hexachloro-
phenom and benzbromarone.152 The latter is a uricosuric 
agent that was initially approved for the treatment of 
gout. Since the discovery of its role on TMEM16A 
inhibition, it has been suggested that it might be 

repurposed for TMEM16A-related disorders. A good 
example has been the repurposing of benzbromarone 
for the treatment of idiopathic pulmonary arterial hyper-
tension, a disease in which TMEM16A was found to be 
upregulated.219,220 However, it is important to note that 
benzbromarone is not a TMEM16A-specific inhibitor, 
thus also inhibiting other channels, such as CFTR.221 

Some safety concerns have also been raised for the 
long-term use of benzbromarone due to reports of 
hepatotoxicity.222

Niclosamide is an antihelminthic drug that has also 
demonstrated anti-cancer effects on several types of human 
cancer cells.223–225 It has been more extensively investigated 
in experimental and clinical studies for individuals suffering 
from prostate and colorectal cancer.226,227 Apart from its 
anti-neoplastic effects, niclosamide also demonstrated to 
inhibit TMEM16A and other members of the TMEM16 
family.228 Other studies also suggested that niclosamide 
reduces bronchoconstriction199 by relaxing airway smooth 
muscles and mitigates mucus hypersecretion.229 

Interestingly, the potential antiviral efficacy of niclosamide 
is under clinical investigation in combination with an estab-
lished therapeutic regimen for SARS-CoV-2 infection 
(NCT04558021).

Table 3 (Continued). 

Molecule Structure IC50 

(μM)
Reference Clinical 

Stage
Putative Mode of Action/Targets

Plumbagin 3–10 [218] Preclinical Inhibition of TMEM16A

Miconazole 10–20 [218] Preclinical Inhibition of TMEM16A

Purpactin A 2 [256] Preclinical Inhibition of TMEM16A
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T16inh-A01,217 MONNA,230 and Ani9231 were initi-
ally characterized as the most potent and selective 
TMEM16A inhibitors. However, T16inh-A01 and 
MONNA were found to also inhibit other members of 
this family, such as TMEM16B, in a dose-dependent 
manner.231 Ani9 and its derivative 5f232 are, therefore, 
presented as the most powerful and apparently selective 
TMEM16A inhibitors to date. Both Ani9 and 5f demon-
strated high selectivity for TMEM16A without affecting 
intracellular Ca2+ concentration or other channels, such as 
CFTR. Nevertheless, recent studies demonstrated that 
Ani9 may affect TMEM16F whole-cell currents, indicat-
ing that this inhibitor is not completely selective for 
TMEM16A.228 Overall, despite the existence of various 
TMEM16A inhibitors, the potency and selectivity of these 
compounds are a considerable limitation. The develop-
ment of potent and more selective molecules that directly 
target TMEM16A may provide invaluable information on 
the role of this channel in CF and TMEM16A-related 
disorders.

Solute Carrier Family 26 Member 9 
(SLC26A9)
SLC26A9 has been proposed to function as a constitu-
tively active Cl– transporter,233,234 predominantly 
expressed in epithelial cells of the respiratory tract, sto-
mach, duodenum, ileum and pancreas.31,235 In human air-
ways, SLC26A9 contributes to constitutive Cl– secretion 
and MCC,236 and, in contrast to CFTR and TMEM16A, it 
is described as being spontaneously active once inserted 
into the PM of airway epithelial cells.237

SLC26A9 was found to be mostly cytoplasmic or to 
localize closer to tight junctions.238 Nevertheless, it was 
proposed to functionally interact with CFTR, which posi-
tively regulates its transport, function and targeting to the 
PM.31 In this context, the presence of F508del-CFTR 
reduced SLC26A9 expression by promoting its retention 
in the endoplasmic reticulum and premature degradation 
by the proteasome, similar to F508del-CFTR itself.238

The importance of investigating SLC26A9 in the 
context of CF has been highlighted due to its striking 
effects on the pathogenesis of organs affected in CF, as 
well as other disorders. SLC26A9 has been described as 
a modifier gene of lung function and of responses to 
CFTR modulator drugs.121,122 SLC26A9 polymorphisms 
have been associated with the risk of developing meco-
nium ileus and early exocrine pancreatic disease in 

individuals with CF.239–241 Interestingly, SLC26A9 
polymorphisms have also been linked to asthma in chil-
dren, namely due to a reduction in SLC26A9 protein 
expression.236 As SLC26A9 contributes to epithelial Cl– 

secretion and prevents mucus obstruction under inflam-
matory conditions,236 it possibly also plays a role in the 
regulation of the ASL, similar to CFTR. Furthermore, a 
recent study demonstrated that increased SLC26A9 
expression in pancreatic ductal cells delays the age of 
onset of CF-related diabetes.242

Taken together, these data support a clinically relevant role 
of SLC26A9 as both a CF disease modifier and a promising 
therapeutic target to circumvent deficient Cl– secretion in CF. 
In contrast to TMEM16A, SLC26A9 modulation as a thera-
peutic target for CF is unanimous – ie, all data point toward the 
need to increase SLC26A9 expression and function. 
Nevertheless, the study of SLC26A9 has been limited by the 
lack of sensitive and selective pharmacological modulators. 
Some compounds have demonstrated to inhibit SLC26A9, 
namely non-selective Cl– channel inhibitors NFA, NPPB, 
DIDS and GlyH101243 with different degrees of potency. The 
use of inhibitors that are virtually specific for other channels, 
such as Ani9 for TMEM16A and CFTRinh172 for CFTR, for 
which SLC26A9 is probably not sensitive,244 allows only for 
the indirect study of SLC26A9-mediated Cl– currents. 
Accordingly, identification of selective activators of 
SLC26A9 is necessary to further understand whether and 
how it can be used as a therapeutic target. Due to its sponta-
neous activation once inserted into the PM,237 molecules that 
increase or stabilize SLC26A9 PM expression may contribute 
to increase epithelial Cl– secretion.

Anionophores
Besides the aforementioned channels/transporters, small 
artificial transmembrane ion transporters (termed as iono-
phores) have emerged as therapeutic candidates for CF.245 

Among these, anionophores, which selectively facilitate 
the transport of anions, have the potential to compensate 
for the faulty CFTR transport activity in CF.246

Studies have identified promising molecules, including 
derivatives of natural products, such as prodiginines247,248 

and tambjamines,249 capable of facilitating Cl– and HCO3
– 

transport in mammalian cells. More recently, these com-
pounds were also reported to effectively correct abnormal 
ASL parameters in primary cultures from individuals with 
CF.250 Interestingly, the activity of some anionophores is 
additive to F508del-CFTR rescue by the modulators VX- 
809 and VX-770, while the activity of others is additive to 
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TMEM16A activation.251 These data reinforce the idea 
that anionophores, either by themselves or in combination 
with other modulator drugs, may offer promising thera-
peutic strategies for CF.

Amphotericin B (AmB) is a channel-forming molecule 
capable of creating non-selective ion channels. Recent 
studies with AmB showed that it can increase Cl– secre-
tion, ASL height and pH, reduce ASL viscosity, and 
restore antibacterial activity in primary cultures of airway 
epithelia from individuals with CF caused by different 
mutations, including the ones that produce little to no 
CFTR.252,253 Additionally, a small clinical study involving 
people with CF not treated with CFTR modulators showed 
that intranasal application of AmB caused a significant 
change in nasal potential difference, a commonly used 
biomarker to assess experimental therapies in people 
with CF.253 These data combined with the fact that AmB 
is an already clinically approved drug used to treat fungal 
infections, further emphasize the need to carry out addi-
tional studies to assess if inhaled AmB can in fact benefit 
people with CF, regardless of their CFTR mutations.

Similar to the use of alternative channels/transporters 
mentioned here, taking advantage of ionophores to replace 
defective CFTR has the potential to provide an alternative 
therapy for all individuals with CF, that would work inde-
pendently of their CF genotype. Nevertheless, further stu-
dies are needed to determine the efficacy and safety 
profiles of these molecules to enable their clinical use.

Outlook and Conclusions
Numerous milestones have been achieved in CF research 
since the very first pathological description of this disease in 
1938. The development of novel therapies for CF has been a 
success story with a real transformation in the disease prog-
nosis, quality of life and life expectancy. In fact, in the 1960s, 
CF was a deadly and untreatable disease in early childhood 
and nowadays many individuals with CF achieve the adult-
hood, although they still face a high therapeutic burden and 
several disease-related complications. While the use of symp-
tomatic therapies remains of great importance, the introduc-
tion of CFTR modulator drugs in the clinic, namely highly 
effective CFTR modulator therapies, has demonstrated sig-
nificant benefit by targeting the root cause of CF and thus 
prevent several pathological consequences downstream of 
CFTR dysfunction. Accordingly, it is expected that these 
drugs may induce a profound alteration on the course of 
disease, especially for individuals who initiate their use in 
the early disease onset. Despite such progress, not all 

individuals with CF are eligible for the currently available 
CFTR modulator drugs, and novel and more potent CFTR 
modulators are still under development. Novel cell models 
and assays using ex vivo individual-derived specimens have 
also been optimized to comparatively evaluate drug efficacies 
and determine which may provide the greatest therapeutic 
benefits in a precision medicine approach, ie, theranostics. 
Furthermore, a better understanding of the complexity of CF 
epithelial cell physiology and ion transport has enabled the 
pursue for alternative targets to compensate for the absence of 
CFTR function. Modulation of alternative ion channels/trans-
porters, such as ENaC, TMEM16A or SLC26A9, as thera-
peutic targets in CF is promising but still challenging. It is still 
critical to develop selective and potent modulators of these 
targets and understand how (and whether) they may be used 
in the clinical scenario. Nevertheless, such approaches, if 
successful, may be beneficial for all individuals with CF, 
regardless of their CFTR genotypes.
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