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Human immunodeficiency virus type 1 (HIV-1) is tropic and pathogenic only for humans,
and does not replicate in macaque monkeys routinely used for experimental infections.This
specially narrow host range (species tropism) has impeded much the progress of HIV-1/
acquired immunodeficiency syndrome (AIDS) basic research. Extensive studies on the
underlying mechanism have revealed that Vif, one of viral accessory proteins, is critical
for the HIV-1 species tropism in addition to Gag-capsid protein. Another auxiliary protein
Vpu also has been demonstrated to affect this HIV-1 property. In this review, we focus on
functional interactions of these HIV-1 proteins and species specific-restriction factors. In
addition, we describe an evolutional viewpoint that is relevant to the species tropism of
HIV-1 controlled by the accessory proteins.
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INTRODUCTION
Human immunodeficiency virus type 1 (HIV-1) is strictly adapted
to humans, and cause disease-inducing persistent infection only
in humans (Nomaguchi et al., 2008). This property is unique
among primate immunodeficiency viruses, and represent one of
the most evident and important viral characteristics to under-
stand the biology/molecular biology of HIV-1. Of numerous
primate immunodeficiency viruses so far identified (Kirchhoff,
2009; Sharp and Hahn, 2011), HIV-1 with an extremely lim-
ited host range exhibits exceptionally high replication ability,
transmissibility, and pathogenicity in sensitive host humans. For
basic HIV-1 researchers, it would be final goal to realize the
basis/mechanism underlying these properties by experimental
approaches.

Primate immunodeficiency viruses can be divided into three
groups based on their genome structure in the central regions
(Kirchhoff, 2009; Fujita et al., 2010; Sharp and Hahn, 2011). While
viruses of HIV-1 type contain vpr and vpu genes, viruses of HIV-2
type carry vpx and vpr genes in tandem (Figure 1). The other
simian immunodeficiency viruses (SIVs), the prototype virus,
have only the vpr gene in the corresponding genomic region.
HIV-1 is believed to emerge from the prototype virus via SIV-
mon/mus/gsn (isolated from the mona, mustached, and greater
spot-nosed monkeys), SIVcpz (isolated from the chimpanzees),
and SIVgor (isolated from the gorilla) through mutational and
recombinational events. SIVmon/mus/gsn is known to recombine
with SIVrcm (isolated from the red-capped mangabey mon-
key) to generate SIVcpz (for genome structures, see, Figure 1).
SIVcpz served as parental virus for HIV-1 (M and N) and SIVgor
(and finally for HIV-1 P).

The biological and molecular biological bases for species
tropism of HIV-1 should reside in the above outlined evolutional

processes. In particular, the so-called accessory proteins encoded
by extra genes are important. Each virus group has a unique set
of the accessory proteins in terms of their combinations and of
their activities. Therefore, studies on viral accessory proteins are
also meaningful for understanding viral evolution by cross-species
transmission.

VIRAL AND CELLULAR DETERMINANTS FOR
HIV-1 SPECIES TROPISM
Our early studies have already suggested the possible viral deter-
minants and viral replication stage involved in the HIV-1 species
tropism described above (Shibata et al., 1991, 1995; Shibata
and Adachi, 1992). By the use of numerous chimeric molec-
ular clones between HIV-1 and dual-tropic (tropic for human
and monkey cells) SIVmac (isolated from the macaque mon-
key), we have claimed in essence, together with a work on
the cyclophilin A (CypA; Dorfman and Gottlinger, 1996), that
Gag-capsid (CA) and a viral protein(s) encoded by the central
genomic region of HIV-1 are the determinants. We also have
showed that HIV-1 is replication-incompetent in monkey cells
because a certain replication step(s) before/during reverse tran-
scription, other than the viral entry into cells, does not proceed
normally. Subsequent extensive studies by us and others have
clearly indicated that the interactions of Gag-CA/CypA, Gag-
CA/tripartite motif (TRIM) proteins, and Vif/apolipoprotein B
mRNA-editing enzyme-catalytic (APOBEC) proteins are major
determinants for the HIV-1 species tropism (Nomaguchi et al.,
2008, 2011; Nakayama and Shioda, 2012; Sakuma and Takeuchi,
2012) as summarized in Table 1. Gag-CA, CypA, and TRIM pro-
teins have been described in detail in two articles in the Research
Topic of this journal (Nakayama and Shioda, 2012; Sakuma and
Takeuchi, 2012).
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FIGURE 1 | Genome organization of primate immunodeficiency viruses.

Various proviral genomes are schematically shown. As indicated by colored
boxes, the vpr and vpu genes of SIVcpz/HIV-1 came from those of SIVrcm
and SIVmon/mus/gsn, respectively. Also, the vif genes of SIVcpz/HIV-1

originated from that of SIVrcm. In addition, as shown by colored boxes, HIV-1
nef gene is similar to but distinct from SIVcpz nef gene. HIV-1 nef gene is
different from those of SIVmon/mus/gsn, SIVrcm, and HIV-2 as indicated.
For virus designations, see text.

Table 1 | Major viral and cellular determinants for HIV-1 species

tropism.

Virus Cell Viral replication step affected

Gag-CA CypA

Gag-CA TRIM5α Uncoating (early phase)

Gag-CA TRIMCyp Uncoating (early phase)

Vif APOBEC3G Reverse transcription (early phase)

APOBEC3F Reverse transcription (early phase)

Vpu Tetherin/BST-2 Virion release (late phase)

For details, see references (Nakayama and Shioda, 2012; Sakuma and Takeuchi,
2012) for Gag-CA, and Figures 3 and 4 for Vif/Vpu.

ACCESSORY PROTEINS OF PRIMATE
IMMUNODEFICIENCY VIRUSES
All primate immunodeficiency viruses encode a number of extra
proteins (Vif, Vpx, Vpr, Vpu, and Nef) in addition to regula-
tory (Tat and Rev) and structural (Gag, Pol, and Env) proteins

(Figure 1). Structural proteins are common to all retroviruses,
but the regulatory and accessory proteins are unique to the
complex primate lentiviruses and not found in the other sim-
ple mammalian retroviruses. Regulatory Tat and Rev proteins
are trans-activators for transcription and for the expression of
late viral proteins, respectively. While the regulatory and struc-
tural proteins are essential for viral replication, the extra proteins,
unfairly generically called “accessory,” are dispensable under cer-
tain circumstances. However, in some cells, some of them are
essential and the others are quite critical/important for optimal
viral replication as illustrated for ΔVif and ΔVpu viruses (viruses
that lack Vif or Vpu) in Figure 2. Another point to be men-
tioned here is relating to Vpr/Vpx proteins. Although Vpr and
Vpx are genetically very similar (Khamsri et al., 2006), some pri-
mate immunodeficiency viruses bear two of them as described
above (Fujita et al., 2010). Furthermore, the other viruses have
Vpr only. What about the functional relationship of the two
proteins? At present, the function of Vpr/Vpx is least well under-
stood relative to that of the other accessory proteins (Malim
and Emerman, 2008; Fujita et al., 2010). Table 2 summarizes
the important information regarding these accessory proteins so
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FIGURE 2 | A schema of replication kinetics by HIV-1 wild-type and

mutant viruses. Viral growth properties in cells are illustrated based on
numerous infection experiments in our laboratory. WT, wild-type.

FIGURE 3 | HIV-1 replication and APOBEC3G. On the basis of results
reported so far, the action mechanism of Vif is depicted. Replication
process for wild-type (WT) and ΔVif mutant viruses are schematically shown

on the basis of previously reported review articles (Holmes et al., 2007;
Huthoff and Towers, 2008; Strebel et al., 2009). A3G, APOBEC3G; IN, viral
integrase protein.

Table 2 | Accessory proteins of primate immunodeficiency viruses.

Viral Proteins Major functions for viral replication reported so far

Vif Neutralize APOBEC3G/F. Essential for viral replication

in natural target cells.

Vpx Degrade SAMHD1/APOBEC3A. Critical for viral replication

in natural target cells.

Vpr Important for viral replication in macrophages (HIV-1).

Vpu Down-regulate Tetherin/BST-2. Important for viral

replication in CD4-positive cells.

Nef Down-regulate cell surface molecules (CD4, MHC-I etc.).

far reported. In total, it is fairly reasonable to believe that the
accessory proteins are regulators to optimize viral replication and
persistence in vivo thereby enhancing viral transmission between
individuals.
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Vif AND Vpu PROTEINS
Vif protein is essential for viral replication in natural target cells
such as CD4-positve lymphocytes and macrophages. Recent iden-
tification of its cellular object for attack (Sheehy et al., 2002)
has clearly revealed the biological and biochemical bases for the
growth property of ΔVif virus in natural target cells. This find-
ing (identification of a family of APOBEC3 proteins, cellular
cytidine deaminases, as potent inhibitors of HIV-1 replication
in primary cells) has also contributed much to establish the
concept of “the restriction factor” to well understand virus–
cell interaction (Malim and Emerman, 2008; Sato et al., 2012).
Of the APOBEC3 family proteins, APOBEC3G and APOBEC3F
(Kitamura et al., 2011) strongly inhibit viral replication in the
absence of Vif (Figure 3). Although HIV-1 Vif can abrogate the
activities of human APOBEC3, it cannot do so against monkey
APOBEC3. In contrast, SIVmac Vif can neutralize the anti-
viral activity of APOBEC3 of both origins. Finally, it has been
demonstrated that Vif and APOBEC3 are the major determi-
nants for the HIV-1 species tropism by constructing macaque-
tropic HIV-1 (HIV-1mt) and monitoring the HIV-1mt growth

property in various genetic contexts of macaques (Hatziioan-
nou et al., 2006, 2009; Kamada et al., 2006; Igarashi et al., 2007;
Thippeshappa et al., 2011).

Vpu protein, unique to viruses of the HIV-1 group (Figure 1),
modulates viral replication in human CD4-positive cell lines
and primary cells. Mutant HIV-1 without Vpu (ΔVpu virus)
grows poorly relative to wild-type virus. Recently, a cellular pro-
tein named Tetherin (also called BST-2) has been identified as
a restriction factor against HIV-1 and is antagonized by Vpu
(Neil et al., 2008; Van Damme et al., 2008). Vpu down-regulates
the Tetherin from cell surface, and thereby promotes extracellu-
lar production of progeny virions (Malim and Emerman, 2008;
Arias et al., 2011; Sato et al., 2012). The baseline mechanism for
this action of Vpu is well studied as shown in Figure 4. Here,
it must be attentive that the anti-Tetherin activity of Vpu is
host species-specific as observed for Vif. HIV-1 Vpu acts against
human but not (or poorly) macaque Tetherins (Sauter et al., 2009,
2010). Although the biological effect of Vpu is much milder than
that of Vif as judged by the growth kinetics of mutant viruses
(Figure 2), Vpu may be critical for interspecies transmission

FIGURE 4 | HIV-1 replication andTetherin. On the basis of results
reported so far, the action mechanism of Vpu is depicted. Replication
process for wild-type (WT) and ΔVpu mutant viruses are schematically

shown on the basis of previously reported review articles (Tokarev et al.,
2009; Douglas et al., 2010; Evans et al., 2010). TGN, trans-Golgi
network.
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through mutation/adaptation/recombinations (Kirchhoff, 2009;
Sauter et al., 2009, 2010; Sharp and Hahn, 2011). Thus, Vpu and
Tetherin affect the HIV-1 species tropism, but the effect may be
relatively small.

In sum, Vif and Vpu counteract the major restriction factors
APOBEC3 proteins and Tetherin/BST-2, respectively, and repre-
sent viral determinants for the host range of HIV-1 (Tables 1
and 2). It is intriguing to note that these factors would have
shaped HIV-1 and made it unique among various primate
immunodeficiency viruses (Figure 1).

Vpx AND Vpr PROTEINS
Vpx and Vpr proteins are necessary for efficient viral replication
(Malim and Emerman, 2008; Fujita et al., 2010). In macrophages,
ΔVpx replication is not detectable and this defect has been shown
to be present at post-entry and before/during the reverse transcrip-
tion process (Fujita et al., 2008, 2010; Srivastava et al., 2008). Also
in some lymphocyte cell lines and in primary lymphocytes, Vpx
protein is critical for viral replication (Ueno et al., 2003; Fujita
et al., 2010; Doi et al., 2011). Because ΔVpr virus is somewhat
replication-defective in some cells (for both HIV-1 and HIV-
2), it is not unreasonable to assume that Vpr may play a role
in the viral growth cycle. As such, Vpx and Vpr are important
for in vivo viral replication and finally for viral pathogenicity
(Fujita et al., 2010).

Very recently, SAMHD1 and APOBEC3A have been reported
to be myeloid cell-specific restriction factors against HIV-1 coun-
teracted by Vpx (Berger et al., 2011; Hrecka et al., 2011; Laguette
et al., 2011). Whether these proteins are associated with the HIV-1
species tropism described in this review article, and whether they
can explain the in vitro and in vivo situation of HIV-2/SIVmac
mutant viruses mentioned above remain to be determined (Fujita
et al., 2010; Nomaguchi et al., 2011).

CONCLUSION
In this review, we have described the major determinants for the
species tropism of HIV-1. Structural Gag-CA and accessory Vif
and Vpu proteins are clearly involved in this host range of HIV-
1 as viral factors (Table 1). Cellular proteins that interact with
these and contribute to this tropism are definitely the restriction
factors (Table 1). In total, interplays between the viral and cel-
lular responsible factors decide this unique and limited tropism
of HIV-1. Whether there are the other factors that affect the
HIV-1 species tropism is awaiting further investigations. In this
regard, the biology of Vpx deserves attention. Because Vpx is
present in SIVmac but not in HIV-1 (Figure 1), it may inactivate
a cellular anti-viral protein(s) which is not recognized by HIV-1
proteins.

In both basic and applicable points of view, the narrow host
range of HIV-1 is burdensome obstacle to overcome. Assuming
that HIV-1mt can grow and cause disease similarly with SIVmac
in macaques, we would be able to better perform model studies to
precisely analyze viral replication and pathogenicity in vivo, and
to establish the effective anti-HIV-1/AIDS strategies. To the best
of our knowledge, there are no such HIV-1mt clones so far (Hatzi-
ioannou et al., 2006, 2009; Kamada et al., 2006; Igarashi et al., 2007;
Kuroishi et al., 2009; Saito et al., 2011; Thippeshappa et al., 2011).
We may further improve the ability of HIV-1mt by today’s pow-
erful methodology if we knew all the cellular determinants for the
species tropism of HIV-1. Studies in this direction are in progress
in our laboratory.
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