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ABSTRACT

Single-nucleotide polymorphisms (SNPs) are often
linked to critical phenotypes such as diseases or
responses to vaccines, medications and environ-
mental factors. However, the specific molecular
mechanisms by which a causal SNP acts is usually
not obvious. Changes in RNA secondary structure
emerge as a possible explanation necessitating
the development of methods to measure the
impact of single-nucleotide variation on RNA struc-
ture. Despite the recognition of the importance of
considering the changes in Boltzmann ensemble of
RNA conformers in this context, a formal method to
perform directly such comparison was lacking.
Here, we solved this problem and designed an effi-
cient method to compute the relative entropy
between the Boltzmann ensembles of the native
and a mutant structure. On the basis of this theor-
etical progress, we developed a software tool,
remuRNA, and investigated examples of its appli-
cation. Comparing the impact of common SNPs
naturally occurring in populations with the impact
of random point mutations, we found that struc-
tural changes introduced by common SNPs are
smaller than those introduced by random point mu-
tations. This suggests a natural selection against
mutations that significantly change RNA structure
and demonstrates, surprisingly, that randomly
inserted point mutations provide inadequate esti-
mation of random mutations effects. Subsequently,
we applied remuRNA to determine which of the
disease-associated non-coding SNPs are poten-
tially related to RNA structural changes.

INTRODUCTION

Genotype–phenotype association studies continue to
provide ever larger sets of single-nucleotide polymorphisms
(SNPs) linked to diseases or associated with responses to
vaccines, medications and environmental factors. Such as-
sociations provide an important step in studies of the
genetic underpinnings of human diseases. To gain further
insight, a deeper understanding of the molecular mechan-
isms by which SNP affects cell function is necessary. When
a SNP is localized within a gene or in the close neighbor-
hood of a gene, then it is generally assumed that it affects
the phenotype through changes at the expression level, the
function or other properties of this particular gene.
However, the molecular mechanisms that lead to the
change are usually not obvious. In the case of
non-synonymous SNPs, where the underlying mutation
occurs in the gene coding region and changes an amino
acid, it is usually expected that this amino acid change
affects protein function, expression, conformation or stabil-
ity. However, numerous results point to diseases related to
occurrences of SNPs in non-translated regions (1,2) and
synonymous SNPs [reviewed in (3)], suggesting that
amino acid change is not the sole explanation. In such
cases, pinpointing the mechanism responsible for the func-
tional change is considerably more challenging. Possible
causes include, among others, structural changes in the
RNA transcript that can in turn influence splicing [reviewed
in (4)], expression (5,6), stability (7) or translational regu-
lation (8). Interestingly, a recent study indicated that a
common amino acid deletion that was long thought to be
responsible for cystic fibrosis is coincident with a synonym-
ous mutation that results in a change in messenger RNA
(mRNA) structure that may be responsible for the disease
(9). There is also statistical evidence for a conserved, local
secondary structure in the coding regions of eukaryotic
mRNAs and pre-mRNAs (10) and selection for mRNA
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stability [see (11,12) and references within]. However, the
current understanding of the role of SNP-induced RNA
structural alterations on phenotypic changes is limited.

To study the effect of SNP-related changes in RNA
structure on cell function, it is necessary to have a
rigorous and efficient way of measuring the structural
changes caused by SNPs. Although there have been
several previous attempts to address this question, none
of the existing approaches have fully solved the problem.
The simplest approach is to compare the minimum free
energy structures of the two variants of the polymorphic
sequence (13). However, it is necessary to search for
changes on all suboptimal secondary structures (14).
Structural changes introduced by a SNP are very subtle.
A change of one nucleotide is more likely to create a slight
change in the energy landscape rather than to produce
gross structural changes. To be able to capture such
subtle changes, RNA structure should be viewed as an
ensemble of possible structures where each structure
occurs with a probability defined by the Boltzmann distri-
bution. Consistent with this more precise view, the whole
RNA structural ensemble has to be considered in such
comparisons (Figure 1). Moving toward ensemble-based
methods, Halvorsen et al. (15) developed a program
named SNPfold, which computes the Pearson
Correlation Coefficient between the nucleotide pairing
probabilities of the two sequences. A nucleotide pairing
probability is the probability of a given nucleotide forming
a base pair with any other nucleotide. This can be readily
computed using a program such as RNAfold (16).
However, the nucleotide pairing probabilities lose some
information about the RNA structural ensemble, and it
is possible that two quite different ensembles have similar
nucleotide pairing probabilities. In another approach,
Johnson et al. (17) quantified the effect of SNPs on
mRNA structure by computing the differences in free

energy of optimal and suboptimal structures. However,
changes in the value of free energy or even partition
function do not fully represent the changes in the
ensemble structures. A quite different direction has been
taken by Waldispuhl et al. (18,19) who developed a
method allowing to sample the combined Boltzmann
ensemble of all structures for all sequences that differ by
k mutations from the reference sequence. They used this
approach to study the mutational robustness of the struc-
ture considered to be the native structure of the reference
sequence. On structure comparison level, sampled struc-
tures were compared with the reference structure using the
base pair distance. Thus, although this method allows to
estimate the robustness for a structure to mutations, it
does not provide an approach to measure the distance
between two structural ensembles.
We propose that to measure the impact of a point

mutation on RNA structure, one should measure the dif-
ference in probability distributions of the wild-type and
mutant Boltzmann ensembles. Such differences should
be able to capture the emergence of new structural
clusters and shifts in energy landscape (Figure 1). In in-
formation theory, the well-established measure for
comparing probability distributions is relative entropy.
Although theoretically logical, it was not obvious how
to efficiently compute relative entropy for ensembles of
RNA structures. Note that ensemble size grows exponen-
tially with RNA length and enumerating all the elements
of such an ensemble is not usually feasible. Thus, a more
sophisticated approach was necessary. In this work, we
close this gap and provide, remuRNA, an efficient
method to compute relative entropy between the
wild-type and mutant RNA structural ensembles.
We used remuRNA to compare the impact of SNPs

naturally occurring in populations to the impact of point
mutations randomly inserted into the RNA sequences.
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Figure 1. Impact of SNPs on RNA structural ensembles. Both the G32C and C90T SNPs in the 50-UTR of the L-ferritin (FTL) gene are associated
with hereditary hyperferritinemia-cataract syndrome (20,21)]. Projection using multi-dimensional scaling (MDS) of sampled ensembles (22) of
wild-type FTL 5-UTR is displayed in blue, the G32C mutant in red and the C90T mutant in green. Each circle represents an RNA secondary
structure, and the size of the circle is proportional to the probability of the structure in the corresponding ensemble. A sensitive comparison method
should be able to detect that the G32C mutant introduces more drastic changes to the probability distribution than the C90T mutant.
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If RNA structure is important for gene function, then in-
serting a point mutation into a position where it naturally
does not occur should, on average, generate more signifi-
cant changes than changes caused by SNPs naturally
occurring in the human population. This is indeed what
we found. This result indicates that there is natural selec-
tion against SNPs that significantly change RNA struc-
ture. This is also an important factor that needs to be
taken into account when such random point mutations
are used as a background for estimating the prominence
of structural changes caused by disease-associated SNPs,
as proposed in (15).
Subsequently, we applied remuRNA to examine which

of the disease-associated SNPs are potentially related to
structural changes in RNA. Although the method applies
to any type of RNA sequence, the importance of RNA
structure, especially in the 50-untranslated region (UTR) is
very well established and thus studies of non-coding RNA
provide a good test of our approach. Although our
method pointed to many SNPs previously identified by
Halvorsen et al. (15), it also identified many additional
SNPs in which RNA structure alteration is a cause for
the disease phenotype. We stress, that just as it is in the
case of variation in DNA sequence, most variations in
mRNA structure are expected to be neutral. These
results indicate that the proposed approach is not only
mathematically well justified and computationally efficient
but also a powerful way to study the impact of
SNP-induced RNA structural changes on gene expression
and function.

MATERIALS AND METHODS

remuRNA: relative entropy of wild-type and mutant RNA
structural ensembles

As explained earlier, to measure the impact of a point
mutation on RNA secondary structure, we need to
compare two ensembles of structures. An ensemble of
structures can be formally seen as a probability distribu-
tion over all accessible structures. In the Boltzmann
distribution for RNA secondary structure, the probability
of a structure s with free energy Gs is proportional to
e�G

s=RT, where R is the universal gas constant, and T is
the temperature. Specifically PðsÞ ¼ e�G

s=RT=Q where the
partition function Q is the weighted sum over the set S of
all possible secondary structures: Q ¼

P
s2S

e�G
s=RT.

In probability theory and information theory, the
‘relative entropy’ or the ‘Kullback–Leibler divergence’ is
an accepted measure of the difference between two prob-
ability distributions. For probability distributions p1 and
p2 over a discrete set of states S, relative entropy is defined
as follows:

DKLðp1jjp2Þ ¼
X
i2S

Pðijp1Þ log
Pðijp1Þ

Pðijp2Þ

� �
: ð1Þ

To be able to apply relative entropy to compare the
wild-type and mutant RNA structure Boltzmann distribu-
tions, they should have the same set of structures in their
ensembles. However, there are some structures that exist

only in one of the ensembles, as they can form only for one
of the sequences. This problem can be naturally resolved
by extending the set of possible structures S to the union
of the two ensembles as explained later.

The main challenge in calculating the relative entropy
between the wild-type and mutant structural ensembles is
related to the fact that a natural method relying on enu-
meration of all structures would require an exponential
number of steps, which is not computationally feasible
for most RNA sequences. We designed a novel efficient
dynamic programming algorithm remuRNA to compute
the relative entropy between the wild-type and mutant
ensembles. We present the mathematical relationships on
which our dynamic program is built in the following
subsection.

Dynamic programming algorithm

We use the standard energy model for pseudoknot-free
RNA secondary structure—the nearest neighbor thermo-
dynamic energy model (23). In this model, the free energy
Gs of a secondary structure s is computed as the sum of
free energy GL associated with each loop L in the structure
s, so the total the free energy of a structure is Gs ¼

P
L2s

GL.

The possible loop elements of RNA secondary structure
are hairpin loops, interior loops (consecutive stacking
pairs, bulges and internal loops) and multi-loops
(multi-branch loops).

The energy function for a hairpin loop is denoted by GH

and is a function of the loop size and the nucleotides in the
closing base pair. The energy function for an interior loop
is denoted by GI and is a function of loop size (0 for
stacking pairs), closing base pairs and the fraction of
bases in each of its two single-stranded components. For
the multi-loop, there are three parameters: �1—the penalty
for having the loop (reflecting destabilizing energy of a
loop), �2—the penalty for each unpaired base (reflecting
the increase of loop entropy with its length) and �3—the
penalty for each branch in the multi-loop. We denote the
energy function for the multi-loop with b unpaired bases
and c branches by GMðb,cÞ. Moreover, the energy
associated with a subsequence that contains no base pair
and is external to all loops is set to be zero, and the energy
of an undefined or infeasible substructure is infinite.

Consider a structure s 2 S, which has energy Gs
wt for

wild-type sequence and energy Gs
mu for the mutant

sequence. We conceptually decompose structure s into
two substructures ~s and ŝ, where ~s has the same
sequence and, therefore, the same energy value for
wild-type and mutant sequences, whereas ŝ contains the
mutated nucleotide that can result in different energy
values. Recall that to apply relative entropy, we need to
ensure common probability space, therefore we extended
the set of possible structures S to the union of the two
ensembles. The structures that are added to each ensemble
to ensure the common summation set S contain a
non-standard base pair whose energy contribution is
defined by parameter �, which must be higher than the
energy of a canonical base pair. Here, we set � ¼ 0. The
energy of a substructure with such a non-standard base
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pair is always higher than the energy of the corresponding
substructure with a regular base pair. For example, if such
non-standard base pair closes a hairpin, the energy of
hairpin loop is equal to the loop size penalty because the
energy contribution of a non-standard base pair is set to
zero.

With the above definitions, the relative entropy between
the wild-type and mutant RNA secondary structure
Boltzmann distributions can be expressed as follows:

DKLðwtjjmuÞ ¼
X
s2S

PðsjwtÞ log

 
PðsjwtÞ

PðsjmuÞ

!

¼
X
s2S

e�G
s
wt=RT

Qwt
log

 
Qmu

Qwt
�
e�G

s
wt=RT

e�G
s
mu=RT

!

¼ log
�Qmu

Qwt

�
�

1

Qwt

X
s2S

e�G
s
wt=RTðGŝ

wt�G
ŝ
muÞ=RT

ð2Þ

Thus, given the partition functions Qwt and Qmu for the
extended ensembles of wild-type and mutant (setting the
energy of a non-strandard base pair to �), respectively, we
need to compute

HðSÞ ¼
X
s2S

e�G
s
wt=RTðGŝ

wt � Gŝ
muÞ=RT ð3Þ

to calculate the relative entropy DKLðwtjjmuÞ.
Our algorithm to compute relative entropy is built on

McCaskill’s dynamic programming algorithm (24), the
standard algorithm for computing the partition function
for RNA secondary structure. McCaskill’s algorithm
computes in addition to the partition function, Q, two
auxiliary conditional partition functions Qb and Qm. All
three quantities are calculated iteratively for all RNA
subsequences [i, j], where i is the first base of the
subsequence and j is the last. Qb

i, j is the partition
function with the condition that there is a base pair
between nucleotides i and j, and Qm

i, j with the condition
that there is at least one base pair in the structure for
subsequence [i, j].

Our algorithm generalizes McCaskill’s algorithm and
additionally computes quantities: H, Hb and Hm (based
on Equation 3). As for the partition function Q, in
addition to the value Hi, j we compute two auxiliary
values Hb

i, j and Hm
i, j with the condition that there is a

base pair between nucleotides i and j and that there is
at least one base pair in the substructure, respectively.
Using dynamic programming, quantities H, Hb and Hm

are computed for all subsequences [i, j] that contain the
mutated nucleotide. It starts from the shortest sequence
[i, i], where all quantities are valued zero and proceeds
iteratively till it reaches [1, n], which is the full sequence.
Note that H for all subsequences [i, j] that do not contain
the mutated nucleotide is set to zero. Figure 2 illustrates
all possible recursion cases that our algorithm considers
to compute H, Hb and Hm.

The computation of Hi, j (illustrated in the first line in
Figure 2) consists of three nontrivial cases. In the first
case, an unpaired base is introduced at position i, where

it is not the mutated nucleotide. Note that there is no need
to consider the case where i is the mutated nucleotide,
because in this case it does not have any effect on
energy value, and thus the corresponding structure does
not contribute to H. In the second and third cases, a base
pair is introduced between i and k. In the second case, the
mutated nucleotide is located in subsequence [i, k], and in
the third case, the mutated nucleotide is located in
subsequence [k+1, j]. Therefore,

Hi, j ¼ Hi+1, j+
X
i<k�j

Hb
i,kQk+1, j+

X
i<k� j

Qb
i,kHk+1, j: ð4Þ

The second line in Figure 2 illustrates the recursion
cases for computing Hb

i, j. By definition, i and j are base
paired. The base pair i can close different substructures:
hairpin loop, interior loop or multi-loop. In addition, we
need to accurately differentiate cases with respect to the
location of the point mutation. This results in a larger
number of possible cases. For simplicity of presentation,
we do not show cases dealing with dangling energy
(energy from the unpaired bases at the beginning or
end of the sequences), as it results in complex recursion
cases, which would obscure the presentation. However,
dangling energy is implemented in the software. The first
case corresponds to the situation where the base pair i
closes a hairpin. The next five cases deal with the
situation where the base pair i closes the interior loop,
and in the last three cases, the base pair i closes a multi-
loop. Within the interior loop cases, the more
complicated cases 4–6 correspond to the situation
where the mutation is in the inner base pair k. In such
a case, the mutation contributes to energy difference in
the two adjacent loops one of which is an inner loop and
the second is a loop of any of the three possible types.
Finally, in the case of a multi-loop (cases 7–9), if the
mutation is located in the loop, it does not have any
effect on energy value and does not contribute to H.
So the three cases correspond to the situation where it
is located in one of the branches and thus can contribute
to H. Considering all cases in Figure 2, Hb

i, j is defined as
follows:

Hb
i, j ¼ e�G

H
wtði, jÞ=RT½GH

wtði, jÞ � GH
muði, jÞ�=RT

+
X

i<k<l<j

Qb
k,le
�GI

wtði,k,l, jÞ=RT

½GI
wtði,k,l, jÞ � GI

muði,k,l, jÞ�=RT

+
X

i<k<l<j

Hb
k,l e
�GIði,k,l, jÞ=RT

+
X

i<k<l<j

e�ðG
I
wtði,k,l, jÞ+GH

wtðk,lÞÞ=RT

½GI
wtði,k,l, jÞ+GH

wtðk,lÞ � GI
muði,k,l, jÞ � GH

muðk,lÞ�=RT

þ
X

i5 k5 u5

v5 l5 j

Qb
u;ve
�ðGI

wtði;k;l;jÞþG
I
wtðk;u;v;lÞÞ=RT
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½GI
wtði;k; l; jÞ þGI

wtðk;u;v; lÞ

�GI
muði,k,l, jÞ �GI

muðk,u,v,lÞ�=RT

+
X

i< k< u<

v< l< j

Qb
u,vQ

m
v+1,l�1e

�ðGMðu�k�1,1Þ+GI
wtði,k,l, jÞÞ=RT

½GI
wtði,k,l, jÞ �GI

muði,k,l, jÞ�=RT

+
X

i<k< l< j

Qb
k,lQ

m
l+1, j�1 ½e

�GM
wtðk�i�1,1Þ=RT

� e�G
M
muðk�i�1,1Þ=RT�

+
X

i<k< l< j

Hb
k,lQ

m
l+1, j�1 e�G

Mðk�i�1,1Þ=RT

+
X

i<k< l< j

Qb
k,lH

m
l+1, j�1 e�G

Mðk�i�1,1Þ=RT:

ð5Þ

The third line in Figure 2 illustrates recursion cases for
computing Hm

i, j assuming the region constitutes at least
one base pair. Taking into account the location of the
point mutation, Hm

i, j is defined as follows:

Hm
i, j ¼

X
i�k<l�j

Hb
k,l e�ð�2ðk�i+j�lÞ+�3Þ=RT

+
X

i�k<l<j

Hb
k,lQ

m
l+1, j e�ð�2ðk�iÞ+�3Þ=RT

+
X

i�k<l<j

Qb
k,lH

m
l+1, j e�ð�2ðk�iÞ+�3Þ=RT:

ð6Þ

To compute each one of the quantities (H, Hb and Hm),
we expand recursion cases in McCaskill’s algorithm for
the corresponding quantity based on the location of
mutated nucleotide. It is easy to confirm that recursion
cases in our algorithm are all the possible cases and that
the cases are disjointed. Thus, our algorithm guarantees
considering every possible alteration in the secondary
structure exactly once. Similar to McCaskill’s algorithm,
we can introduce auxiliary quantity Hm1

i, j for substructures
in multi-loops that have exactly one branch enclosed by a
base pair ending at nucleotide j. Thus, using arguments
similar to those for McCaskill’s algorithm, it is not hard to
verify the algorithm for relative entropy algorithm has
Oðn3Þ time and Oðn2Þ space complexity.

Localized measure

For large mRNA sequences and genome-wide studies, the
changes in RNA structure should be studied locally. Thus,
one needs to compute the local relative entropy. The
localized version of our algorithm computes the average
relative entropy for all subsequences of size w that include
the mutated nucleotide [similar to (25)].

Data set

We used the UCSC genome browser to retrieve data from
the hg19 build of the Human genome (26). The coordin-
ates and alleles of the SNPs were obtained from the
‘Common SNPs(132)’ table. The coordinates in ‘refgene’
and ‘wgRna’ tables were used to map the SNPs to RNA
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Figure 2. Recursion cases for relative entropy of wild-type and mutant RNA secondary structure Boltzmann distributions when subsequence [i, j]
contains the mutated nucleotide. In these recursion diagrams, the horizontal line indicates the phosphate backbone. A red horizontal line indicates it
contains the point mutation nucleotide. Dots indicate the indices, and if colored red, the mutation can occur at this boundary position. A solid
curved line indicates a base pair, and a dashed curved line encloses a region and denotes its two terminal bases, which may be paired or unpaired.
Letter(s) within a region specify a recursive quantity. White regions are recurred over, and blue regions indicate those portions of the secondary
structure that are fixed at the current recursion level.
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regions. The analyzed SNPs are at least 10 nt away from
any transcription or translation start or stop sites. SNPs
known to be associated with alternative splicing were not
included in this data set. For accuracy, we considered the
local version of remuRNA with a window size equal to
150 nucleotides. The SNPs in the data set were categorized
as 4439 coding regions, 9094 50-UTRs, 36 821 30-UTRs,
3883 non-coding RNAs and 255 miRNAs/snoRNAs.

The data set of disease-associated SNPs that map to the
50-UTRs of human genes was compiled by Halvorsen et al.
(15) from the Human Genetic Mutation Database (27).
The data set contains 296 disease-associated SNPs in 206
50-UTR sequences.

RESULTS

Being able to efficiently measure the impact of SNPs on
RNA secondary structure, we wanted to explore their im-
portance on a genome-wide scale. There are a number of
studies indicating a key role of RNA structure changing
SNPs in diseases. However, are these only isolated cases or
is it possible to capture the structural impact of SNPs in a
broader context? We hypothesized that if SNP-related
RNA structural changes affect gene function, then, on
average, common SNPs naturally occurring in human
populations should have fewer structural effects than
randomly inserted point mutations.

Different types of RNA have different functions and
structural features, so they have to be considered separ-
ately when testing the above hypothesis. In addition to
answering the question above, this provides an opportun-
ity to explore the effect of SNPs on different types of
RNA. We studied five categories of SNPs based on their
location in RNA sequences. The categories included the
coding sequence, the 50-UTR, 30-UTR, mi/snoRNA and
ncRNA regions (see Supplementary Data for details).

SNPs have different effects on different types
of RNA sequences

We applied remuRNA to common SNPs in our data set.
Figure 3 shows the distribution of these scores in the range
(0–10) for different regions of mRNA. The results of a
similar analysis for ncRNAs and mi/snoRNAs are pre-
sented in Supplementary Figure S1. For each relative
entropy value, the fraction of mutations with equal or
higher scores is displayed. Thus, a plot with higher tail
values represents mutations with more structural changes.
Our experiments show distinguishable distribution patterns
for different categories of SNPs based on their structural
changes. The differences are statistically significant
(Supplementary Table S1). In general, SNPs have a more
pronounced effect on 50-UTR RNA structures in compari-
son to other regions of mRNA. The observation that
50-UTRs are more responsive to SNPs when compared
with coding regions and 30-UTRs is interesting, because
we know that 50-UTRs are more structurally functional.

Common naturally occurring SNPs introduce less
structural change than random point mutations

To compare the distribution of relative entropy for
common SNPs and random point mutations, for each

SNP we randomly change the position of point mutation
in the corresponding sequence. Thus, we guarantee the
same transition/transversion mutation ratio for each
group of mutations by keeping the type of each
mutation. For all types of RNA sequences, the relative
entropy values of random point mutations are on
average higher than the values of common SNPs. The
differences are statistically significant as shown by
Wilcoxon test results in Table 1. This is consistent with
the hypothesis that SNPs introducing pronounced effects
on RNA structure are disfavored in evolution. Thus,
random point mutations cannot serve as a background
for comparing naturally occurring SNPs.

Disease-associated SNPs accompanied with significant
changes in RNA structure

We next used remuRNA to analyze a data set of disease-
associated SNPs that map to the 50-UTRs of the human
genes compiled by Halvorsen et al. (15) from the Human
Genetic Mutation Database (27). The 50-UTR of mRNA
contributes to translation regulation by controlling
mRNA stability, mRNA accessibility to the ribosome
and translational efficiency. Cis-regulatory elements in
50-UTRs such as upstream open reading frames, internal
ribosome entry sites and iron-responsive elements (IRE)
influence the translation rate. Furthermore, 50-UTRs
contain several interaction sites that are employed to
regulate expression of specific genes by binding them.
RNA secondary structure is the critical feature in the
function of these cis-regulatory elements (28). There are
several SNPs in the 50-UTR of mRNAs, which are known
to be involved in human diseases (29).
We present a list of disease-associated SNPs in the 50-

UTR that cause significant changes in RNA secondary
structure with P value < 0:1 (Table 2). P values are
computed based on the distribution of relative entropy
for common SNPs presented in Figure 3. We compared
the structural impact of disease-associated SNPs with the
effect of common SNPs. We identified disease-associated
SNPs that alter the RNA structure significantly, but there
is no simple threshold-based method that could predict
whether SNP-induced structural RNA change is likely to
cause a disease. Thus, just as in the case of sequence
mutation, RNA structure alteration cannot be considered
as a single factor leading to a disease, but rather one has to
consider a broader context that defines how disruptive
such structural perturbation is for gene function.
In Table 2, some of the disease-associated SNPs

assessed by remuRNA to cause significant changes in
RNA structures are marked by ‘a’. These SNPs have
been reported in the literature to alter the structure of
the functional elements and, therefore, affect gene regula-
tion and result in severe human diseases. We discuss these
examples in the Supplementary Data.

Stability profile

Within a single RNA, different regions can have different
structural complexity, and therefore, SNPs have different
effects. For example, SNPs located in a stem are expected
to have a higher impact than SNPs in a loop. Thus clusters
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or structure changing disease-associated mutations can be
used as indicators of a structural elemental whose perturb-
ation causes disease. To identify such sensitive regions, we
can construct using relative entropy a stability profile of
an RNA that shows for each nucleotide position the struc-
tural impact of a putative mutation, should it occur in this
position.
As an example of the development of such stability

profiles, we analyzed mutations in the 50-UTR region of
FTL with a conserved IRE. The HGMD database reports
28 mutations in the 50-UTR region of FTL associated with
HHCS. Interestingly, almost all the disease-associated
SNPs are located in the IRE. Halvorsen et al. (15)
studied these mutations extensively and identified four
that alter the mRNA structural ensemble and, subse-
quently, a pairwise dependency between some SNPs in
this region (31).
In Figure 1, we displayed the ensemble distribution of

one of the SNPs in the IRE, G32C, and the one outside of
the IRE, C90T. In that figure, we observe more structural
changes caused by G32C than by C90T, where the
computed relative entropies are 7.1 and 0.9, respectively.
Many of the disease-associated SNPs in the 50-UTR
region of FTL are predicted by remuRNA to have signifi-
cant effect on RNA structure (see Supplementary Data).
These SNPs cluster round the beginning of the 50-UTR
region containing the hairpin. We also found 18 mutations
in the 50-UTR of FTL from the dbSNP database with no

report on their disease association (32). Among these
SNPs, only one is located in the IRE. Our method
predicts major structural changes caused by this SNP sug-
gesting that it is also associated with disease. Figure 4a
shows the RNA secondary structure of the 50-UTR of
FTL. The IRE in this gene is located within the first 70
nucleotides of the 50-UTR. Figure 4b shows the relative
entropy values at each nucleotide position of the 50-UTR
of FTL. Disease-associated SNPs are red, and other SNPs
from dbSNP are green. The average relative entropy in the
IRE region is 3.4, whereas it is 2.5 for the rest of the 50-
UTR. Thus, the IRE structure is highly sensitive to point
mutations.

This suggests that the neighborhood of other structure-
changing disease-associated SNPs that destabilize the
same region might provide important information for pre-
diction of disease association.

DISCUSSION

SNP-induced changes in RNA secondary structure can
potentially impact expression and/or function of a gene.
Investigation of structural changes caused by such small
sequence changes requires a very sensitive comparison
method. Subtle thermodynamic properties of an RNA
structure are most precisely captured by the Boltzmann
ensemble perspective. Subtle structural changes should
be revealed by the differences in the two ensembles.
Here, we proposed to use relative entropy—the
commonly accepted measure of difference in probability
distribution. However, because ensemble size grows expo-
nentially with RNA length, efficient computation of
relative entropy is impossible without a critical algorith-
mic advancement. We close this gap and provide a very
efficient algorithm to compute relative entropy between
Boltzmann distributions of two RNA structures: one
defined by the native sequence and the second by the
sequence with a point mutation. Consequently, our
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Figure 3. Relative entropy distribution for mutations in different regions of human mRNAs.

Table 1. Comparison of the impact of natural polymorphism and

randomly inserted mutations on mRNA structure

SNP class CDS 50-UTR 30-UTR

P 4e-4 7e-3 1e-6

CDS, coding sequence. P-values for random mutations introducing
higher change are calculated using paired Wilcoxon test.
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algorithm is a powerful tool useful for investigating the
impact of SNP-induced change of an RNA sequence on
various aspects of its function.

Our comparative analysis of the structural effects of
common SNPs and random point mutations clearly indi-
cates that such changes are, in all types of RNA, not
neutral and justify studies of their impact on gene expres-
sion and function. To provide a proof of principle of the
applicability of the method to such studies, we focused on

the 50-UTR region, where the role of RNA structure is
best, although not fully, understood. Indeed, for many
disease-associated mutations in this 50-UTR region
having a significant effect on RNA structure, we could
confirm that the structural changes caused the disease.
An intriguing issue that our method might help to

clarify is the mechanism by which a silent mutation can
cause disease. Chamary and Hurst (11) presented evidence
for the hypothesis that synonymous mutations are under

Table 2. Disease-associated SNPs in the 50-UTR with significant effects on RNA structure

Disease/phenotype Gene SNP Relative entropy P Motif

Increased triglyceride levels ABCA1 C35G 8.358 0.018
Obesity and diabetes AGRP G79A 6.966 0.041
Severe iron overload ALAS2a C105T 5.788 0.093 IRE, IRES, uORF
Wilson disease ATP7B C83A 6.059 0.079 uORF
Reduced serum thyroxine DIO2 G260A 5.963 0.086 SECIS
Dyskeratosis congenita, X-linked DKC1 C69G 9.067 0.012 IRES, uORF
Glioblastoma EGFR G31T 7.28 0.037 TOP
Hypertension FSHR G46A 6.122 0.074
Hyperferritinaemia-cataract synd. FTLa C14G 10.253 0.005 IRE

C29G 7.434 0.031
G32C 7.141 0.037
C36G 6.150 0.075
C36A 6.121 0.077

Ontotemporal dementia GRN G148T 7.609 0.028 IRES, UORF, MBE
Bipolar affective disorder HTR3A T97C 5.956 0.088 IRES
Hypercholesterolaemia LDLRa C30G 8.552 0.016 uORF

C23A 6.672 0.054
C155A 5.816 0.091

Increased expression MX1 C53A 5.746 0.095 K-BOX
Reduced expression NEIL2 C90G 7.481 0.030 IRES, uORF
Reduced transcriptional activity NR3C1 C274A 7.075 0.038 IRES, uORF
Increased HDL-C levels PLTP C47G 7.069 0.039
Protein C deficiency PROC A31C 7.104 0.038
Retinoblastoma RB1 G17C 9.003 0.012 IRES
Hirschsprung disease RET G154C 12.406 0.001

RET C164G 9.095 0.012
Reduced expression SLC19A1 C77T 5.984 0.084 MBE
Diabetic retinopathy VEGFAa C398G 10.674 0.003 IRES
Ovarian cancer XRCC3 A65G 6.494 0.061 IRES, uORF

IRES, internal ribosome entry sites; UORF, upstream open reading frames.
aThese genes are discussed in detail in the Supplementary Data. The UTRscan program (30) was used to identify the UTR functional elements.

(a) (b)

Figure 4. Point mutations in the 50-UTR of FTL. (a) Predicted minimum free energy RNA secondary structure. (b) The relative entropy for all
possible point mutations. Disease-associated SNPs are red, and other SNPs from dbSNP are green. Labeled are the SNPs G32C and C90T from
Figure 1.
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selective pressure as a result of changes in the secondary
structure of messengers and their stability. Consistent with
this hypothesis, Kudla et al. (33) demonstrated that
various GFP constructs that differ only in a single syn-
onymous mutation vary in their GFP expression signifi-
cantly. The minimum free energy associated with the
secondary structure of the first third of the mRNA con-
struct correlates well with GFP expression, which suggests
mRNA folding is associated with variation in expression.
Distinguishing whether a silent mutation acts through a

change in the binding dynamics between a codon and its
cognate tRNAs and/or through a change in mRNA struc-
ture is not trivial. Both mechanisms of action lead to
changes in protein structure/stability by affecting
co-translational folding kinetics [reviewed in (34)]. Both
mechanisms can also operate simultaneously and might
be considered in the design of recombinant proteins.
However, a comprehensive study by the Schäfer group
demonstrated that optimized genes that were designed
based on codon usage were not necessarily highly ex-
pressed in Escherichia coli (35). This implies that it
might be important to consider mRNA secondary struc-
ture along with codon usage in the design of recombinant
proteins [reviewed in (36)].
Our structural ensemble comparison method provides a

stepping stone for obtaining further insights into these and
related questions. Finally, the proposed approach allows
for the measurement of the magnitude of structural
changes but does not attempt to make any prediction con-
cerning whether such change leads to a phenotype change.
We are working toward combining this approach with
evolutionary conservation measurements and other
sequence and structure features to obtain a predictive
model.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Table 1 and Supplementary Figure 1.
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