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Abstract: Most of the neurological disorders in the brain are caused by the abnormal buildup of
misfolded or aggregated proteins. Osmolytes are low molecular weight organic molecules usually
built up in tissues at a quite high amount during stress or any pathological condition. These molecules
help in providing stability to the aggregated proteins and protect these proteins from misfolding.
Alzheimer’s disease (AD) is the uttermost universal neurological disorder that can be described by
the deposition of neurofibrillary tangles, aggregated/misfolded protein produced by the amyloid
β-protein (Aβ). Osmolytes provide stability to the folded, functional form of a protein and alter
the folding balance away from aggregation and/or degradation of the protein. Moreover, they are
identified as chemical chaperones. Brain osmolytes enhance the pace of Aβ aggregation, combine
with the nearby water molecules more promptly, and avert the aggregation/misfolding of proteins by
providing stability to them. Therefore, osmolytes can be employed as therapeutic targets and may
assist in potential drug design for many neurodegenerative and other diseases.
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1. Introduction

Neurodegenerative disorders are described by the accumulation of insoluble aggregates of
misfolded proteins in the central nervous system (CNS) such as Parkinson’s disease (PD), which is
known by the aggregation ofα-synuclein protein [1] and Alzheimer’s disease (AD), which demonstrates
intracellular tau and extracellular amyloid-β deposition and hyperphosphorylated tau aggregates,
respectively [2,3]. The most frequent form of neurodegenerative disease is AD, which is associated
with age and distinguished by premature neurovascular dysfunction, loss of memory, continuous
neurodegeneration, and numerous pathogenic mechanisms consisting of neuronal loss and functions
and presence of amyloid-β (Aβ) plaques and neurofibrillary tangles in the brain [4,5]. There are two
main pathological hallmarks of AD that have been found, which include extracellular amyloid plaques
developed by aggregated amyloid-β peptides (Aβ) and intracellular neurofibrillary tangles comprised
with polymers of changed tau protein [6]. AD progressively damages the brain structure and its
functions like memory and cognition.

Misfolded proteins can be produced by different cellular compartments; together with the
cytoplasm nucleus and endoplasmic reticulum (ER), they are competently detached by control systems
composed of the ubiquitin (Ub)-proteasome system (UPS), chaperone-mediated autophagy (CMA), and

Biomolecules 2020, 10, 132; doi:10.3390/biom10010132 www.mdpi.com/journal/biomolecules

http://www.mdpi.com/journal/biomolecules
http://www.mdpi.com
https://orcid.org/0000-0003-4047-7236
http://www.mdpi.com/2218-273X/10/1/132?type=check_update&version=1
http://dx.doi.org/10.3390/biom10010132
http://www.mdpi.com/journal/biomolecules


Biomolecules 2020, 10, 132 2 of 11

macroautophagy [7]. In multiple pathogenesis of AD, an important role of autophagy has been reported,
for example, in generating amyloid plaques from amyloid-β (Aβ) production and accumulation via
abnormally regulated amyloid precursor protein (APP) yield and in enhancing the activity of β-
and/or γ-secretases, intraneuronal neurofibrillary tangles (NFT), because of tau hyper-phosphorylation
and neuronal apoptosis. Dysfunction of the autophagy-lysosome pathway can direct towards Aβ

accumulation and the formation of insoluble aggregates and tau oligomers since initiation of autophagy
enhances the clearance of both soluble and aggregated appearance of Aβ and tau proteins [8].

Aβ monomers are known as primarily α-helical and random coil in structure. Aβ 42 monomers
play an important role in the progression of AD and are extremely prone to aggregation; they produce
a wide range of soluble oligomers that differ in size and morphology from dimers to trimers and
then up to huge prefibrillar structures. These Aβ oligomers bind with neuronal cells and provoke
cell death mediating oxidative stress and phagocytosis. The oligomeric forms of Aβ are known to
be the main toxic agents in AD [6]. As protein aggregation and misfolding are the main causes of
neurodegeneration in AD, PD, etc., there are some small molecular weight molecules that promote
protein folding and avert aggregation in contexts to globular proteins; these molecules are known as
osmolytes [9].

Dementia has been estimated to be present worldwide with a high prevalence. There are 24
million cases, and the figure is expected to double every 20 years until at least 2040. As the population
worldwide continues to age, the risk per the individual will also increase. Roughly, 5.5 million citizens
are affected in the United States, and the global occurrence is expected to be high in comparison
with other neurological disorders like PD, which affects approximately seven to ten million people
worldwide and is not as common as AD. Therefore, in this review, we mainly focus on the effect of
osmolytes on Alzheimer’s because of its rapidly increasing pathogenicity worldwide and because
naturally occurring osmolytes have a major effect on toxic forms of Aβ in preventing aggregation and
oxidative stress.

2. Osmolytes

Osmolytes are organic molecules with lower molecular weight that maintain attributes of the
biological fluid. They do so by maintaining the integrity of solution modulating properties like viscosity,
melting point, and ionic strength. In aqueous solutions, the strength of the nucleic acids and proteins
are significantly affected by these osmolytes [10–12]. In other word, osmolytes are naturally occurring
organic compounds [13], which upsurge the stability of proteins without disturbing their activity [14].
Generally, unfavorable environmental conditions denature the protein. The accumulation of osmolytes
to combat denaturing conditions may protect against the conditions mentioned above. These molecules
have ability to protect the functions and stability of the proteins under denaturing/stress conditions
and cause refolding of misfolded proteins.

3. Classification of Osmolytes

Osmolytes can be classified as organic osmolytes and were additionally sub-categorized as
amino acids, carbohydrates, amines, sulfonium, etc. These protective molecules act as a stabilizing
and destabilizing mediator. Urea works as a destabilizing osmolyte, whereas polyols, for example,
sorbitol, glucose, sucrose; amino acids and their derived products like betaine, taurine, proline,
and glycine; and a few methyl ammonium compounds like sarcosine and trimethylamine N-oxide
(TMAO), are categorized as defensive or else stabilizing osmolytes [11,12]. Some frequently used
protective osmolytes, like sorbitol, trehalose, betaine, proline, sucrose, TMAO, and so on, can exhibit
a destabilizing property on proteins below definite protein-specific conditions (high concentration
of osmolyte and/or non-physiological pH range) [10,12]. Below are listed classes of some organic
osmolytes (Figure 1).
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cellular ambiance, and hence, their occurrence ultimately modifies the strength of these 
macromolecules [17]. These molecules support the protein in preserving its strength in the aqueous 
solution and play an important role in retrieving the folded conformation of a denatured protein. 
Osmolyte moves forward to the folding stability from the unfolded to natively folded conformation 
through increasing the free energy of the unfolded state. A possible mechanism of osmolytes to 
prevent misfolded/aggregation under stress conditions has been shown in Figure 2. 

 
Figure 2. A probable curative mechanism for using osmolytes to prevent misfolded/aggregation. 
Under stress conditions, the structure of a fully folded protein is compromised due to inadequate 
folding of protein that may result either in discarded degradation or into the development of soluble 
precursors to facilitate amyloid formation. Osmolytes can assist in converting partially folded protein 
back into fully folded protein, thereby restoring proper functions of proteins, leading to the 
prevention of disease. 

Figure 1. Classification of organic osmolytes.

4. Mechanisms of Actions of Osmolytes

Folding of the protein is a progression that is reversible in the environment and osmolytes
drive the folding symmetry in the direction of natively folded conformations by increasing the free
energy of the unfolded state [15]. Melting temperature (Tm) of many proteins has been shown to
increase by the action of osmolytes [16]. Osmolytes perform functions by shifting the properties of
solvent in the cellular ambiance, and hence, their occurrence ultimately modifies the strength of these
macromolecules [17]. These molecules support the protein in preserving its strength in the aqueous
solution and play an important role in retrieving the folded conformation of a denatured protein.
Osmolyte moves forward to the folding stability from the unfolded to natively folded conformation
through increasing the free energy of the unfolded state. A possible mechanism of osmolytes to prevent
misfolded/aggregation under stress conditions has been shown in Figure 2.
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Figure 2. A probable curative mechanism for using osmolytes to prevent misfolded/aggregation. Under
stress conditions, the structure of a fully folded protein is compromised due to inadequate folding of
protein that may result either in discarded degradation or into the development of soluble precursors to
facilitate amyloid formation. Osmolytes can assist in converting partially folded protein back into fully
folded protein, thereby restoring proper functions of proteins, leading to the prevention of disease.
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Osmolytes provide stability to proteins through osmophobicity, preferential exclusion from protein
surfaces, surface tension, and excluded volume. These forces are responsible for the stability of a protein.
It is assumed that the assets of the osmolytes force the proteins to fold into a native conformation
in spite of the undesirable effect of adverse environmental conditions. Based on the transmission
of free energy of amino acid side chain and peptide backbone from water to osmolyte solution, it is
thought that the capacity of osmolyte to stabilize protein evolves from the adverse interactions between
osmolytes and the functional group, i.e., peptide backbone [18]. To be aware of the high-pressure
influences on biochemical systems, essential knowledge about pressure effects on the thermodynamic
properties of such osmolytes is significant. The study indicated the high-pressure effects on different
biochemical systems where a particular focal point was laid on the effects of pressure on osmolytes such
as TMAO, urea, ectoine, glycerol, and glycine as well as the dipeptides acetyl-N-methylglycine amide,
acetyl-N-methylalanine amide, and acetyl-N-methyl leucine amide. [19,20]. The study also reported
the ability of osmolytes like polyethylene glycol and TMAO for inhibiting of the depolymerization
of individual microtubule filaments and that they may potentially play an essential role in in vivo
microtubule dynamics [21].

5. Osmolyte Prevents Protein Misfolding, Aggregation, and Fibrillization

The viability of cells is retained only when the proteins in them hold their native structure
under optimum temperature and pH [14]. In many of the genetic, age-related diseases/pathological
conditions, there is a breakdown of misfolded or aggregated proteins. These misfolded proteins
are coupled to form a fibrillar arrangement that further leads to amyloid-associated disorders [22].
These pathophysiological circumstances share one title, i.e., the protein conformational diseases. This
category has been found to include many neurological disorders including serpin-deficient disorders,
AD, Huntington disease, PD, cystic fibrosis, diabetes type 2, transmissible spongiform encephalitis,
hemolytic anemia, amyotrophic lateral sclerosis, and dialysis-related amyloidosis [23,24]. Therefore,
utilization of naturally occurring organic osmolytes to alter the protein from non-native conformations
to its native conformations can be used to prevent various disorders related to misfolding of proteins.
Still, the destabilizing osmolytes could be used to eliminate the fibrillar protein structures made
inside the cell. Amino acids, lysine, and arginine are frequently used in the solubilization of fibrillar
structures and inclusion bodies [25,26]. Thus, osmolytes along with good stabilizers for proteins are
also identified as good refolders [10]. Moreover, several proteins are well-known to bind to specific
proteins, consequently transforming the native conformation, just like in the process of posttranslational
modification [27]. Error in the protein folding pathway or mutation in its gene may lead to misfolded
proteins, and these can be recognized as abnormal proteins that are exposed to undergo degradation
in the protein quality control (PQC system). Degradation of protein may result in dysfunctional
protein [28]. Protein misfolding is another of the most important reasons for protein dysfunction
that tends to build up in the endoplasmic reticulum (ER), which is known as a type of deficiency
coupled with the trafficking pathway following functional deficiency. Several studies have already
reported that when osmolytes were supplemented to the solution, which contains mutant proteins
having misfolded conformation, their native function was restored [29,30]. Previous studies have
suggested that specific osmolytes can assist the correct folding of misfolded proteins, which in turn
may avert their degradation and increase their intracellular function [31–36]. The alteration in AQP2
(aquaporin-2) gene causes misfolding of AQP-2 protein that may lead to developing diabetes insipidus
in mammals. However, as soon as osmolytes like glycerol (1M) were supplemented in the cell culture
medium, glycerol re-established the folded arrangement and consequently the appropriate reshuffle of
this protein in the cell [37,38].

In addition to protein misfolding, the other condition where proteins fail to adopt or retain their
native state leads to aggregation and fibrillization of proteins. This is one of the major reasons found in
the pathophysiology of various neurological and metabolic disorders like PD, AD, Huntington’s disease
(HD), type-2 diabetes, prion related encephalopathies, and familial amyotrophic lateral sclerosis (FALS)
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and in diseases related to repeat expansion and polyglutamine (polyQ) expansion. Studies have already
reported that chaperones are effective suppressors of neurological disorders and, consequently, show
potential therapeutic targets for disorders related to conformational changes in protein [39,40]. Hence,
it is very important to discover some ways or strategies that can lead to avoidance in the development
of aggregated/fibrillar structures. The osmolytes can inhibit the protein aggregation/fibrillization by
altering the conformational stability and have assisted in the advancement of possible therapeutic
strategies aligned with the disorders that arise due to protein misfolding. The study showed that
4-hydroxy-L-proline, L-proline, sarcosine, and TMAO avert fibrillization or aggregation of proteins [41].
Osmolytes like polyol, except erythritol, facilitate the refolding of misfolded or aggregated proteins.
These could be used as efficient representative molecules in preventing protein aggregation and in the
treatment of numerous aggregation-related devastating diseases [42].

A study has shown that at 3M or above, concentrations of proline initiated the process to avert
the accumulation of bovine carbonic anhydrase [43]. An additional study projected the proline as
a “protective agent to prevent aggregation of proteins” because it was able to reduce the abnormal
interactions between polypeptide chains of protein incredibly early into the pathogenic trail of protein
aggregation [44]. The deposition of the polyglutamine-rich variety of huntingtin protein takes place
within the nucleus, which is known as a feature of the brain of patients having HD [45]. The study
had shown [46] this if 21-day aged mice were given oral administration of 2% of trehalose solution
continuously until the day they were killed. There was a reduction in aggregation affinity of the disease
related with polyglutamine containing protein huntingtin. This indicated the improvement in loss of
motor function and also improved the lifespan of the transgenic HD mouse.

Various literatures have revealed diverse outcomes of osmolytes on the pathway of Aβ aggregation.
For instance, trehalose was identified as a probable osmolyte that decreases the Aβ-cytotoxicity by
restraining the development of Aβ aggregate [47]. A further study confirmed that sucrose was capable
of decelerating the expansion of Aβ fibril. Osmolyte was brought into being to obstruct the racemization
reaction of D-aspartic acid [48], which is the major provider to the development of deposits of Aβ [49].
A study attempted to explore the function of osmolytes in the amyloid-coupled aggregation model
established on insulin (human) hormone protein. They observed that TMAO, sorbitol, and glycerol
resulted in lowering the rate of fibril production by reducing the progression of the unfolding of
monomers. The above-mentioned investigational results have indicated an excellent link through
volume segregation principle relevant to polymer crowding [38].

6. Osmolytes as Therapeutic Target Against Neurological Disorders

During different disease conditions, proteins do not fold into their biochemically active forms
leading to the disturbance in biological processes like transport across membranes, protein degradation,
and protein folding. Several genetic disorders have been attributed to problems associated with
excessive degradation or formation of aggregates in the related proteins. This phenomenon is
quite common in neurodegenerative diseases such as Alzheimer’s disease, transmissible spongiform
encephalities, serpin deficient disorders, haemolyticanaemia, Huntington disease, cystic fibrosis,
diabetes type II, amylotropic lateral sclerosis, Parkinson’s disease, and dialysis related amyloidosis
among others. Regulating the brain dimensions is a homeostatic practice wherein the water movement
plays an important part in retaining ionic and osmotic balance. It is significant for the appropriate
functionality and well-being of the nervous system and is strongly prohibited by a particular cell type
called astrocytes, owing to their high and exclusive expression of the water channel, aquaporin-4 [50,51].
Water-influx through AQP4 is initiated by osmolytes that activate an outflow of Cl- and osmolytes
by means of some volume-regulated anion channel, and afterwards there is an outflow of water to
re-establish the volume [52–55].

Recently, it has been shown that certain naturally occurring osmolytes can be used to protect
these proteins from misfolded conformations leading to prevention of such diseases by virtue of
promoting their intracellular functional activity. Reduction and imbalance of osmolytes such as
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myo-inositol occur due to increasing concentrations of glutamine following astrocyte swelling and
the development of low-grade cerebral edema [56]. A common osmolyte such as betaine (N, N,
N-trimethylglycine), has played a significant role in the number of clinical reports associating betaine
administration with enhanced neuroprotection and cognition [57]. Figure 3 represents various major
classes of brain osmolytes. Studies have reported that brain osmolytes like taurine and glycine
facilitate the effects of urea on biological activity as urea has a tendency to reduce the kcat and
enhance the Km of enzymatic reactions. Betaine (trimethylglycine) regulates plant responses to several
stresses together with decreased growth, which is perhaps a part of the plant’s adjustment aligned
with stress. γ-aminobutyric acid (GABA) is a main inhibitory neurotransmitter in the brain. Its
levels are associated with osmolytes in the visual but not in the sensorimotor region, indicating the
regional specificity of modifications in GABAergic tone in hepatic encephalopathy. Glutamate and
other osmolytes are expected to be released through receptors and influence synaptic conduction
as well as N-methyl-D-aspartate receptor or metabotropic glutamate receptor-dependent synaptic
plasticity [13,55,58].
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Alzheimer’s disease (AD) is considered a permanent brain disorder that gradually demolishes
cognitive functions and ultimately a person’s capacity to execute everyday life tasks and behavior.
Memory dysfunctions are one of the initial characteristics of AD, and while it steps forward, deterioration
in further cognitive aptitudes such as reduced judgment and alteration in mood start to surface.
Eventually people with serious AD cannot speak properly and become entirely reliant on others for
their wellbeing. The majority of people having AD have late onset of illness that generally develops
after the age of 60. The most important pathological means of AD involve the buildup of amyloid-β
(Aβ) peptide in certain areas of the brain [59], and also the occurrence of protein misfolding is very
frequent in cells. Accumulation of small peptides amyloid-β (Aβ) in the brains of AD patients is
the most established observation regarding the pathological mechanism of AD [60]. Aβ is produced
by the proteolysis of an amyloid-β protein precursor (AβPP). AβPP can be cleaved by the three
different proteases at three different locations designated as α-, β-, and γ-secretases. Naturally,
occurring osmolytes can augment the thermodynamic strength of proteins by providing stability to the
natively folded protein conformation, therefore averting aggregation of protein exclusive of perturbing
additional cellular processes. Osmolytes might inhibit the development of Aβ oligomers in vivo,
consequently prohibiting the evolution of soluble oligomers.

Similarly, Huntington disease (HD) is a progressive neurodegenerative disorder with onset in
middle age. Huntington disease is caused by mutation in gene encoding the protein huntingtin1 [61].
Similar to AD, during HD, aggregation of insoluble huntingtin protein aggregates has been observed
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in different experimental models as well as in brain tissues from patients with Huntington disease [62].
Thus, the identification of a putative therapeutic target that inhibits the formation of polyglutamine
aggregates might contribute to the treatment and understanding of polyglutamine diseases like HD.

Small organic molecules or osmolytes have neuroprotective effects in a transgenic mouse model
of Huntington disease [63]. Minocycline and creatine retard the progression of pathology and delay
mortality [63]. Congo red ameliorates the disease by inhibiting oligomerization of huntingtin [64].
Although the potential therapeutic importance of small molecules that prevent the formation
of polyglutamine aggregates is extensively documented, the extreme insolubility of expanded
polyglutamines makes it difficult to prepare polyglutamine-containing proteins on a large scale
and to search for inhibitors of protein aggregation by in vitro high-throughput screening [65,66].

Correspondingly, several other diseases involve protein aggregation in their pathophysiology,
like PD, encephalitis, amyotrophic lateral sclerosis, serpin deficient disorders, hemolytic anemia, cystic
fibrosis, and diabetes type 2 [13,67–69]. To facilitate the inhibition of protein aggregation, it is important
to provide stability to the proteins, which is the main way of preserving their exact form [70]. Therefore,
the environment offers a unique way for the entire organism to continue to exist in traumatic situations,
facilitating materials like osmolytes. Osmolytes are the molecules that affect osmosis and are soluble in
the solution inside a cell or the nearby fluid. They actively participate in preserving cell volume and
fluid equilibrium [71]. Several types of osmolytes have been brought to save proteins from denaturation,
misfolding, and amyloid development and aggregation in stressed environmental conditions and may
play an important part in protecting from life-threatening neurological disorders [72–74].

7. Conclusions

Stressful environment leads to the generation of the misfolded aggregated structure of the protein
that further leads to the generation of neurological disorders. Osmolytes have been found to participate
in preventing the aggregation and misfolding of proteins. They can be utilized as curative targets for
many neurological disorders, which are primarily associated with the protein misfolding. Fibrillation
of protein is liable for a number of amyloidogenic disorders counting diseases like AD, HD, PD, cystic
fibrosis, diabetes type 2, and dialysis linked amyloidosis. A detailed understanding of mechanisms of
action of osmolytes can lead to the expansion of osmolytes as an efficient curative target molecule and
consequently to consistent drug design for the prevention and cure of neurological, genetic, and other
diseases caused by protein misfolding/fibrillation/aggregation along with other factors.
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