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Abstract

Many investigations of anthropogenic and natural impacts in ecological systems attempt to

detect differences in ecological variables or community composition. Frequently, ordination

procedures such as principal components analysis (PCA) or canonical correspondence

analysis (CCA) are used to simplify such complex data sets into a set of primary factors that

express the variation across the original variables. Scatterplots of the first and second princi-

pal components are then used to visually inspect for differences in community composition

between treatment groups. We present a multidimensional extension of analysis of variance

based on an analysis of distance (ANODIS) that can be used to formally test for differences

in community composition using 1, 2, or more dimensions of a PCA or CCA of the original

sample observations. The statistical tests of significance are based on F-statistics adapted

for the analysis of this multidimensional data. Because the analysis is parametric, power

and sample size calculations useful in the design of field studies can be readily computed.

The use of ANODIS is illustrated using bivariate PCA scatterplots from three published stud-

ies. Statistical power calculations using the noncentral F-distribution are illustrated.

Introduction

Multivariate analysis is often exploratory or descriptive rather than inferential in nature. One

reason for the preponderance of descriptive studies is that investigators often collect unwieldy

amounts of data per sample in an attempt to uncover important patterns. Overparameteriza-

tion of the information then forces investigators to use post hocmethods such as cluster analy-

sis, principal components analysis (PCA), or canonical correspondence analysis (CCA) to

summarize and simplify the sample comparisons. Ordination procedures such as PCA offer a

systematic way to reduce dimensionality of complex data sets and organize it into new inde-

pendent composite variables (i.e., the principal components). Thus, redundancy in the data set

is minimized and sampling entities are organized around a few important gradients, which aid

descriptive interpretation [1–3]. In a sense, it eliminates concern over bias due to linearly
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correlated variables by providing the best signal-to-noise ratio for separating differences in

structures.

Many ecological studies that seek to detect changes in community composition or differ-

ences in habitat structure are hampered by a lack of formal statistical methods to test for differ-

ences in principal components. Currently, investigations of anthropogenic and natural

impacts on biological communities use many different analytical methods to assess effects. For

example, following the Exxon Valdez oil spill in Prince William Sound, AK, investigators [4–6]

resorted to multiple species-by-species t-test analyses, adjusting the test-wise α-levels for the

multiple tests to control the experimental-wise Type I error rate. In another Exxon Valdez
study, Day et al. [7] used separate one-way ANOVAs on the first two principal components.

Separate one-way ANOVAs on principal components were also used by Towns et al. [8], who

sought to investigate the impact of invasive rats on invertebrate community composition in

island soils. More often, however, researchers simply provide qualitative descriptions of com-

munity patterns based on bivariate plots of principal component values. In these instances,

PCA bivariate scatterplots of the first two principal components may suggest community pat-

terns or gradients, but objective interpretation is often difficult [9–15] and statistical signifi-

cance is not mentioned.

Because visual inspection of PCA bivariate scatterplots is sensitive to personal perspective,

objective approaches to data interpretation are necessary. Without objective criteria for com-

parison of PCA scatterplot data, it is also difficult to determine required sample sizes. Krza-

nowski [16] offers some guidance on sample sizes when comparing principal components

between two treatment groups. However, the guidance is of limited value because it pertains to

a few specific values of the “percent trace in the first population component.” Otherwise,

Monte Carlo methods must be used to generalize the approach. Saccenti and Timmerman [17]

provide guidance on minimal sample sizes for principal component comparison but without

considering Type I and Type II statistical error rates. In the absence of convenient statistical

guidance, sample sizes are often driven by intuition, personal preference, or budgetary con-

straints rather than a priori study performance. Inadequate sample sizes for performing com-

munity composition comparisons further contribute to the subjective interpretation of the

data. Without rigorous design, studies are often relegated to simply qualitative impressions.

For these many reasons, ecologists are often left in a quandary over what statistical analyses are

appropriate to evaluate even the most basic hypotheses concerning differences in community

composition following PCA [18].

We present a multidimensional extension of analysis of variance based on an analysis of

distance (ANODIS) that can be used to test for differences in community composition using 1,

2, or more dimensions of a PCA or CCA of the original sample observations. The tests of sig-

nificance are based on F-statistics adapted specifically for the analysis of these multidimen-

sional data. These statistical tests can be generalized to a variety of experimental designs, can

simultaneously analyze multiple dimensions of a principal components analysis, and their

noncentral distributions can be used in the design of experiments. A parametric approach to

data analysis was chosen because it readily permits power and sample size calculations useful

in the design of field studies. We believe proper design of studies is as important as proper

data analysis, so both the design and analysis aspects of PCA bivariate scatterplot data are

presented.

PCA bivariate scatterplot examples

The ANODIS methods will be illustrated using published PCA bivariate scatterplot data from

three different studies (Magoba and Samways [11], Louys et al. [13], and Annala et al. [14]).

Statistical analysis of principal components
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The PCA values (S1–S3 Files) were digitally extracted from printed figures in the previously

published studies using GetData Graph Digitizer 2.26 and, as such, may not exactly represent

the original values. The subsequent analyses of the digitized PCA values using ANODIS should

therefore be considered for the purpose of illustration only.

Dragonfly assemblages [11]

Following the removal of hundreds of hectacres of invasive trees in South Africa, Magoba

and Samways [11] examined differences in adult dragonfly community composition between

riparian zones with contrasting vegetation types. Three headwater streams with minimal

anthropogenic impacts were selected from the Luvuvhu River basin. Dragonfly assemblages

were examined in three riparian zone classes: (1) zones with only natural vegetation, (2)

zones with dense alien vegetation, and (3) zones manually cleared of alien vegetation.

Twenty-three 10 x 2 m stream stretches were drawn from natural and alien stream segments,

and twenty-five stretches were taken from areas cleared of alien vegetation. In 30-minute

sampling periods, adult dragonflies were visually identified to species. Because female drag-

onflies are rarely associated with water, only male dragonflies were recorded. Voucher speci-

mens were collected with butterfly nets to confirm species identifications. To compare

differences in dragonfly community composition, Magoba and Samways [11] created a bivar-

iate scatterplot of the first two principal components derived from Bray-Curtis similarity

measures (Fig 1).

Fig 1. Bivariate scatterplot of dragonfly count data. A scatterplot based on the first two principal components of hypergeometric

probabilities derived from dragonfly count data collected in riparian zones in South Africa. This figure is based on data digitally

extracted from Magoba and Samways (p. 632, fig. 4 in [11]) and is therefore for illustrative purposes only. Riparian zones included

natural trees, a mix of natural and alien trees, or had alien trees cleared.

https://doi.org/10.1371/journal.pone.0206033.g001

Statistical analysis of principal components
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Mammalian assemblages [13]

To understand the influence of historical effects on mammal community composition, Louys

et al. [13] examined mammalian assemblages in natural protected areas across three conti-

nents: Asia, Africa, and Central/South America. Using the Man and the Biosphere Species

Database (http://ice.ucdavis.edu/mab), species presence/absence were recorded for 23 African,

32 Asian, and 8 Central and South American natural protected areas. Species were categorized

by mass (<1 kg, 1–10 kg, 10–45 kg, 45–180 kg, and>180 kg), trophic level (primary or sec-

ondary consumer), and locomotion (terrestrial or arboreal). To first correct for variation due

to environmental factors, percent heavy tree cover was calculated based on satellite imagery

obtained from Google Earth (see Louys et al. [13]). Ecological guilds were regressed against

tree cover and principal components analysis was carried out on the residuals. The results of

their PCA were illustrated using a bivariate scatterplot (Fig 2).

Fig 2. Bivariate scatterplot of mammalian community structure. A scatterplot based on the first two principal components of

hypergeometric probabilities derived from mammal community structure in Asia, Africa, and South and Central America. This

figure is based on data digitally extracted from Louys et al. (p. 726, fig. 5 in [5]) and is therefore for illustrative purposes only. The

authors first corrected for habitat to examine the influence of continental history on mammal community structure.

https://doi.org/10.1371/journal.pone.0206033.g002
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Stream chemistry [14]

To determine whether naturally stressed streams may be resistant to further anthropogenic

stress, Annala et al. [14] sampled water chemistry variables in streams in northern Finland,

including 24 in the naturally acidic Iijoki basin and 24 in the circumneutral Oulujoki basin.

The naturally acidic streams ran over black shale deposits and had an average summer pH of

5.0 (range 3.7–5.9), while the circumneutral streams had an average summer pH of 6.5 (range

5.4–7.2). In both basins, drainage ditching as part of forestry activities was the primary anthro-

pogenic impact. In each basin, 10 to 12 sites were samples in the impacted and near-pristine

treatment groups. All sampling occurred in riffle sections in headwater streams. Water sam-

ples were collected in October 2010, following the methods used by the Geological Survey of

Finland [19]. Samples were analyzed for electrical conductivity, alkalinity, pH, total phospo-

horus, dissolved organic carbon, sulphate (SO4), and metals (Cu, Mn, Ni, Pb, and Zn) in the

laboratory. Principal components analysis was then used to summarize differences in overall

water chemistry between streams (Fig 3). To formally test for natural and anthropogenic

effects on water chemistry, we used ANODIS. The variance was partitioned among the

main effects of stream geology and impact status, as well as the interaction between the two

main effects.

Statistical methods

Analysis of distance

By design, principal components generated by PCA are orthogonal [20, 21]. In other words,

second and higher order axes are independent of all previous axes. The property of indepen-

dence allows the analysis of the separate components to be combined based on the principle

that the sum of independent chi-square statistics is also chi-square distributed with degrees of

freedom equal to the sum of the separate degrees of freedom.

The distance (D) between two points (x1, y1) and (x2, y2) in Cartesian space is calculated as

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx1 � x2Þ
2
þ ðy1 � y2Þ

2

q

:

Consequently, the distance squared (D2) between the two points is the sum of the separate

squares for the x-coordinates and the y-coordinates, where

D2 ¼ ðx1 � x2Þ
2
þ ðy1 � y2Þ

2
: ð1Þ

In our application, the x and y coordinates correspond to the first and second principal

components of a bivariate scatterplot.

Consider the situation where independent samples were collected from different communi-

ties one wishes to compare using the results from PCA. Geometrically, the ANODIS partitions

the total sum of squared distance from the centroid of the combined data into between-treat-

ment and within-treatment components (Fig 4 and S1 Appendix). This partitioning can be

performed on the separate x and y coordinates and then recombined as per Eq (1). In the drag-

onfly bivariate PCA scatterplot example (Fig 1), three treatment groups are being compared

visually. In general, any ANOVA that can be constructed to analyze univariate data has an

ANODIS analog when analyzing principal components. In particular, the ANODIS for any

univariate data set is the ANOVA. The null hypothesis (Ho) for the dragonfly bivariate scatter-

plot (Fig 1) is that the samples are from a single population with common centroid equivalent

to the bivariate mean (μx, μy). The alternative hypothesis is that the samples are from three dif-

ferent populations with centroids ðmxi ; myiÞ for i = 1, 2, 3.

Statistical analysis of principal components
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The ANODIS can be easily constructed by combining the results of the separate ANOVAs

for each of the principal components analyzed (Table 1, and R code example in the S4 File).

While Table 1 shows the construction of an ANODIS table for two dimensions, the extension

to three or more dimensions is straightforward. The degrees of freedom for the resulting F-test

in ANODIS will be increased over that of ANOVA by a factor equivalent to the number of

principal component dimensions analyzed (Table 1, S1 Appendix). Statistical significance and

associated P-values can be read from standard F-tables.

To confirm the distribution theory leading to the F-test for ANODIS, we performed Monte

Carlo simulations. We generated vectors of community abundance based on an r-dimensional

multivariate normal distribution. Simulations varied the number of dimensions (r = 5, 7, or

10), the mean abundance levels, and the variance–covariance relationships between the simu-

lated populations within a community. Varying numbers of samples per community

Fig 3. Bivariate scatterplot of stream chemistry. A scatterplot based on the first two principal components derived from water

chemistry data collected in streams in northern Finland with different combinations of stressors. This figure is based on data digitally

extracted from Annala et al. (p. 1891, fig. 1B in [14]) and is therefore for illustrative purposes only. Neutral = no acidic stress,

Acidic = acidic stress resulting from underlying geology, Pristine = no land use impacts, Impacted = land use impacts, primarily

drainage ditching for forestry activities.

https://doi.org/10.1371/journal.pone.0206033.g003

Statistical analysis of principal components
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assemblage, n = 5, 10, 15, or 20 were drawn under the null hypothesis of a common assem-

blage, and PCA was used to calculate the first two principal components across the total sam-

ples drawn from a K treatment comparison (i.e., N ¼
PK
i¼1
ni). Scenarios of unequal sample

sizes were also simulated. Simulations examined scenarios with K = 2, 3, or 4 community

assemblages being compared simultaneously. For each scenario simulated, 10,000 replicate

Monte Carlo simulations of the study were generated. For each replicate, the F-test for the

ANODIS was computed, and their empirical cumulative distribution compared to the cumula-

tive distribution function (cdf) of an F-statistic with 2(K– 1)and 2(N–K) degrees of freedom.

The empirical cumulative distributions for the generated F-tests agreed exactly with the cdf of

the theoretical F-distributions in all scenarios simulated (Fig 5).

For each of the bivariate principal component scatterplot examples drawn from the litera-

ture, we also performed one-way ANOVAs (i.e., linear model ln (y ~ factor(TREATMENT),

Fig 4. Illustration of PCA bivariate scatterplot. Scatterplot of two principal components from two communities with replicate

samples, along with within-group (red dot) and between-group (blue dot in circle) centroids.

https://doi.org/10.1371/journal.pone.0206033.g004

Table 1. An example of combining ANOVA terms for bivariate principle component data to create the ANODIS F-statistic where N is the total number of samples

drawn and K, the number of assemblages compared.

Source PC1- ANOVA PC2-ANOVA ANODIS

DF SS DF SS DF SS

Total corrected N − 1 SSTot.x N − 1 SSTot.y 2(N − 1) SSTot.x + SSTot.y

Between treatment K − 1 SSTreat.x K − 1 SSTreat.y 2(K − 1) SSTreat.x + SSTreat.y

Within error N − K SSError.x N − K SSError.y 2(N − K) SSError.x + SSError.y

F-statistic SSTreat:x
ðK� 1Þ

� �

SSError:x
ðN� KÞ

� �

SSTreat:y
ðK� 1Þ

� �

SSError:y
ðN� KÞ

� �

SSTreat:xþSSTreat:y
2ðK� 1Þ

h i

SSError:xþSSError:y
2ðN� KÞ

h i

https://doi.org/10.1371/journal.pone.0206033.t001

Statistical analysis of principal components
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data = data.name) in R) on the separate principal components, and used Hotelling’s T2 (i.e.,

the function “hotelling.test” in the Hotelling package in R) to compare assemblages. These

example analyses were used to empirically compare the ANODIS results to more traditional

methods.

In addition, Monte Carlo simulations were performed to compare the statistical power (i.e.

1-β) of these three alternative methods of data analysis. Power curves were generated for each

method as a function of the size of the distance between community centroids at α = 0.05,

2-tailed. The scenario’s simulated under the alternative hypothesis (i.e. Ha) consisted of the

same range in r, n and K values as performed under the null (i.e. Ho). In the case of multiple

community comparisons under Ha, minimal power scenario was simulated where 1 commu-

nity differed from the remaining K-1 communities. The test-wise αTW−level of the individual

tests in the case of separate ANOVAs for the different principle components was adjusted by

the formula 1 –(1 − αtw)2 = 0.05 or α = 0.0253 to maintain the same overall experimental-wise

error rate αex = 0.05 as ANODIS and Hotelling’s T2.

Fig 5. Example of simulation results under H0. Comparison of the empirical cumulative distribution of ANODIS F-test with the

theoretical F-distribution with d1 = 2 and d2 = 36 degrees of freedom for the case of K = 2 communities, r = 5 species per community

assemblage, and n = 10 samples per community under the null hypothesis of homogeneous centroids. Other simulated scenarios

produced similar results of perfect fit of simulated and expected F-distributions.

https://doi.org/10.1371/journal.pone.0206033.g005

Statistical analysis of principal components
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Statistical power and sample size determination. An advantage of the F-test derived

from the ANODIS is that the distributional properties of the test statistic are well described

under both null and alternative hypotheses because of the ANOVA underpinnings. Noncen-

tral F-distributions can be used to determine the statistical power of tests and perform sample

size calculations. No additional statistical theory needs to be developed, and existing software

in the R statistics package can be directly applied to the question of required sample sizes for

community composition studies. Statistical power for the F-test of equal centroids (Table 1)

can be based on its noncentral distribution under the alternative hypothesis of differences in

treatment locations. The noncentral F-distribution depends on the degrees of freedom in the

numerator (df1) and denominator of the F-test (df2), and a noncentrality parameter.

Starting with the definition of the noncentrality parameter used by R for univariate analyses

(denoted by ldf1 ;df2 ) for a noncentral F-distribution

ldf1 ;df2 ¼

PK
i¼1
niðmi � �mÞ

2

s2
ð2Þ

where the quantity ðmi � �mÞ
2

is the squared distance between the ith mean (μi) and the grand

mean ð�mÞ across K treatment groups in 1-dimensional space. The quantity σ2 is the between-

replicate, within-treatment variance defined as

s2 ¼

PK
i¼1

Pni
j¼1
ðxij � miÞ

2

PK
i¼1
ðni � 2Þ

and where

xij = jth observation (j = 1, . . .,ni) in the ith treatment group (i = 1,. . .,K),

ni = sample size for the ith treatment group (i = 1,. . .,K).

In the case of 2-dimensional space, λ can be rewritten where the distance now between

treatment group centroids and the grand centroid can be expressed as

l ¼

PK
i¼1
niððmxi � �mxÞ

2
þ ðmyi � �myÞ

2
Þ

s2

where x and y now denote the first and second orthogonal principal components and where

mxi (i = 1,. . ., K) is the mean of PC1 for the ith treatment, �mx the grand mean for PC1 and myi
and �my defined analogously. The quantity σ2 is now the between-replicate, within-treatment

variance for the distances between individual replicate observations (xij, yij) and their treat-

ment specific centroids (�mxi ; �myi) such that

s2 ¼

PK
i¼1

Pni
j¼1
½ðxij � mxiÞ

2
þ ðyij � myiÞ

2
�

PK
i¼1
ðni � 2Þ

In the case of two treatments (i.e. K = 2) and equal sample sizes (n1 = n2 = n), λ reduces to

l2; 2ðn� 2Þ ¼
n
P2

i¼1
ðmxi � �mxÞ þ n

P2

i¼1
ðmyi � �myÞ

2

s2

where

s2 ¼

P2

i¼1

Pn
j¼1
½ðxij � mxiÞ

2
þ
P2

i¼1

Pn
j¼1
ðyij � myi Þ

2
�

2ðn � 2Þ
:

Statistical analysis of principal components
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In this special case of K = 2

X2

i¼1

ðmxi � �mxÞ
2
¼
ðmx1 � mx2Þ

2

2

and similarly

X2

i¼1

ðmyi � �myÞ
2
¼
ðmy1 � my2Þ

2

2
:

It then follows that

l2; 2ðn� 2Þ ¼
nððmx1 � mx2Þ

2
� ðmy1 � my2Þ

2
Þ

2s2
:

where

s2 ¼

P2

i¼1

Pn
j¼1
ðxij � myiÞ

2
þ
P2

i¼1

Pn
j¼1
ðyij � myiÞ

2

2ðn � 2Þ

or more simply

l2; 2ðn� 2Þ ¼
nD2

2s2

where D is the Euclidean distance between the centroids of the two treatment groups in

2-dimensional space. Extension to multiple dimensions is straightforward. If you further

define

C ¼
D
s
;

as the ratio of the distance between assemblages to the within-assemblage standard derivative,

then

l2; 2ðn� 2Þ ¼
nC2

2

The quotient C is an expression of the signal-to-noise ratio in the two-treatment compari-

son. The numerator of C is the linear distance between treatment centroids in any number of

dimensions. The denominator of C is the standard deviation for the within-treatment,

between-samples distances. The value C is a unitless measurement of the relative size of the

treatment difference compared to the within-treatment standard deviation in distance. The

unitless dimension of C is helpful when analyzing principal components that are inherently

difficult to interpret in terms of units. The quotient C is a measure of how many standard devi-

ations the treatment centroids are apart under the alternative hypothesis of heterogeneous

communities. The larger C becomes, the easier it is to detect treatment differences for a fixed

sample size n.

When there are three or more treatments, power calculations can still be based on the quo-

tient C. However, C is expressed as

C0 ¼
DMAX
s

; ð3Þ

where the numerator is now the maximum expected distance between any two of the

Statistical analysis of principal components
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treatment groups in the study and σ is again the between-replicate, within-treatment standard

deviation. The degrees of freedom in the noncentrality parameter, ldf1; df2 , are now based on

the degrees of freedom in the associated F-test with multiple treatments. Using C’, the mini-

mum statistical power of the F-test is calculated assuming the remaining treatments have data

centers equal to the grand centroid of the data. In any other treatment configuration, the

power of the F-test will be greater than that specified by C’. When there is interest in the statis-

tical power to compare two specific treatments, the earlier noncentrality parameter should be

used (Eq (2)), with 2 and 2(N—K) degrees of freedom.

Using R software, the general form of the line commands for the power calculations are as

follows:

crit:val < � qf ðð1 � alphaÞ; df1; df 2Þ

1 � pf ðcrit:val; df 1; df2; ncp ¼ lÞ

The first line calculates the critical value under the null hypothesis for the F-test performed

at an α-level = alpha, two-tailed, with degrees of freedom df1 and df2. The second line then cal-

culates the statistical power (i.e.,1 –β) at the above critical value (crit.val) and degrees of free-

dom df1 and df2 when the noncentral parameter (ncp) is set to λ.

Monte Carlo simulations of community treatment differences underHa uniformly found

the statistical power of the ANODIS to be greater than or equal to the alternative tests using

Hotelling’s T2 or separate ANOVAs on the individual principle components. Hotelling’s T2

performed very similar to the individual ANOVA’s approach under all circumstances. The

greatest difference in statistical power between ANODIS at the other two methods of analysis

occurred when samples per community were small, i.e. n = 5 (Fig 6). The power of the three

alternative methods asymptoted as sample sizes per community increased, i.e., n > 20.

For convenience, sample size tables were constructed associated with the F-test in the ANO-

DIS for the special case of a two-treatment randomized design with equal sample sizes (S2

Appendix). The statistical power of the F-test in the ANODIS is a function of both C and sam-

ple size per treatment group (i.e., n). The smaller the within-treatment sample size, the lower

the statistical power of the test. Required per-treatment sample sizes (n) were calculated for

statistical power of 1 –β = 0.70, 0.80, and 0.90 at α = 0.10, 0.05, and 0.01, two-tailed, for various

values of C. The minimum sample size requirements are provided when simultaneously ana-

lyzing 1, 2, or 3 principal components. The sample sizes when analyzing one-dimensional data

are an extension of tables provided by Kirk (pp. 840–841 [22]) for an F-test in the ANOVA for

a two-treatment, completely randomized design.

Results

Dragonfly assemblages example

In the original analysis of the dragonfly assemblages by Magoba and Samways [11], it was con-

cluded based on visual inspection that dragonfly assemblages did not differ between densely

forested sites with alien trees and forests with natural trees (Fig 1) in upriver zones in South

Africa. However, dragonfly assemblages at forested sites were visually concluded to differ from

sites cleared of alien trees. ANODIS confirmed significant differences in dragonfly assemblages

between cleared and forested sites (P(F2,138� 17.0948) < 0.0001). However, ANODIS also

found forested sites invaded with alien trees to have significantly different dragonfly assem-

blages (P(F2,88� 4.3689) = 0.0155) than forested sites with only natural trees. For comparison,

when using univariate ANOVAs on the separate principal components (0.0322� P� 0.6007,
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αTW = 0.0253 for two independent tests) and Hotelling’s T2 test (P = 0.1027) simultaneously

on the two principal components, no significant differences were detected between alien and

natural forested sites.

Mammalian assemblages example

Using visual inspection of the bivariate principal component scatterplot of mammalian assem-

blages (Fig 2), Louys et al. [13] found that Central/South American communities were clearly

differentiated from African and Asian communities along the first principal component,

which explains 36% of the variation. The overall F-test from ANODIS was highly significant

(P< 0.0001, Table 2). Construction of the ANODIS table and resulting F-tests are illustrated

in Table 2. Orthogonal contrasts (S1 Appendix) were used to compare Central/South Ameri-

can vs African/Asian communities and compare African vs Asian communities. Calculations

Fig 6. Example of simultaneous results under Hα. Comparison of power curves for ANODIS, Hotelling’s T2 and separate

ANOVA’s on individual PC’s as a function of standardized distance (i.e. C) between the two communities (K = 2) with r = 5 species

per community assemblage and n = 5 samples per community at α = 0.05, 2-tailed. Other simulated scenarios produced similar

results where ANODIS had statistical power greater than or equal to the other two data analysis approaches. Results illustrated for

biplot PCA data.

https://doi.org/10.1371/journal.pone.0206033.g006
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of contrast sums of squares is explained in S1 Appendix, and R code script (S5 File) to perform

the calculations is provided for convenience.

Stream chemistry example

In the analysis of differences in water chemistry between impacted and non-impacted sites

with different underlying geology, the first three principal components explained 80% of vari-

ability in the dataset. Metals including Mn, Cu, Zn, and Ni, as well as sulphate loaded strongly

onto the first principal component, while lead and organic carbon loaded strongly onto the

second principal component. Annala et al. [14] visually conclude from the bivariate scatterplot

of the first two principal components that acidic and neutral sites were distinguishable, but

that pristine and impacted sites were almost completely intermixed. Consistent with the

authors’ conclusions, ANODIS found a highly significant difference among acidic and neutral

sites (P(F2,82� 28.8192) < 0.0001), but a lack of differentiation between impacted and near-

pristine sites (P(F2,82� 1.8097) = 0.1702). For comparison, ANOVAs on the separate principal

components (0.0001� P� 0.0619, αTW = 0.0253 for two independent tests) as well as Hotell-

ing’s T2 (P< 0.0001) test found similar conclusions comparing acidic vs neutral sites. How-

ever, in the comparison of impact versus near pristine sites, P-values for the separate ANOVAs

on the two principal components (0.3594� P� 0.3939) and Hotelling’s T2 test (P = 0.4258)

were also insignificant, but P-values were higher, indicative of the lower statistical power of

these standard tests. ANODIS found no evidence of an interaction effect between underlying

geology and impact status (P(F2,82� 0.4811) = 0.6198) on water chemistry.

Power and sample size requirements

Sample size tables were constructed associated with the F-test in the ANODIS for the special

case of a two-treatment randomized design with equal sample sizes (S1 Appendix). The pro-

vided sample sizes are a useful guide in the initial design of community analyses. All else being

equal, the required sample sizes increase as the number of dimensions of the PCA to be ana-

lyzed increases. The implication is that more sampling effort is required to compare commu-

nity structures than that required to simply compare the abundance of a single species across

treatments. However, the increase in sample sizes needed for community analysis are relatively

small, considering the potential gain in information. For a statistical power of 1 –β = 0.80, at

Table 2. Construction of an ANODIS table using one-way ANOVA results for principle components PC1 and PC2 for mammal assemblage data from [13]. Linear

contrast C1 compares central/South American communities to the average of African and Asian communities. Linear contrast C2 compares African vs Asian communities.

PC1 –ANOVA PC2 –ANOVA ANODIS

Source DF SS DF SS DF SS MS F P

Total COR 61 4182.38 61 2926.96 122 7109.34

Treatment 2 2856.60 2 487.89 4 3344.49 836.12 26.21 < 0.0001

C1 1 2454.71 1 13.60 2 2468.31 1234.16 38.68 < 0.0001

C2 1 277.40 1 483.02 2 760.42 380.21 11.92 < 0.0001

ERROR 59 1325.78 59 2439.07 118 3764.85 31.91

ANODIS confirms the assemblage differences between Central/South American and African/Asian communities (P(F2,118 � 38.68) < 0.0001). However, appreciable

overlap between African and Asian communities makes visual interpretation difficult. Louys et al. (2011) conclude that African and Asian communities show very high

convergence in structure based on visual inspection of the principal component biplot (Fig 2). In contrast, however, ANODIS finds differences between Asian and

African mammalian community structures to be highly significant (P(F2,118 � 11.92) < 0.0001). For comparison, both univariate analyses on the separate principal

components (i.e. Asian vs. African 0.0010� P� 0.0016) and Hotelling’s T2 test (i.e. Asian vs. African P < 0.0001) based on the two principal components

simultaneously support the ANODIS results, but the P-values are generally higher.

https://doi.org/10.1371/journal.pone.0206033.t002
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α = 0.10, two tailed, and C = 1.0, sample sizes for one-dimensional population analysis are

n = 14, while two- and three-dimensional community analyses have required sample sizes of

n = 17 and 21, respectively.

As described earlier, C is a measure of the number of standard deviations the treatment cen-

troids are apart. It is therefore convenient in power calculations to envision the size of the

treatment difference in terms of this relative measure of distance. Statistical power increases as

the value of C increases for all else being equal. In post hoc power calculations, the value of C
should not be based on what original occurred, rather on the size of C considered important to

detect, if it indeed occurred (22:143).

In the case of the stream chemistry study, the average sample size was n = 11. With four

treatment groups, minimal statistical power can be calculated using C' (Eq (3)). The value of C'
is the relative distance measured in the number of standard deviations between the two most

exteme treatments with the remaining treatment centroids located in between. That study

with per treatment sample size of n = 11 would have numerator degrees of freedom of

df1 ¼ DðK � 1Þ ¼ 2ð4 � 1Þ ¼ 6:

For a 2-dimensional (i.e., D = 2) bivariate scatterplot ANODIS, the denominator degrees of

freedom would be

df2 ¼ D
XK

i¼1

ni � K

 !

¼ 2ð44 � 4Þ ¼ 80:

If interest is in detecting a treatment difference of C' = 1.0 the noncentrality parameter is

calculated to be

l6;80 ¼
nðC0 Þ2

2
¼

11 � ð1:0Þ
2

2
¼ 5:5:

Setting α = 0.10, two-tailed, the statistical power is calculated to be 1 –β = 0.4733 using the

R commands

crit:val < � qf ðð1 � 0:10Þ; 6; 80Þ

1 � pf ðcrit:val; 6; 80; 5:5Þ

In the case of C’ = 2.0, λ = 22.0 and the statistical power increases to 1 –β = 0.9732, at

α = 0.10, two-tailed. R scripts (S6 File) to calculate λ and statistical power have been provided

for convenience.

Discussion

Reducing the subjective interpretation of bivariate scatterplots of PCA values should be helpful

in ecological investigations. Based solely on visual inspection, treatment differences can be

overlooked or perceived incorrectly based on individual perception. Reproducible, objective

criteria in interpreting PCA bivariate scatterplot data should help eliminate one readily con-

trollable source of uncertainty in community studies.

There are several assumptions inherent in ANODIS. The F-tests in the ANODIS are based

on the assumptions the initial samples are independent and the principal components are

orthogonal. If the original field survey collected independent samples, then the observations

will remain independent, regardless of transformation (p. 104 [23]). By design, second- and
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higher-order axes are orthogonal (i.e., independent) to all previous axes in PCA [20] and CCA

[24]. Seber [21] formally demonstrated that principal components are uncorrelated.

The F-tests in ANODIS also share the same assumptions as the F-tests in univariate

ANOVA from which they were derived. The key assumptions are normally distributed data

and constant variance. The robustness of ANOVA to these assumption violations has been

thoroughly studied (see Zar, pp. 200–202 [25], for a review). Because ANODIS is a function of

univariate ANOVAs, its robustness to these assumption violations can be directly inferred. If

the original species data used in PCA are multivariate normal, then the individual principal

components will be exactly univariate normal (p. 447 [26]). In the case where species composi-

tion data are expressed as proportions, then that multinomially distributed data will be asymp-

totically multivariate normal just as binomial data are commonly approximated by a

univariate normal distribution (p. 533 [25]). In general, because the principal components are

linear functions of the original data, by the central limit theorem (pp. 206–208 [27]), they will

be asymptotically univariate normal. However, the property of normality cannot be assured

for every application. Consequently, investigators should test this assumption of normality

before using ANODIS. Normality can be visually assessed using quantile–quantile plots

(pp. 87–88 [28]) or quantitatively tested using the D’Agostino–Pearson test (pp. 116–117 [28]).

This chi-square test of normality combines with results from separate tests for skewness and

Kurtosis and is considered to be more powerful than the more generic Kolmorgorov-Smirnov

goodness-of-fit test (28:133–140) to a cumulative normal distribution. R code script for

the D’Agostino-Pearson test is provided (S7 File). For the three examples used in this

paper, the null hypothesis of normality was not rejected for any set of the principal compo-

nents (αEX = 0.05).

The adverse effects of nonnormality will generally be small if sample sizes are equal, or sam-

ple sizes are large, or when the underlying distributions of the principal components are sym-

metric but not normally distributed [29–31]. With small sample sizes, strong platykurtosis

(i.e., flatter than normal) will decrease statistical power, while leptokurtosis (i.e., more peaked

than normal) will increase statistical power [30].

As an ANOVA-based approach, ANODIS will generally be liberal if within-treatment

variances are unequal [32]. Myers and Wells (p. 221 [33]) found the Type I error to increase

by less than 0.02 when α was set at 0.05 and variances differed by less than a factor of 4. The

analyses will be more robust to heterodasticity if sample sizes are equal. If the larger treatment

sample size is associated with the larger variance, the tests will be conservative (i.e., Type I

error will be less than α) and the F-test will be liberal (i.e., Type I error will be greater than

α) when the larger variance is associated with the smaller sample size [34]. Statistical power

will track these directional changes in Type I error. The consequence is that ANOVA, MAN-

OVA, and ANODIS may reject the null hypothesis of same mean location when the actual

effect is a change in dispersion. Warton et al. [35] found both the nature of species abundance

information (e.g., abundance counts, proportions, etc.) and choice of statistical approach will

potentially confound location and dispersion effects when analyzing community composition

data.

In the process of reducing the dimensionality of community composition data, PCA

imposes a linear relationship between predictors and response, which might be disadvanta-

geous. If there is nonlinearity, PCA will represent the information in a higher number of prin-

cipal components than necessary. Many ecologists prefer CCA and related ordinations to PCA

because the underlying models assume unimodal responses rather than gradients.

Timm (pp. 449–457 [26]) summarizes several formal and informal approaches to determin-

ing the appropriate number of principal components to use in summarizing the multivariate

data. Cattell [36] suggested creating a scree plot by graphing estimated eigenvalues against the
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number of principal components, then identifying the spline point where the change in conse-

cutive eigenvalues diminishes with increasing number of dimensions. Generally, the selected

principal components should account for 70–80% of the total variability (p. 450 [26]).

Alternatives to the use of ANODIS include both parametric and nonparametric approaches.

Perhaps the simplest alternative is to perform separate univariate ANOVAs on each principal

component. In this case, the test-wise (TW) α-level must be adjusted downward to control the

experimental-wise (EX) error rate, i.e.,

1 � ð1 � aTWÞ
m
¼ aEX:

For example, withm = 2 principal components being compared, the test-wise alpha level

must be set to αTW = 0.0253 to retain αEX = 0.05. With half the error degrees of freedom and a

smaller α-level, the univariate ANOVA approach will have lower statistical power than ANO-

DIS, as demonstrated by our Monte Carlo simulations. Hotelling’s T2 test in the case of two

treatments (p. 99 [26]) or MANOVA in the case of multiple treatments will also halve the

error degrees of freedom relative to ANODIS and, again, result in lower statistical power. Both

the univariate and MANOVA alternatives share the same assumptions of normality and equal

variances as ANODIS.

Instead of using the eigenvalues to compare treatments, Krzanowski [37] recommended

using the eigenvectors to compare different treatment groups. The eigenvectors of each sample

group are written as the columns of matrices L and M, respectively, for the two groups, then

the “critical angles” between the two sets of principal components are obtained from the eigen-

values of the matrix LM0ML0. A limited set of critical values were generated by Krzanowski

[16] at α = 0.05 to test the null hypothesis of equal principal component matrices but no sam-

ple size calculations were provided.

Nonparametric multivariate approaches to test for differences in community structure

between treatment groups have become popular [38–40]. The approaches use permutated

resampling of the data and base inferences on the empirically derived distribution of possible

results from MANOVA. Consequently, the approaches may go by the names permutational

MANOVA, nonparametric MANOVA, or PERMANOVA. These nonparametric methods

relax the assumption of normality but still require the assumption of equal dispersion (e.g.,

equal variance) [41]. Unequal within-treatment dispersion may result in confounding differ-

ences in location with differences in dispersion which can also occur in parametric

approaches. The gains in robustness are somewhat offset by lower statistical power if the data

are indeed normally distributed. Although these procedures offer a nonparametric alternative,

they are not without assumptions [41]. In particular, permutation tests should only be used

when treatments were actually initially randomized to sites (pp. 627–628 [41]). More impor-

tantly, for purposes of study design and planning, permutation tests do not readily lend them-

selves to power calculations or sample size determination.

A singularly valuable contribution of this ANODIS approach and the associated F-test is

the ability to readily perform sample size calculations. Too often in the past, community analy-

ses have been conducted without regard to statistical performance, leaving little but anecdotal

evidence and poorly supported conclusions. Proper design, data analysis, and sufficient sample

sizes should help reverse this tendency.
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